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Abstract: To reduce unforeseen disaster risks, infrastructure systems are expected to be resilient.
The impact of many natural disasters on networked infrastructures is often observed to follow a
localized attack pattern. The localized attack can be demonstrated by the failures of a group of links
concentrated in a particular geographical domain which result in adjacent isolated nodes. In this
paper, a resilience-based recovery assessment framework is proposed. The framework aims to find the
most effective recovery strategy when subjected to localized attacks. The proposed framework was
implemented in a lattice network structure inspired by a water distribution network case study. Three
different recovery strategies were studied with cost and time constraints incorporated: preferential
recovery based on nodal weight (PRNW), periphery recovery (PR), and localized recovery (LR).
The case study results indicated that LR could be selected as the most resilient and cost-effective
recovery strategy. This paper hopes to aid in the decision-making process by providing a strategic
baseline for finding an optimized recovery strategy for localized attack scenarios.
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1. Introduction

Resilience is known to be one of the most important metrics for measuring the capability of an
infrastructure system to cope with changes. It is the ability of a system to withstand an unusual event
that might cause damage to the system and recover efficiently from such damage immediately [1,2].
The proper functioning of our society depends highly on several critical infrastructure systems,
including power systems, transportation networks, water supply, internet and communication,
and others. The interdependency and complexity between various infrastructure systems are
growing simultaneously with the global vision to achieve smarter and more connected societies
and/or communities [3]. However, this interdependency between infrastructures is one of the main
reasons behind the vulnerability of the system towards unexpected failures and disruptions. Besides,
the occurrence of unexpected natural disasters can also disrupt the normal operating conditions of
infrastructure systems. In networked infrastructure systems, natural disasters are often modeled
as localized attacks which cause failures of aggregated components in a geographical domain [4].
It is essential for any infrastructure systems to possess a disaster resilient property. To survive
localized attacks and withstand possible failures, infrastructure systems should be recovered within
the shortest possible time. Thus, the implemented recovery strategies should ensure the efficiency
and robustness during recovery under a certain set of constraints, for example, time, cost, and other
resources constraints.

Resilience is a multidimensional concept that can be described from different perspectives.
In infrastructure systems, resilience could be defined as the ability of a system to be prepared for
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any disruptions, absorb and adapt to such disturbances, and recover from them immediately after
the disruption [5,6]. The resilience of infrastructure systems is also associated with the ability of the
system to maintain a certain level of service even after the occurrence of an extreme event and regain
its functionality immediately. In fact, resilience can be defined more appropriately by four dimensions:
robustness (the ability to withstand extreme events and deliver a certain level of service after the
occurrence of disruptive events), rapidity (the speed of recovering from a disaster), redundancy (the
substitutable components within the system), and resourcefulness (the availability of resources to
respond to a disaster) [1]. Although reliability is an important aspect of system resilience, a traditional
reliability assessment alone may not be adequate [7]. Thus, while describing resilience, reliability is
often paired with recoverability [8–10]. Reliability is emphasized more on dependability, which is
the ability of a system to function normally under certain conditions during a specified operational
time, while recoverability is the ability of the system to recover after a failure occurred [11]. System
reliability and recoverability complement each other and are highly related to the resilience of a system.
To maintain the desired level of system performance in the presence of disruptive events, an assessment
of infrastructure resilience must be conducted [12,13].

To quantify infrastructure resilience, several resilience metrics have been developed and
implemented in a wide range of cases studies for example, from supply networks [14–16], urban
systems [17–19], to transportation infrastructures [4,20,21]. The quantification of the resilience property
for infrastructures application is directly connected to the functionality of the networks. Bocchini
et al. proposed the usage of resilience triangle to explain the loss of resilience due to an extreme
event and how the recovered functionality can improve the system resilience [1]. Mattsson and
Jenelius conducted a study on the role of vulnerability analysis in strengthening system resilience in
infrastructure networked systems [2]. Adams et al. proposed two measures of resilience—reduction
and recovery—and quantified them with the resilience triangle formulation [6]. Cox et al. presented
operational metrics from the perspective of economic resilience and explained the relationship of
the system resilience based on the economic aspect [13]. Murray-Tuite measured transportation
resilience through four dimensions: adaptability, safety, mobility, and recovery [20]. Future planning
is known to play an important aspect in postdisaster infrastructure recovery. Zorn and Shamseldin
compared recovery strategies with different disaster types to produce restoration rates for future
disasters [22]. To compliment an effective future planning, several resilience-based optimization models
were also developed. Liao et al. formulated an optimization model for the resilience of transportation
networks under budget and time constraints [23]. The formulated model was implemented on a
transportation network under disaster. A bilevel facility protection model was developed by Losada
et al. for optimizing system resilience [24]. Turnquest and Vugrin introduced a stochastic optimization
model for designing infrastructure network resilience [25]. The importance of restoration in achieving
disaster resilient was addressed several times. For the optimization of restoration policies for electric
power distribution systems under extreme weather condition, a modeling framework was proposed
in Ref. [26]. A resilience-based model was also designed for a supply chain network by Margolis
et al. [27]. Another most recent contribution to developing a resilience-driven restoration model was
made by Almoghathawi et al. [28]. While planning for postdisaster restoration, considering several
uncertainties is crucial. Fang and Sansavini investigated the effects of uncertain repair time and
resources on postdisaster restoration. They proposed a two-stage optimization model to solve this
problem [29].

From the aforementioned studies it is observed that there exists a wide variety of resilience metrics
in measuring infrastructure resilience and optimization models to improve resilience. Resilience
is always related to “bouncing-back” properties, in which infrastructure systems are commonly
related to postdisaster recovery or restoration strategies. There are many approaches to recovering an
infrastructure from failures. However, in order to ensure that a targeted resilience level is attainable,
these recovery strategies should be assessed based on the impacts of each strategy on the overall
system’s resilience. Thus, in this paper a fundamental resilience-based recovery assessment is proposed
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for infrastructure networks under localized attacks. The assessment of recovery is considered as
resilience-based because the effectiveness of potential recovery strategies is compared based on
their resilience value. It should be noted that the modeling details are not covered in detail in
this paper. For further references, interested readers are encouraged to review some of the related
works that complement this paper such as modeling spatially localized attack and identifying critical
locations [30], integrated dynamical modeling for infrastructure resilience [31], and operational models
for infrastructure resilience [32–34]. Although there has been some related work regarding quantifying
or assessing resilience in infrastructure systems, the contribution of this paper is the assessment of
the recovery strategies that will eventually lead to improving infrastructure resilience. The proposed
approach is different from the traditional ways of evaluating recovery, such as those based on cost,
time, and resources utilized. In addition, this paper will focus only on localized attack scenarios,
where the effects of the damaged network are portrayed as a set of isolated nodes. To demonstrate
the proposed approach, three recovery strategies that were known to be effective in recovering the
damages induced by a localized attack were assessed on the basis of the overall system resilience. These
recovery strategies are periphery recovery (PR), preferential recovery based on nodal weight (PRNW),
and localized recovery (LR). In order to recover a system, there will always be additional resources
required. A multiobjective optimization model considering the required recovery cost and time for
each recovery strategy is also developed as a part of the overall framework. The proposed approach is
a fundamental assessment, in other words, it is a basic and generalized assessment approach that can
be modified to fit various applications of interests.

The rest of this paper is organized as follows. Section 2 elaborates on localized attacks, the three
recovery strategies, and the proposed resilience-based recovery assessment. Section 3 discusses
the resilience metric and the optimization model used for quantifying infrastructure resilience.
In Section 4, the recovery assessment of a water distribution network is presented using the proposed
framework and optimization model. Finally, conclusions and future work are presented in Section 5.
This preliminary research aims to find an effective way to compare multiple recovery strategies for
infrastructure protections against various possible attacks and failures.

2. Recovery Strategies against Localized Attacks

In this section, a general scenario of localized attacks in infrastructure networks and three
recovery strategies that are known to be effective against localized attacks will be discussed in detail.
A resilience-based recovery assessment framework to compare the recovery strategies on the basis of
system resilience will also be presented in this section.

2.1. Localized Attacks

Localized attacks are one of the most common attacks that occur geographically in specific areas.
These attacks can be induced by the occurrence of natural disasters, internal critical components failures,
or mass/multiple attacks in a specific location [3]. The localized attack in infrastructure networks can
be demonstrated by the failure of a group of links concentrated in a particular geographical domain
which results in adjacent isolated nodes. Localized attacks could be one of the main reasons behind
the aggregated destruction of adjacent components. This kind of attacks might have a devastating
impact on the performance and structure of the network. The failure mechanism of localized attack
is illustrated in Figure 1. The disruptive event in the case study (presented in the later sections) is
modeled to follow localized attacks.
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2.2. Recovery Strategies

Various recovery strategies have been proposed to deal with different kind of attacks or failures.
In this paper, only three recovery strategies for the localized attack will be presented. In order to
recover a system faster after the occurrence of a disruptive event, a proper recovery strategy should
take into account the recovery order, allocated time and resources, and other network properties. Many
researchers have worked in this area and developed several recovery strategies for localized attacks.
Hu et al. proposed PR and PRNW [3] and Shang proposed the LR method [35]. Please note that the
recovery strategies against localized attacks are not limited to only the three strategies presented in this
paper. The three strategies are illustrated in Figure 2. When localized attacks occur, a group of localized
edges failed and were removed from the network. In Figure 2A the edges colored red, blue, and yellow
are the affected edges. Consequently, the nodes connected through those edges become isolated,
as shown in Figure 2B. The three recovery strategies for localized attack can be summarized as:

1. Periphery recovery (PR). Recovery priorities are given to the most populated isolated node at the
boundary [4]. In Figure 2(C1), the blue edges with arrowheads are the damaged edges adjacent
to the functional components of the network. The red node n1 is the most populated boundary
node of the functional network. According to this recovery rule, either edges m1 or m2 would be
repaired first randomly. In this case, m1 is selected to be restored first and colored green. After all
the isolated nodes are connected, m2 is repaired and colored yellow. At the next step, the node
n2, in Figure 2(C2), is the most populated boundary node of the functional network, and either
edge m3 or edge m4 is supposed to be repaired randomly. The process would be iterated until all
the isolated nodes were connected to the functional network, as shown in Figure 2(C3). At last,
the yellow edges are repaired randomly one by one until all are repaired.

2. Preferential recovery based on nodal weight (PRNW). In this method, the repair preference
is given to the links that could connect the most populated isolated nodes to the functional
component of the network [4]. In Figure 2(D1), the red node n3 has the largest population
among all the isolated nodes, and edge m5 connects edge n3 to the network. According to the
PRNW algorithm, edge m5 is repaired first and colored green. Following the same procedure,
the most populated node—n5—is connected to the functional network through the edges m6
and m7 in Figure 2(D2) and m8 in Figure 2(D3). The steps are iterated until all the isolated nodes
are connected to the network, as shown in Figure 2(D4). At last, the yellow edges are repaired
randomly one by one until all edges are repaired. PRNW shows high efficiency in connecting the
most populated area reducing the recovery time. It can also provide a rational solution while
limited resources are available.

3. Localized recovery (LR). A localized recovery is where the priority of being recovered is given
to the edges of a root node as well as its neighboring nodes, respectively [35]. This recovery
process begins with the selection of root nodes. The rest of the nodes are listed in order of their
distance from the root node as shown in Figure 2(E1). Nodes being in the same distance from
the root node are placed in the same shell. The edges of the root node are recovered first with
the edges connected to it. Then the nodes in the same shell h are randomly selected and their
edges are further recovered. After all the nodes in the first shell h = 1 are recovered, recovery in
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the next shell h + 1 starts. The recovery process stops when all the edges are recovered, as shown
in Figure 2(E2).
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2.3. Resilience-Based Recovery Assessments Framework

For the resilience assessment of an infrastructure system, assessing the recovery strategies with
the aim of achieving the highest resilience is crucial. A fundamental resilience-based assessment
framework to evaluate and compare various recovery methods is proposed as shown in Figure 3.
The assessment of recovery starts by defining the failure characteristics and the causes behind that
failure. This step takes into account the types of attack as well as the failure patterns. Different
types of attack (localized, malicious, random, etc.) may result in various patterns (random, targeted,
cascading, secondary, etc.). The scope of this paper is limited to localized attacks with random failure
patterns. However, a critical infrastructure system can suffer from other combinations of attacks and
failure patterns.

A comparison among the recovery methods can be performed by building a comparison matrix.
The next step is to find the goal of recovering the network. For examples, the objective function can
be set to maximize the network resilience or to minimize the recovery time, or the combination of
both. While recovering a damaged network, many constraints might exist, for example, network
properties, recovery priorities, available resources, cost, time limitation, etc. Taking these factors into
account during the assessment is necessary as the recovery process is highly affected by them. One of
the most important steps in developing the comparison matrix is to quantify the system resilience
after implementing each recovery strategy. Many resilience metrics were developed to quantify
infrastructure resilience from various concepts and point of views [11,36]. However, there has not
yet been any standard or framework for choosing the most efficient and robust recovery strategy to
be implemented based on resilience value. This could be due to confusion on how resilience should
be measured. The decision-makers should decide on one resilience metric to measure infrastructure
resilience. Thus, each recovery strategy can be compared with the same metric.
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During the recovery process, there are some important factors that must be considered, such as
the recovery priorities, budget, allowable time, and available resources. With the presence of all these
constraints, multiple objective functions could be formulated and solved accordingly. For example,
if achieving the highest system resilience is the main aim of an optimum recovery strategy, it can be
achieved with the combination of maximizing performance, minimizing recovery time, and minimizing
loss. A recovery strategy can be deemed effective when it can be implemented successfully with all the
present constraints, while, at the same time, achieving a maximum possible resilience level.
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Optimality and feasibility analyses are important while evaluating a recovery process and should
be taken more seriously prior to the implementation stage. A recovery method could accelerate the
recovery process with a high cost and enormous resources. However, in many cases, these resources
and costs may be limited and not constantly available at their times of need. On the other hand,
a recovery process could be implemented at low-cost with minimum resources, however typically it
can be time-consuming. This could lead to a multiobjective optimization problem with cost, resource,
and time constraints. By solving this problem, it is possible to find an optimum recovery strategy.
After performing the optimality and feasibility analysis, the desired network recovery strategy can
be selected for implementation. The results found from the implementation of the selected recovery
strategy might provide an insight into the improvement as well as developing a better strategy. These
resulting factors include restoration sequence, number of iterations, resilience value, etc. From these
values, the trade-offs between these attributes can be understood and the scopes of improvement can
be discovered. This information should be saved and used towards continuous improvement efforts
of the resilience-based recovery assessment with the assistance of adaptive learning methodologies.

3. Infrastructure Resilience

Infrastructure resilience can be defined as the ability of the system to maintain or restore its
service level even after a disturbance [6]. In other words, resilience is a characteristic that represents
system performance under unusual conditions, recovery speed, and required actions for recovery to
its original functional state [22]. It is a component importance measure related to system reliability
and recovery after an attack or failure [12,19]. According to C. Whitson et al., resilience is a composite
of (1) the ability of an infrastructure system to provide service despite external failures and (2) the
time to restore service when in the presence of such failures [10]. Ouyang et al. defined resilience
of an infrastructure system as its joint ability to resist, prevent, and withstand any possible hazards;
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absorb the initial damage; and recover to normal operation [9]. Bruneau et al. described resilience
as a comprehensive concept of aspects that are listed in Figure 4, which is the combination of four
dimensions (technical, organizational, social, and economic), four properties (robustness, rapidity,
redundancy, and resourcefulness), and three outcomes (higher reliability, lower consequences, and
faster recovery) [1,36].
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3.1. Resilience Metric

Quantification of infrastructure resilience has gained a lot of attention from different communities
such as researchers, engineers, practitioners, and policy-makers. Several resilience metrics have been
developed from a variety of aspects in the past years [11]. Robustness, recoverability, adaptability,
and reliability are some examples of the important aspects of a resilience metric. As each metric is
built upon one or more of these aspects, it is more likely to result in resilience measure that varies in
values and scales. This is one of the major challenges for practitioners when it comes to selecting the
most appropriate metrics for quantifying infrastructure resilience. In this paper, the resilience metric
employed follows the resilience metric proposed by Ouyang et al. According to them, the resilience
assessment framework for most networked systems can be divided into various stages: (1) a disaster
prevention stage (t0 ≤ t ≤ ti), (2) a damage propagation stage (ti ≤ t ≤ ti), (3) an assessment and recovery
stage (td ≤ t ≤ tr), and (4) a stable state after the recovery process is fully completed (tr ≤ t ≤ T), as
shown in Figure 5 [9]. From this framework, resilience value can be quantified according to the targeted
performance curve PT(t) and the real performance curve PR(t) as

Φ(t) =

∫ T
t0

PR (t) dt∫ T
t0

PT (t) dt
(1)

Infrastructures 2019, 4, x FOR PEER REVIEW 7 of 18 

resilience as a comprehensive concept of aspects that are listed in Figure 4, which is the combination 
of four dimensions (technical, organizational, social, and economic), four properties (robustness, 
rapidity, redundancy, and resourcefulness), and three outcomes (higher reliability, lower 
consequences, and faster recovery) [1,36]. 

 
Figure 4. Aspects of resilience [1,36]. 

3.1. Resilience Metric 

Quantification of infrastructure resilience has gained a lot of attention from different 
communities such as researchers, engineers, practitioners, and policy-makers. Several resilience 
metrics have been developed from a variety of aspects in the past years [11]. Robustness, 
recoverability, adaptability, and reliability are some examples of the important aspects of a resilience 
metric. As each metric is built upon one or more of these aspects, it is more likely to result in 
resilience measure that varies in values and scales. This is one of the major challenges for 
practitioners when it comes to selecting the most appropriate metrics for quantifying infrastructure 
resilience. In this paper, the resilience metric employed follows the resilience metric proposed by 
Ouyang et al. According to them, the resilience assessment framework for most networked systems 
can be divided into various stages: (1) a disaster prevention stage (t0 ≤ t ≤ ti), (2) a damage 
propagation stage (ti ≤ t ≤ ti), (3) an assessment and recovery stage (td ≤ t ≤ tr), and (4) a stable state 
after the recovery process is fully completed (tr ≤ t ≤ T), as shown in Figure 5 [9]. From this 
framework, resilience value can be quantified according to the targeted performance curve PT(t) and 
the real performance curve PR(t) as 

Φሺ𝑡ሻ ൌ ׬  𝑃ோ ሺ𝑡ሻ 𝑑𝑡௧்బ׬ 𝑃் ሺ𝑡ሻ 𝑑𝑡௧்బ  (1) 

 
Figure 5. Performance process of an infrastructure system during disruptive events [15]. 

3.2. Resilience Optimization 

Finding a resilience-based optimum recovery strategy has been a matter of great challenge for 
decision-makers. Researchers have been working on this field in recent years. Liao et al. proposed a 
transportation resilience optimization model considering recovery activities [23]. A stochastic 

Figure 5. Performance process of an infrastructure system during disruptive events [15].

3.2. Resilience Optimization

Finding a resilience-based optimum recovery strategy has been a matter of great challenge
for decision-makers. Researchers have been working on this field in recent years. Liao et al.
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proposed a transportation resilience optimization model considering recovery activities [23].
A stochastic optimization model was introduced by Turnquist and Vugrin for network resilience,
where postdisaster recovery was combined with investments [25]. For the evaluation of
restoration policies, a resilience-based optimization model was formulated by Figqueroa-Candia
et al. [26]. A resilience-driven restoration model was also proposed for interdependent infrastructure
networks [28]. From these references, it is obvious that the existence of a huge variety of constraints,
such as resources, cost, and time during the recovery process, could be the reason behind the complexity
of the optimization process. This encourages the formulation of a multiobjective optimization problem.
A general multiobjective optimization for selecting a recovery strategy among the existing recovery
strategies is formulated in this subsection. The main goal of this assessment model is to maximize
network resilience while minimizing total recovery cost and total recovery time. This generalized
model could be modified to assess recovery strategies for different types of failure scenarios. All the
variables and parameters could be found in Table 1. The general multiobjective formulation for
resilience can be expressed as follows.

Table 1. Symbols and descriptions of parameters and variables.

Sets Parameters Decision Variables

r
Set of

recovery
strategies

R Resilience

γr

Binary variable
(1 if strategy r is

selected, 0
otherwise)

PT Targeted performance
PR Real performance
AT The area under the targeted performance curve
AR The area under the real performance curve

t
Set of

time steps

td
Time after the disaster stop propagating or the start

of the recovery strategy
tr Time at which the recovery is completed
tt Total recovery time required
T Maximum allowable time

Ctr Cost of recovery at time t for strategy r

e

Set of
edges to

be
repaired

Cf Fixed cost to repair at each time step
Ce Cost for repairing edge e

Wet Total edge weight recovered at time t
C Total cost for strategy r
B Budget

Model Formulation:

Maximize R =
AR
AT

(2)

Minimize C (3)

Minimize tt (4)

Subject to, AR =
∫

PRdt (5)

AT =
∫

PTdt (6)

td + ∑
r

γr(tr − td) = tt (7)

tt ≤ T (8)

Ctr = C f + CeWet (9)

C = ∑
t

Ctrγr (10)

C ≤ B (11)
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γR = 0, 1 (12)

The objective function, Equation (2), maximizes the system resilience after recovery, the second
objective function, Equation (3), minimizes the total cost of recovery, and the third objective function,
Equation (4), minimizes the total time. To quantify resilience, metric R was used. Equations (5) and (6)
are the area under the real performance curve (AR) and targeted performance curve (AT), respectively.
These two terms are used in quantifying the resilience metric in the objective function Equation (2).
Equation (7) defines the total recovery time required when applying recovery strategy r. Equation (8)
indicates that the total time cannot exceed the maximum allowable given time, T. Equation (9) is the
constraint that measures the cost of recovery at time step t while implementing strategy r. The total
cost of recovery includes a time-dependent fixed cost, Cf (for example, labor cost or instrumental cost),
and the cost of repairing edges, Ce, which depends on the edge weight (for example, cost to repair
each unit of pipe). Equation (10) is the total cost of recovery and Equation (11) is the budget constraint.
Finally, Equation (12) is the binary decision variable constraint.

4. Water Supply Network Case Study

The assessment of recovery strategies in the context of the proposed framework and optimization
model could be better explained through a case study. For this purpose, a case study was designed to
evaluate different recovery strategies against a localized attack with random failure pattern on the
basis of system resilience. In this section, a description of the designed case study will be presented,
and the results found will be discussed.

4.1. Case Study Description

Many of the real infrastructure systems, especially supply infrastructure network, are often
modeled to resemble lattice networks. Inspired by the water distribution network used in Ref. [37],
a lattice network consisting of 36 nodes and 60 edges was considered for this case study. This network
used for resilience assessment is shown in Figure 6. The weight of the nodes represents the demand of
the nodes. In the case of edges, both the length of each edge and the amount of flow in each edge were
considered. The failure was model as a localized attack initiated at a random node and the impact of
the attack propagated over time. After the localized attack, eight nodes were isolated randomly to
mimic random failure pattern. The eight nodes were isolated one at a time, and 24 edges were also set
to ‘randomly damaged’ and removed to result in a region of isolated nodes.
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To illustrate the challenges in resilience assessment, there are two critical performance measures
considered in this case study, the maximum flow and the shortest path distance from node 1 to node
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36 (Figure 7). The maximum flow quantifies the amount of load this network can carry, follows the
concept of “the more, the better”. The best route is indicated by the shortest path distance, where it
quantified the most efficient route with the least travel distance. Opposite from the maximum flow,
the shortest path distance follows the concept of “the least, the better”. The damage scenario resulted
in a decrease in the maximum flow from 75 to 48 units, and the shortest path length increases from 192
to 229 units. The transition of network performance from its original state to after attack state is shown
in Table 2.
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Table 2. Degradation propagation from original to degraded state.

Time
Critical Performance

Description
Max flow Shortest Path

0 75 192 Original state
1 * 75 206 1 node was isolated
2 75 206 2 nodes were isolated
3 75 206 3 nodes were isolated
4 75 229 4 nodes were isolated
5 75 229 5 nodes were isolated
6 75 229 6 nodes were isolated
7 75 229 7 nodes were isolated

8 ** 48 229 8 nodes were isolated

* Failure occurred at time step 1 and propagated through time step 8; ** Failure stopped propagating at time step 8.

Different stages in the resilience assessment for the water distribution network can be seen in
Figure 7. As mentioned in Section 2.2, there are three recovery strategies that are deemed to be
appropriate for recovering network that suffers from a localized attack: (1) preferential recovery based
on nodal weight (PRNW), (2) periphery recovery (PR), and (3) localized recovery (LR). The effectiveness
of these three recovery strategies will be compared against each other with the proposed framework
in Section 2.3. As part of this assessment process, an optimized recovery strategy among the three
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strategies will be selected. It is assumed that the network will recover fully (100%) after implementing
any recovery strategy, given that the iteration properties can differ.

In order to determine the best recovery strategy that resulted in the highest resilience metric
with the lowest cost, the proposed optimization model was implemented with some predetermined
parameters. To measure the resilience level of the system, resilience metric R was used. Among all
the above-mentioned infrastructure-related resilience metrics, R was selected due to its relevance on
how the equations were derived from this case study. To conduct the assessment of various recovery
strategies, the occurrence of the initial attack was set to happen on the first time step. The damage
propagation was indicated with the isolation of one node per iterations. The damage propagation
stopped at time step 8, and the recovery was set to start immediately at time step 9. The changes
in maximum flow and shortest path distance during the damage propagation stage are tabulated in
Table 1, and the changes in system performance during the recovery stage are shown in Table 3.

Table 3. Changes of max flow and shortest path distance during recovery (shaded area indicates that
the recovered state was reached).

Time
PRNW ** PR ** LR ***

Max Flow Shortest Path Max Flow Shortest Path Max Flow Shortest Path

9 * 48 229 48 229 75 229
10 48 229 48 229 75 192
11 73 229 48 229 75 192
12 73 229 75 229 75 192
13 73 229 75 215 75 192
14 75 229 75 192 75 192
15 75 215 75 192 75 192
16 75 192 75 192 75 192
17 75 192 75 192 75 192
18 75 192 75 192 75 192
19 75 192 75 192 75 192
20 75 192 75 192 75 192

* Recovery started at time step 9, ** Recovery stops at time step 17—fully recovered state reached, *** Recovery
stopped at time step 12—fully recovered state reached.

4.2. Multiobjective Optimization

Selecting the most efficient and robust recovery strategies depends on various factors, such as
the overall recovery goal, constraints, and available resources. In order to demonstrate this, three
different objectives were introduced and analyzed with the three recovery strategies. For multiobjective
formulation, all three recovery strategies were considered together. Another objective function
combining the three objective functions was employed to solve the proposed multiobjective
optimization formulation. The three objective functions formulated in the proposed multiobjective
model are described below in the context of the case study:

• Objective Function 1: Maximize resilience. The aim of the first objective function is to maximize
the overall system resilience by applying the recovery strategy. Here, R was used as the resilience
metric. Both maximum flow and the shortest path were considered as the performance measure.
For all three recovery strategies, system resilience was quantified, and a recovery strategy was
selected based on the highest resilience level.

• Objective Function 2: Minimize cost. The overall recovery cost is minimized by this objective
function. For this purpose, the recovery cost at each time step was calculated based on the weight
of the edges that need to be recovered. An amount of $200 was assumed to be the fixed cost for
each time step of the recovery process. Additionally, the cost of $100 for repairing each unit of
edges was added to find the total cost. The strategy with the lowest cost was selected.
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• Objective Function 3: Minimize time or number of iterations. Through the third objective function
the fastest recovery process was selected (the smallest number of iterations to full recovery).

• Integrated objective: To solve the multiobjective formulation, an integrated objective function,
combining Objectives 1–3, is shown in Equation (13).

Minimize−R + C + tt (13)

While minimizing Equation (13), the negative value of the resilience is minimized leading to
maximizing the actual resilience as well as minimizing the total cost and recovery time. Additionally,
all of the objectives were given equal priority while solving the problem.

4.3. Results and Discussion

Each of the three objective functions was analyzed for three different recovery strategies so that the
best strategy could be selected based on the main goal of repairing the damaged network. The results
of the analysis of each objective function will be discussed respectively in this subsection.

Multiobjective Optimization. To solve the multiobjective model, all three objective functions and
the relationship among them were analyzed. The trade-offs between the three objective functions for
three recovery strategies were analyzed and are shown in Figure 8a–c. In Figure 8a, the horizontal
x-axis represents the resilience which is to be maximized, while the vertical y-axis represents the total
cost for the recovery of the network that is to be minimized. It was observed in Figure 8a that, for the
resilience values of 0.94, 0.93, and 0.98 for maximum flow performance, the total recovery costs are
$71,100, $71,100, and $70,100 for PRNW, PR, and LR, respectively (Tables 4 and 5). It is obvious from
Figure 8a that the strategies that should be selected should have the highest resilience value with the
minimum total cost. Thus, in this trade-off scenario, LR is deemed to be the most effective strategy
and should be selected.
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Table 4. Resilience assessment of recovery strategies.

PRNW PR LR

Max Flow Shortest Path Max Flow Shortest Path Max Flow Shortest Path

AR 1413 4312 1392 4238 1473 4104
AT 1500 3840 1500 3840 1500 3840
R 0.94 1.12 0.93 1.1 0.98 1.07

Table 5. Recovery cost during each recovery step.

Time Steps
Cost ($)

PRNW PR LR

1–8 Damage Propagation Stage

9 7300 7300 42,300
10 4700 7300 24,400
11 13,100 7700 3400
12 3300 8700 0
13 6300 9800 0
14 12,600 4700 0
15 15,100 10,000 0
16 8,700 15,600 0

Total 71,100 71,100 70,100

In Figure 8b, the trade-off between recovery time steps and the resilience is shown. In this scenario,
the x-axis represents the time steps to be minimized, while the y-axis represents the resilience which is
to be maximized. Total recovery time steps 8, 8, and 3 were obtained which is associated with resilience
values of 0.94, 0.93, and 0.98 for maximum flow performance for PRNW, PR, and LR, respectively
(Tables 3 and 4). It is observed that higher resilience is associated with lower recovery time. Thus,
the most beneficial recovery strategies should be able to recover the network’s function with the least
amount of time and cost. In this trade-off scenario, LR should be selected.

Another trade-off between the recovery time steps and the cost is shown in Figure 8c. The x-axis
represents the time steps, while the y-axis represents the total recovery cost; both are aimed to be
minimized. Total recovery time steps obtained for PRNW, PR, and LR are 8, 8, and 3, respectively,
which are associated with the total recovery costs of $71,100, $71,100, and $70,100. As the value of
recovery time step and the cost is equal for both PRNW and PR, two of the same data points were
obtained and overlapped in Figure 8c. It is observed that the recovery cost is time-dependent, which
further means that the total recovery cost increases with the prolonged recovery period. For this
trade-off scenario, LR exhibited the fastest recovery with the least total recovery cost among the three
recovery strategies and thus should be selected.

From the above-discussed trade-offs analysis, it is observed that all three objective functions are
interrelated and their effects should be taken into the decision-making process. Considering the results
of the multiobjective optimization, LR should be selected. Because the LR process satisfies all three
objective functions, with maximum resilience values 0.98 maximum flow, minimum recovery cost of
$70,100, and minimum recovery time steps of 3, LR can be further deemed to be the more superior
when compared to PR and PRNW in this case studies. Additional results and further discussion for
each objective function are discussed in the following paragraphs.

Analysis of Resilience. After the occurrence of any kind of failures, the overall system performance
degrades. If the main aim of repairing the damaged network is retrieving the highest possible
percentage of initial network performance, it also refers to achieving the highest system resilience.
Here resilience metric R (see Equation (1)) was used, which is quantified based on the ratio of the
area below the targeted performance curve and the real curve. The resulting resilience curves after
applying all three recovery strategies are shown in Figure 9a for maximum flow, and Figure 9b for the
shortest path.
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The results of resilience assessment of recovery strategies are summarized in Table 4. AR and
AT refer to the area under the real performance curve and the area under the targeted performance
curve respectively. With maximum flow, the AR values are 1413, 1392, and 1473 for PRNW, PR, and
LR, respectively, and the AT value is 1500. It is shown that AR is always lesser than AT resulting in
resilience values of 0.94, 0.93, and 0.98 for PRNW, PR, and LR, respectively. This indicates that LR
shows the highest resilience as the maximum flow follows ‘the larger the better’ concept. On the other
hand, with shortest path AR values are 4312, 4238, and 4104 for PRNW, PR, and LR, respectively, and
the AT value is 3840. AR is always greater than AT, resulting in resilience values of 1.12, 1.1, and 1.07.
As the shortest path follows “the smaller, the better” concept, LR is the most resilient strategy in this
case as well.

Analysis of Cost. While aiming to achieve the highest system resilience, the repairing cost should
also be considered. This is because, in real cases, there are always budget constraints that may limit
the recovery process in various ways. It should be noted that the recovery strategy with the lowest
cost should be selected while considering system resilience. The results found from cost analysis are
summarized in Table 5.

From Table 5, it is observed that the total recovery cost for PRNW is $71,100; PR is $71,100, and
LR is $70,100, indicating that LR should be selected here. However, in the initial two steps the recovery
cost for LR are $42,300 and $24,400, for PRNW are $7300 and $4700, and for PR are $7300 and $7300.
This indicates that LR costs more in initial steps compared to the other two strategies. In the real
case, these initial higher costs may exceed the budget resulting in the selection of a different recovery
strategy, although the overall cost for LR is lower. The changes in costs in each time step can be
compared with the cost vs. time graph given in Figure 10.
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Analysis of Time. While aiming for highest system resilience, faster recovery is also necessary
along with recovery cost, because, in reality, immediate recovery is needed after any disaster and, also,
it contributes to system resilience. Considering these facts, the recovery strategies were evaluated based
on the time or the number of time steps needed for a full recovery scenario and the restoration sequence.
The results found are summarized in Table 6. It is observed that PRNW and PR are able to recover all
the damaged edges in time step 17 and LR in time step 12. PRNW and PR took 8 time steps to reach a
fully connected network, while LR requires only 3 time steps. Further, from Table 3, it is also observed
that the water supply infrastructure network system performances, maximum flow or shortest path,
were able to be restored earlier, although the network was not fully connected. The maximum flow
for PRNW was restored at time step 14, and the shortest distance was restored at time step 16 while
the whole network was fully connected at time step 17. Although PR needed the same amount of
time step to fully reconnect the network, the maximum flow based on PR was restored at time step 12
and the shortest path performance at time step 14. Considering only the restoration of the individual
performance, PR can be claimed to recover faster than the PRNW. In addition, LR managed to recover
the network’s maximum flow and shortest path at time step 9 and 10, respectively. From the results
of the number of time steps required to reach a full recovery after a localized attack, LR would be a
much faster process compared to PRNW and PR strategies. Although not as immediate as LR, PRNW
and PR are two recovery strategies that are quite effective for postdisaster recovery in a short time.
Because of their low computational complexity, it is easy to employ PRNW and PR immediately.

Table 6. Iteration details of recovery strategies.

Time Step PRNW PR LR

Recovered
Edges *

Sum of
Weights

Recovered
Edges *

Sum of
Weights Recovered Edges * Sum of

Weights

9 23, 15 71 23, 15 71 28, 36, 38, 39, 25, 27,
26, 30, 37, 47, 41, 49 421

10 26, 36 45 40, 41 71 14, 16, 15, 17, 19, 23,
29, 34, 40, 50 242

11 38, 40, 41 129 26, 34, 37 75 6 32
12 34, 37 31 47, 49, 50 85
13 25, 28 61 6, 14, 16 96
14 39, 47, 49, 50 124 19, 29, 30 45
15 6, 14, 16, 17 149 36, 38, 39 98
16 19, 27, 29, 30 85 17, 25, 27, 28 154

17–20 Stable State
* Restoration sequence was sorted from the first to the last node restored.
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Considering the results, it is clear that the LR process should be selected from the perspective of all
three objectives. However, if the initial cost of recovery is needed to be kept in the lower range, PRNW
or PR would be more appropriate. In addition to the presented work, there are some challenges that
are needed to be addressed in the future work of this study. To minimize the complexity in measuring
system resilience, a standard for selecting a resilience metric for the application of infrastructure
systems should be agreed upon. The trade-offs between different constraints could be analyzed with a
larger network to achieve a more realistic result, which will be addressed in future work. In addition,
uncertainties during implementation should be considered in the preliminary assessment to ensure
the probability of successful implementation. Further, the time dependence dynamic behavior of the
network could be another challenging area that needs to be investigated. A time-dependent optimized
restoration is crucial to consider the goal of the recovery at a given time period after a disaster
occurred. To address this challenge, a time-dependent dynamic optimization of network resilience
for selecting recovery strategies in different stages will be investigated. Localized attacks may affect
several critical local nodes; this research could further expand to include local node analysis for more
robust operation. It is possible that a recovery strategy might perform better for a particular type of
disruption. The proposed approach can be expanded in the future to accommodate multiple disruption
types. A multiobjective-based restoration for multiple disruptions over time will be formulated for
future analysis.

5. Conclusions

In this paper, a small initiative was taken to conduct a resilience assessment of infrastructure
networks under localized attacks. The resilience assessment was conducted with the implementation
of various recovery strategies that have been deemed effective in recovering a network after localized
attacks. A comparison framework equipped with multiobjective formulations is proposed with the
goal of identifying the most effective recovery strategy among a selection of visible strategies that can
be eventually implemented. A case study of a water distribution network restoration after a localized
attack was employed in this paper. The case study was assessed with three recovery strategies:
preferential recovery based on nodal weight (PRNW), periphery recovery (PR), and localized recovery
(LR). In addition, a multiobjective optimization model was also developed in order to find the optimum
resilience-based recovery strategy. This multiobjective formulation aims to maximize the system’s
resilience while minimizing both recovery cost and time. To show the relationship between the
objective functions, three trade-offs between the combination two functions were presented. The case
study results show that the localized recovery strategy has the ability to achieve the highest system
resilience within the shortest recovery time with the lowest cost. It can be further interpreted that LR
was superior among the three recovery strategies for this particular network situation when subjected
to a localized attack scenario.

Based on the case study results for a localized attack scenario, restoration efforts should be
directed towards restoring more links to bridge the isolated nodes. Resilience in a broader term is
associated with time and cost. Higher resilience value is attributed to a faster recovery, while faster
recovery may require more cost in terms of resources. On the other hand, there are typically associated
with fixed costs and variable costs in every recovery strategy. A longer recovery period may incur
higher costs at the end of the recovery period. This scenario may also lead to lower resilience value.
However, this type of recovery typically required lesser resources at the beginning when compared
with a faster recovery strategy. The proposed resilience-based recovery assessment can be employed
as a baseline methodology to evaluate the effectiveness of various recovery strategies, and can be
easily implemented, modified, or replicated to fit the application of interest by other researchers or
practitioners. Along with a global approach for assessing recovery strategies, the obtained results
give an insight into future research directions in this field, such as incorporating multiple disaster
occurrences in the multiobjective formulation and the development of a time-dependent dynamic
optimized recovery strategy.
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