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Abstract: Ensuring an adequate bond between the steel tube and infilled concrete interface plays an
essential role in achieving composite action for concrete-filled steel tubular (CFST) columns. Thus,
this study proposes a new type of large diameter CFST column where the steel tube is reinforced by
shear stoppers. The bearing strength of the infilled concrete is the decisive factor in evaluating the
overall working efficiency between infilled concrete and steel tube. In this paper, we use nonlinear
finite element analysis (NFEA) to investigate the bearing strength of the infilled concrete concerning
the ratio of the steel tube’s diameter to its thickness (D /t), the number of shear stoppers (N), the
height of the shear stopper (hb), and the concrete compressive strength (CCS) ( f ′c). Our results
show that the influencing factors on the bearing strength of the infilled concrete were arranged in
descending order as follows: the number of shear stoppers, the height of shear stopper, the CCS,
and the D/t ratio. We also analyze and highlight some significant parameters related to the bearing
strength of infilled concrete.

Keywords: CFST column; infilled concrete; bearing strength; shear stopper; shear stud; slip

1. Introduction

In recent years, the demand for concrete-filled steel tube (CFST) columns has been
increasing. CFST columns are becoming a popular replacement for traditional reinforced
concrete columns and are widely used in residential and high-rise buildings as well as in
bridge structures [1–4]. CFST columns offer several advantages: high stiffness [5], high
fire resistance [6–8], and ease of construction without the need for formwork systems [6].
CFST column/kingpost/pile is particularly effective in the construction of basements
using the top-down method or in the construction of CFST arch bridges. Moreover, the
construction of CFST columns can reduce construction costs and shorten construction
time [5,9]. However, due to the unique properties of CFST columns, which are composed
of two materials with different stress–strain behaviors, their structural resistance mostly
depends on the combination of these materials. Therefore, it is difficult to understand
the working mechanism at the interface between them [10]. This is also the reason why,
to date, the interaction between the two materials has not been fully evaluated [10]. For
example, it is challenging to determine the combined properties of CFST’s cross-section,
such as the equivalent modulus of elasticity or moment of inertia. Additionally, the failure
mechanism is influenced by several factors, including the diameter, steel tube thickness,
length, cross-section shape, and concrete and steel strength. This poses a significant barrier
to the widespread use of CFSTs in the construction field. In practice, CFST behavior
depends on numerous factors, such as concrete confinement, residual stress, shrinkage,
creep, type of loading, bonding, etc. These parameters interact with each other during the
column’s service life. Many studies have been conducted on these issues so far, which can
be summarized as follows:

The bearing strength of Infilled concrete was initially studied through research on the
bonding strength between infilled concrete and steel tube. Before 1980, it was assumed
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that the interaction between concrete and steel tube resulted in a perfect bond when the
column was progressively loaded until failure [11,12]. During that time, Furlong [13], Virdi
and Dowling [14], and Shakir-Khalil et al. [15] also mentioned the strain compatibility
between concrete and steel tubes, but the bond between concrete and steel was not studied
as separate entities. It is important to note that most studies evaluating the bond strength
of CFST columns use the push-out test [16–18], and the bond strength can be classified into
two types as follows:

The first type is characterized by a flat inner surface of the steel tube, without
any bonded stiffeners, shear studs, or stoppers to reinforce it. From 1975 to 1980, the
study conducted by Virdi and Dowling involved push-out tests on concrete-filled circular
tubes [19,20], where the inner surface of the steel tube was left in its natural state. This
can be considered the first study to examine the bond between concrete and steel tube as
separate entities. The tests investigated various parameters, such as the surface roughness
of steel, the concrete compressive strength, the length-to-diameter ratio for the interface,
the ratio of the steel tube’s diameter to its thickness, etc. Research results indicate that the
biggest impact on bonding strength was due to imperfections during the manufacture of the
tubes. Moreover, these results were utilized by the Joint ECCS–CEB–IABSE–FIP committee
in the European code for composite construction. Hunaiti [16] conducted comprehensive re-
search on bonding strength, examining 135 battened specimens and accounting for various
influencing factors, such as specimen age and size, curing, temperature, concrete shrinkage,
and confinement. The research revealed that columns with battened composite sections had
lower bond strength than CFST columns tested elsewhere. Additionally, it was found that
the age of the concrete significantly reduced bonding strength. Other factors that contribute
to the decrease in bonding strength include concrete shrinkage, confinement, and specimen
size. To fully understand the physical nature of the interaction mechanism between concrete
and steel tube, Johansson and Gylltoft [21] used finite element analysis (FEA). The results
from 13 experimental samples and FEA confirmed that the loading method had the greatest
impact on the CFST column’s behavior. Specifically, when loading the concrete and steel
tube simultaneously, the bonding strength had no effect on the CFST column’s behavior.
However, when only the concrete core was loaded, the bonding strength substantially
affected the behavior of the CFST column through the confinement effect. Xiushu et al.
conducted another study [18] that assessed the impact of concrete compressive strength,
contact surface length, cross-sectional area, and different contact surface conditions on
bond strength. The study demonstrated that lubricating the contact surface between the
steel tube and the concrete significantly decreased the bond strength. The remaining factors
investigated revealed that the concrete compressive strength and the cross-sectional area
had a clear effect on bond strength when the specimens were not lubricated. With experi-
mental data, the research team proposed an empirical equation to predict bond strength.
For the first type of bond between concrete and steel tube, a new method was proposed by
Chang et al. [17] to improve bond strength. Specifically, Chang and colleagues pre-stressed
the infilled concrete to control its shrinkage/expansion characteristics. The study results
showed that pre-stressed concrete core significantly improved bond strength compared
to CFST columns. Additionally, an empirical equation for predicting bond strength was
developed based on 17 pre-stressed circular CFST columns using expansive cement and
3 conventional circular CFST columns. In a different study, Guana and colleagues [22]
aimed to enhance the bond strength between concrete and steel tube. They proposed using
small aggregates, specifically manufactured sand, to produce the infilled concrete. The
study revealed that concrete-filled steel tube columns using manufactured sand (MS-CFT)
could increase the bond strength. Additionally, the bond strength of MS-CFT was higher
than that of conventional CFST columns.

In the second type of bond between concrete and steel tube, the inner surface of
the steel tube is reinforced by either a stiffener or a shear stud/stopper. Starossek and
Falah [23,24] used shear connectors penetrating the steel tube wall (see Figure 1a) to
improve bond strength between concrete and steel tube. During the study, the research
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team examined 71 specimens, where the shear connectors were reinforced only at the
column top where the load was applied. The purpose of the study was to compare the
force transfer between the natural bond and the shear connector bond. Additionally, the
team performed an NFEA to conduct in-depth analysis. The study results showed that
bond strength ranged from 0.8 to 1.0 N/mm2, which was much higher than the value of
0.4 N/mm2 specified in EC4. As the load increased, the shear connectors were subjected
to bending or torsion, causing significant deformation, local instability, or plastic flow of
the steel tube at the shear connector location. Meanwhile, Petrus et al. [25] implemented
a novel approach to enhancing the bond strength of CFST columns, which involved the
use of internal stiffeners (as shown in Figure 2) in reinforced steel tubes. The researchers
conducted push-out tests on 21 square specimens measuring 200 mm × 200 mm, which
were fabricated from mild steel sheeting with a thickness of 2 mm. The results showed that
the bond strength at the interface between concrete and steel increased by approximately
40% with the increase in concrete compressive strength or the decrease in tab spacing.
Another method to improve the bond strength between infilled concrete and a steel tube
is by using shear studs [26,27]. Song et al. [26] conducted a detailed and extensive study
on a full-scale model of CFST columns, consisting of eight circular CFST columns with a
diameter of 400 mm and five square CFST columns with a width of 600 mm. The study
examined the bond strength of experimental specimens under various key experimental
parameters, including the type of steel (carbon steel and stainless steel), the type of concrete
(normal and lightweight), and the concrete’s age (28 days and approximately 3 years). The
contact surface between the concrete and steel tube was tested with three different types: the
natural surface of the steel tube, the inner surface of the steel tube reinforced with two rows
of shear studs symmetrically arranged through the center of the tube (see Figure 1b), and
the surface of the steel tube reinforced by internal diaphragms (see Figure 1b). The research
found that CFST column specimens with stainless steel tubes had lower bond strength than
those with carbon steel tubes. Additionally, as the concrete age increased, the bond strength
decreased considerably. An essential finding was that CFST columns with steel tubes
reinforced by internal diaphragms had the highest bond strength, surpassing the case of
welding shear studs on the tube’s inner surface. In the method of using expansive concrete,
similar to the study by Chang et al. [17], the research results showed that this method was
less reliable when applied in practice. Li et al. [28] conducted an experimental study on the
bearing strength of a new type of square CFST column reinforced with internal transverse
stiffened bars under axial compression. The study demonstrated that the bearing capacity
of this column type increased by approximately 4.5% to 15% compared to conventional
CFST columns without internal transversely stiffened bars. Additionally, the confinement
performance of the infilled concrete in this column type was also improved.
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Figure 1. Forms of reinforcement for the inner surface of the steel tube: (a) force transfer mechanism
for shear connector bond [24]; (b) shear studs in circular steel tube specimen and internal ring in
square steel tube specimen [26].
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Based on prior research, the bond strength of CFST columns plays a critical role
in their performance. The roughness of the concrete–steel interface has been identified
as a significant factor affecting bond strength, which deteriorates as concrete ages. The
use of expansive or manufactured sand concrete is not an effective means of improving
bond strength, nor can it guarantee reliability in construction projects. Additionally, CFST
square columns exhibit lower bond strength than their circular counterparts, and increasing
the diameter of the infilled concrete and the ratio of diameter to wall thickness of the
steel tube results in decreased bond strength [10]. The implementation of an internal
diaphragm to fortify the interior of a steel tube has been confirmed to enhance bond
strength. However, welding these diaphragms to the inner part of the steel tube presents
significant challenges in terms of time, labor, and expense. Furthermore, the placement
of internal diaphragms within steel tubes makes it exceedingly difficult to completely fill
the under-corner area where the diaphragm meets the steel tube wall during the concrete-
pouring process. Recent studies have demonstrated the effectiveness of creating transverse
corrugations in columns and shear walls to improve their shear resistance, ductility, and
energy-dissipating capacity [29,30]. Moreover, the use of NFEA provides a reliable tool
for predicting and evaluating the behavior and performance of structures using materials
that work in a linear or nonlinear elastic regime [29–31]. This enables a comprehensive
analysis of a structure’s physical nature, behavior, and working mechanism, providing
extensive information that experimental methods cannot deliver. In this study, a new type
of large-diameter CFST column is proposed, wherein the inner surface of the steel tube is
reinforced with shear stoppers. The study uses numerical analysis with NFEA to predict
and estimate results and to extensively assesses various model parameters to analyze the
degree of influence of different factors on bond strength. Analysis of variance (ANOVA)
is used to evaluate the interaction between these parameters on CFST column behavior,
providing a novel way of analyzing their behavior in depth.

2. Finite Element Analysis for Bearing Strength of Infilled Concrete
2.1. Algorithm

FEA aims to determine the displacement field of structures, ensuring that a continuous
solution across element boundaries meets requirements for both equilibrium and the
prescribed boundary conditions. The principle of static equilibrium asserts that internal
forces acting on the nodes I result from element stresses, and the external force P acting at
every node of the entire structure must be balanced. Mathematically, this principle can be
represented by an equation as follows:

P(u)− I(u) = 0 (1)

Equation (1) represents a nonlinear problem, which cannot provide a direct solution
for the displacement field u. To solve this problem, this study utilizes Abaqus software
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2022. In practice, Abaqus employs an incremental iterative technique based on the Newton–
Raphson algorithm (depicted in Figure 3) [32]. It assumes that the known solution at the first
loading level uo is established. After each iteration i, an approximate solution ui is obtained,
and δui+1 is the difference between the approximate and exact solutions. Therefore, the
exact solution u = ui + δui+1 is required to satisfy Equation (1). Consequently, the equation
leads to:

P(ui + δui+1)− I(ui + δui+1) = 0 (2)
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Expanding the left-hand side of Equation (2) with the Taylor series using an approxi-
mate solution ui in the vicinity of δui+1, we obtain:

P(ui)− I(ui) +

(
∂P(ui)

∂u
− ∂I(ui)

∂u

)
δui+1 + HOT = 0 (3)

The Newton–Raphson algorithm utilizes the linear diagram in Figure 3. This process
enables the derivation of a linear equation system from Equation (3) when higher-order
terms (HOTs) are omitted. Therefore, we can obtain a linear equation system as follows:

Kiδui+1 = P(ui)− I(ui) (4)

where Ki = ∂P(ui)/∂u − ∂I(ui)/∂u represents the tangential stiffness matrix. Therefore,
the next approximation of the solution is:

ui+1 = ui + δui+1 (5)

It should be noted that the difference between the total applied force and the internal
force after each incremental step i is referred to as the residual force. The residual force is
represented by Ri+1, and its computational expression is provided in Equation (6).

Ri+1 = Ptotal − Ii+1 (6)

When R1 is significantly small in all degrees of freedom of the model, satisfying the
convergence criteria, the entire mechanical system is in equilibrium. The default tolerance
for R1 is set to less than 0.5% of the time-averaged force in the system, which is automatically
calculated. In case the iteration fails to converge, the algorithm executes another iteration
to attempt to identify a convergent solution. This process is repeated until the residual
force meets the convergence criteria. Each iteration i requires:

• Updating the tangential stiffness matrix Ki;
• Seeking the solution of the linear equation system for δui+1, and the estimated solution

is provided as ui+1 = ui + δui+1;
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• Computing the internal force vector Ii+1 based on ui+1, and the equilibrium conver-
gence must be checked after each increment with two conditions: (i) Ri+1 must be
within tolerances and (ii) increment δui+1 < ∑#iter

j=1 δui.

2.2. Tangential Stiffness Matrix

In FEA, the stress element is computed using the nodal displacement vector of the
element, which can be expressed as:

εe = Bqe (7)

here, {
εe =

{
εx, εy, εz, γxy, γyz, γzx

}T

B = ∂N =
[
B1 B2 B3 · · · B8

] (8)

where Ni is the shape function, which is a function of the iso-parameters ξ, η, ζ. The surfaces
of the element are located at coordinates ξ = ±1, η = ±1, and ζ = ±1. By using FEA, the
stiffness matrix is calculated as follows:

Ke =

1∫
−1

1∫
−1

1∫
−1

BTDB|J|dξdηdζ (9)

The global stiffness matrix is established through the element connection matrix Le
over the number of elements ne:

K =
ne

∑
e=1

LT
e KeLe (10)

2.3. Load Vector

In FEA, the element load vector is computed by taking the sum of the external loads
(body loads (ge) and surface loads (pe)) and internal loads due to initial strain (εo

e )/stress
(σo

e ). This leads to

Pe =
∫
Ve

NTgedV +
∫
Se

NTpedS +
1
2

∫
Ve

BTDεo
e dV − 1

2

∫
Ve

BTσo
e dV (11)

Similar to the stiffness matrix, the global load vector is represented by Equation (12).

P =
ne

∑
e=1

LT
e Pe (12)

2.4. Material Model
2.4.1. Concrete

Abaqus utilizes the concrete damaged plasticity (CDP) material model to describe the
behavior of reinforced concrete materials. The CDP model is derived from the standard
model of CEB-FIP 2010 [33] and the study conducted by Krätzig [34]. It is important to
note that the CDP model used in Abaqus does not account for the confinement effect of
concrete. However, in this study, concrete was filled into a steel tube and subjected to
axial compression, consequently being affected by the confinement effect due to resistance
to transverse deformation caused by the steel tube wall. To account for the confinement
effect, the CDP model of concrete proposed by Mander et al. [35] and then developed
for numerical analysis application by Liang [36,37] was used in this study. The main
parameters affecting the confinement effect are the (D /t) ratio between diameter and
thickness of the steel tube, the characteristic compressive strength ( f ′c) of the concrete, and
the yield strength (sy) of the steel tube. The typical compressive stress–strain and tensile
stress–strain curves are shown in Figure 4.
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Figure 4. The behavior curve of the infilled concrete in the CFST, taking into account the confinement
effect: (a) compressive stress–strain curve; (b) tensile stress–strain curve.

2.4.2. Steel

The material models for the steel tube and shear stopper are based on an elasto-plastic
model with von Mises yield criteria. Since the shear stopper is of high strength and has
small strain characteristics, the Ramberg–Osgood model [38] (as shown in Figure 5a) and
an ideal bilinear model [4,39] (as shown in Figure 5b) were implemented to describe the
material model for the steel tubes and shear stoppers, respectively. The material behavior
curves for the steel tube and shear stopper are depicted in Figure 5.
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Figure 5. Constitutive model of steel: (a) steel tube; (b) shear stopper.

2.5. Contact Formulation

When a CFST column is subjected to axial force, there is relative sliding between
the infilled concrete and the steel tube wall at their interface. Therefore, it is necessary
to accurately describe the contact conditions at this interface. In Abaqus, the contact
kinematics can be customized for this purpose. In this modeling, surface-to-surface contact
is used between the infilled concrete and the steel tube. The motions of secondary surface
nodes are attached to the infilled concrete and are used to track the positions of the
surrounding main element surfaces, which are attached to the steel tube. Both secondary
and main surfaces are associated with deformable bodies, and they constitute a “contact
pair” that behaves as a flexible–flexible contact.

There are two approaches to the contact pair formulation. The first approach maintains
contact conditions exactly using the Lagrangian multiplier method, which is also known
as a “trial and error” algorithm. This method was endorsed in studies by Francawlla and
Zienkiewicz [40] and Chan and Tuba [41] and often exerts the Newton–Raphson algorithm
introduced by Hughes et al. [42]. However, this approach has a limitation due to the
increased number of unknowns from the Lagrangian multiplier, representing contact forces,
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and the presence of zero diagonal terms in the tangent stiffness matrix associated with
the Lagrange multipliers may lead to difficulties in direct solution processes. The second
approach maintains contact constraints approximately using the penalty method. Kikuchi
and Oden [43] introduced a rigorous mathematical treatment of the penalty method for
contact problems. The penalty formulation maintains a simple contact constraint and
results in positive definite tangent matrices with positive diagonal terms. However, the
penalty procedure often leads to poor conditioning of the tangent stiffness matrix due to
the unbounded growth of the condition number as the penalty parameter increases. The
choice of an appropriate value for the penalty parameter represents a compromise between
significant loss of accuracy due to poor conditioning of the tangent matrix and unacceptable
violation of the contact condition. This study used the penalty method, with “hard contact”
for normal behavior and tangential behavior set to µ = 0.6 [44].

2.6. Geometrical and Mechanical Properties of Simulation Models

A parametric approach was used for the investigation of bearing strength in CFST
columns by changing the geometric and mechanical parameters of the model. The geometry
of the simulation model is described in Figure 6. The simulations were conducted on
11 models, corresponding to 11 experimental models currently being implemented. The
parameters and mechanical properties of the simulation models are provided in Table 1.
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Table 1. The geometrical and mechanical properties of the simulation models.

No. Mark 1 D
(mm)

t
(mm) D/t N hw

(mm)
Concrete Compressive Strength

fc
′

(MPa)
Pipe Height

H (mm)

1 D12T5N1H40FC382 1200 50 24 1 4.0 38.2 1400
2 D12T5N2H35FC381 1200 50 24 2 3.5 38.1 1400
3 D12T5N3H33FC382 1200 50 24 3 3.3 38.2 1400
4 D12T5N2H62FC385 1200 50 24 2 6.2 38.5 1400
5 D12T5N3H61FC385 1200 50 24 3 6.1 38.5 1400
6 D12T5N2H63FC610 1200 50 24 2 6.3 61.0 1400
7 D12T3N2H36FC388 1200 30 40 2 3.6 38.8 1400
8 D12T3N3H35FC388 1200 30 40 3 3.5 38.8 1400
9 D12T3N2H63FC390 1200 30 40 2 6.3 39.0 1400

10 D12T3N2H35FC610 1200 30 40 2 3.5 61.0 1400
11 D12T3N2H64FC610 1200 30 40 2 6.4 61.0 1400

1 The meanings of the symbols provided in the “Mark” column of Table 1 are as follows:
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2.7. Mesh Generation and Working Principal Diagram

This study employed a parametric approach to analyzing the bearing strength of the
infilled concrete in the CFST columns. Theoretical analysis, as described in Sections 2.1–2.7,
was used to create 11 different models by altering the geometrical and mechanical properties
of the concrete and steel tube, as shown in Section 2.6 and Table 1. After determining the
geometry and materials, the infilled concrete was discretized using the 3D-stress C3D8R
element, an eight-node brick element that uses Gaussian integral reduction technology,
with one integral point activated in this study. Since the steel tubes had a relatively
large thickness, as indicated in Table 1, and were equipped with shear stoppers, their
mechanical behavior was better represented by a continuous eight-node brick element
(C3D8R) compared to shell elements. Furthermore, the use of C3D8R elements ensured
accuracy in modeling the mechanical behaviors of the tube wall, such as stress–strain
relations at tensile and compression layers, with high precision.

Moreover, the C3D8R element utilizes a reduced integration scheme, thereby elim-
inating shear-locking phenomena. This element facilitates an accurate description of
stress–strain relationships at the integration points, although it only uses one quadrature
point at the center of the element. To ensure precision in modeling the stress concentration
at the corner and boundary positions of structures, a meshing element with a small size
is necessary. The one-point integration used may result in hourglass modes or spurious
zero energy modes that can corrupt a particular solution. However, hourglass modes are
rare in well-meshed structures and cannot spread throughout a conventional mesh. When
hourglassing modes occur, the solution fails to converge. Nonetheless, generating a good
mesh can help overcome this issue. Even when subjected to a complex stress state, an
element using one integration point is less prone to shear-locking phenomena, making the
C3D8R element the ideal choice for current simulations.

To apply load to the infilled concrete, a loading plate was used, and to secure the
column bottom, a base plate was also used (see the working principal diagram in Figure 7d).
The mesh for the loading and base plates was generated using the rigid element, a set of
nodes where the motion is governed by a unique node known as the reference node for a
rigid body. The shape of a rigid body can be defined as an analytical surface obtained by
either rotating or sliding a 2D geometrical profile or its discretization obtained by meshing
its nodes and elements. The shape of the rigid body remains constant throughout the
simulation and may undergo a finite motion. The mass and inertia of a discrete rigid body
can be computed based on the distribution of rigid elements or can be assigned directly.
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Figure 7. A typical mesh of CFSTs and its working principle: (a) steel tube reinforced by one shear
stopper; (b) steel tube reinforced by two shear stoppers; (c) steel tube reinforced by three shear
stoppers; (d) working principal diagram.

Rigid body motion can be defined by imposing boundary conditions on its reference
node. The load on a rigid body is generated by a concentrated load acting on the nodes, a
distributed load acting on the element, or the loads applied to the reference node of the
rigid body. Rigid bodies interact significantly with the rest of the model through nodes
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connected to the deformation elements and through contact with the deformation elements.
The fine meshes of three typical models are presented in Figure 7a–c.

3. Results and Discussion

The bearing strength of the infilled concrete was initially investigated by examining
two significant parameters related to the shear stopper—the number of shear stoppers and
their height. Subsequently, other parameters were also analyzed and discussed in detail,
such as D/t ratio and CCS.

Figure 7d presents a direct load diagram on the infilled concrete, with which the
bearing strength of the infilled concrete could be determined. The behavior of load-slip
displacement can be separated into three regions, as indicated in Figure 8a. In region 1, the
load–slip displacement relationship is linear, and the deformation of the infilled concrete
primarily causes the displacement, whereas the slip between the infilled concrete and the
steel tube is negligible. In region 2, the relationship between the load–slip displacement
is non-linear, and localized slip begins to occur at the loaded area. The load persists until
it reaches the ultimate load, which is the maximum capacity of the system. In region 3,
the load begins to decline due to the destruction of the natural bond or the damage of
the infilled concrete. This study mainly focused on investigating the bearing strength of
the infilled concrete, and there is yet to take place any exploration of its application in
construction design. Thus, allowable strength was not a concern in this research. The
ultimate load, which is the force value at the intermediate point between regions 2 and
3, served as the criterion to assess the bearing strength of the model (see Figure 8a). The
force at the limit point on the load–slip displacement curve was compared to evaluate the
bearing strength of the infilled concrete in different models.
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Figure 8. The force-slip displacement curves of infilled concrete in the case of steel tube reinforced
with different numbers of shear stoppers: (a) steel tubes with D/t = 24; (b) steel tubes with D/t = 40.

3.1. Influence of Number of Shear Stoppers on Bearing Strength of Infilled Concrete

Figure 8a shows the force–slip displacement curve behavior of the first three models
in Table 1. These models had the same steel tube diameter and thickness and nearly
unchanged concrete compressive strengths. However, their shear stopper heights varied.
The D12T5N1H40FC382 model, with one shear stopper, had the highest shear stopper
height, which decreased by 17.5% in the D12T5N3H33FC382 model, which had three shear
stoppers. The D12T5N2H35FC381 model, which had two shear stoppers, had a 12.5% lower
shear stopper height than the D12T5N1H40FC382 model, whereas the D12T5N3H33FC382
model had a 5.7% lower height than the D12T5N2H35FC381 model. Figure 8a displays
the bearing strength results among these three models, showing a 56.75% increase from
the D12T5N1H40FC382 model to the D12T5N3H33FC382 model, a 31.52% increase from
the D12T5N1H40FC382 model to the D12T5N2H35FC381 model, and a 36.84% increase
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from the D12T5N2H35FC381 model to the D12T5N3H33FC382 model. These findings
indicate that the number of shear stoppers had a significant impact on the bearing strength,
regardless of the decrease in shear stopper height observed in models with a high number
of shear stoppers.

The investigation into the bearing strength of the infilled concrete continued, as the
D/t ratio increased from 24 to 40. In this study, two models, D12T3N2H36FC388 and
D12T3N3H35FC388, were compared. These models had similar geometries and mechanical
data but differed in the number of shear stoppers, with D12T3N2H36FC388 having two
and D12T3N3H35FC388 having three. Figure 8b illustrates that increasing the number of
shear stoppers resulted in a 22.55% increase in bearing strength from D12T3N2H36FC388
to D12T3N3H35FC388. This finding confirms that increasing the number of shear stoppers
significantly improved the bearing strength of the infilled concrete. However, it is important
to note that the increase in bearing strength was greater when the D/t ratio was smaller.

To conduct a thorough analysis of the aforementioned results, it is worth noting
that the D12T5N1H40FC382 model included only one shear stopper positioned 400 mm
from the bottom of the steel tube. Due to the lengthy portion of the steel tube above the
shear stopper that remained unreinforced by any additional shear stoppers (1000 mm), the
steel tube in this area deformed significantly under the confinement effect (see Figure 9).
The contact pressure distribution in this region was greater than that of the two models
D12T3N2H36FC388 and D12T3N3H35FC388, as illustrated in Figure 10. This deformation
was the root cause of the premature damage to the infilled concrete in this region, as seen
in the results in Figure 10. Consequently, the bearing strength of the infilled concrete in
this case was notably low, and the infilled concrete exhibited relatively large slippage in
comparison to the steel tube wall, as depicted in Figure 8a.
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The D12T3N2H36FC388 model, which comprised two shear stoppers, and the
D12T3N3H35FC388 model, which comprised three shear stoppers, caused the stress in
both the infilled concrete and the steel tube wall to be redistributed towards the reinforced
shear stopper areas, as demonstrated in Figures 9 and 10. The shear stoppers reinforced the
steel tube wall in this area, making it capable of withstanding the significant transverse
pressure of the infilled concrete. Hence, the confinement effect of the infilled concrete in-
creased, resulting in higher strength within this area. As a result, the bearing strength of the
D12T3N2H36FC388 and D12T3N3H35FC388 models was significantly higher than that of
the D12T5N1H40FC382 model. Additionally, the relative slippage between the infilled con-
crete and the steel tube wall in these two models was lower than in the D12T5N1H40FC382
model, as can be observed in Figure 8a.
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3.2. Influence of Shear Stopper Height on Bearing Strength of Infilled Concrete

The D12T5N3H33FC382 and D12T5N3H61FC385 models had the same D/t ratio
and number of shear stoppers. Their CCSs can be considered to have been unchanged.
However, the only difference between the two models was in their shear stopper height.
Specifically, the D12T5N3H61FC385 model had a shear stopper height that was about 45.9%
higher than that of the D12T5N3H33FC382 model. Similarly, the D12T3N2H36FC388 and
D12T3N2H63FC390 models were completely similar except for their shear stopper height.
The D12T3N2H63FC390 model had a shear stopper height that was about 42.86% higher
than that of the D12T3N2H36FC388 model. These model pairs were used to investigate the
bearing strength of the infilled concrete when the shear stopper height changed.

Figure 11 illustrates that, although the shear stopper height of the D12T5N3H61FC385
model was roughly 45.9% higher than that of the D12T5N3H33FC382 model, the bearing
strength of the D12T5N3H61FC385 model was only approximately 1.0% higher than that of
the D12T5N3H33FC382 model. This finding is comparable to the results obtained from the
D12T3N2H36FC388 and D12T3N2H63FC390 models. The results indicate that the shear
stopper height did not appear to impact the bearing strength of the infilled concrete.
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Figure 11. The force-slip displacement curves of infilled concrete in the case of steel tube reinforced
with different the shear stopper height.
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The results depicted in Figure 11 accurately represent the problem’s physical nature.
The bearing strength of infilled concrete fundamentally depends on the adhesive force at
the interface of the infilled concrete and steel tube wall. If this adhesive force is inadequate,
the infilled concrete will slide within the steel tube, and the shear stoppers will then restrict
further sliding. At this point, the bearing strength of the infilled concrete will primarily
depend on CCS and shear stopper strength. In most instances, the infilled concrete tends
to sustain damage before the shear stopper due to its inferior compressive and tensile
strengths compared to those of the shear stopper. As a result, the height of the shear
stopper exerts minimal influence on the bearing strength of the infilled concrete. Figure 12
illustrates this concept.
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Figure 12. Distributed contact pressure along the column in models, and compression/tensile damage
spectrum of the two specimens D12T5N3H33FC382 and D12T5N3H61FC385.

3.3. Influence of Concrete Compressive Strength on Bearing Strength of Infilled Concrete

In this section, we selected three pairs of models that shared similar geometric and
mechanical characteristics but differed in CCS. Our aim was to investigate the impact of
CCS on the bearing strength of infilled concrete. The first pair of models comprised the
D12T5N2H62FC385 model and the D12T5N2H63FC610 model. It is essential to note that the
CCS of the D12T5N2H63FC610 model was 36.0% higher than that of the D12T5N2H62FC385
model. The second and third pairs of models were D12T3N2H36FC388–D12T3N2H35-
FC610 and D12T3N2H63FC390–D12T3N2H64FC610, respectively. It is pertinent to mention
that the CCS of the D12T3N2H35FC610 model and the D12T3N2H64FC610 model was
36.0% higher than the CCS of the D12T3N2H36FC388 model and the D12T3N2-H63FC390
model, respectively.

The simulation results presented in Figure 13 demonstrate that, for the D12T5N2H63-
FC610 model, the D12T3N2H35FC610 model, and the D12T3N2H64FC610 model, the com-
pressive strength of the infilled concrete was 6.26%, 2.58%, and 7.46% higher than that of the
D12T5N2H62FC385 model, the D12T3N2H36-FC388 model, and the D12T3N2H63FC390
model, respectively. These findings indicate that, despite a 36% increase in CCS between
two models with identical geometric and mechanical properties, the bearing strength of the
infilled concrete between them only increased by approximately 2.58% to 7.46%. Therefore,
this supports the notion that CCS does not have a significant impact on the bearing capacity
of infilled concrete.
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Figure 13. The force-slip displacement curves of infilled concrete in the case of using various types of
CCS.

These results are reasonable because, although there was a large difference in CCS be-
tween the models, the tensile strength between them was not significantly different. Hence,
the damage tensile spectrum between the models showed little variation, as demonstrated
in Figure 14. It is crucial to note that when infilled concrete incurs damage, the failure
occurs in tension before compression.
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Figure 14. Tension damage spectrum of the D12T5N2H62FC385 model and the D12T5N2H63FC610
model.

3.4. Influence of D/t Ratio on Bearing Strength of Infilled Concrete

To investigate how the D/t ratio affected the bearing strength of the infilled con-
crete, two pairs of models were selected. These models had the same geometric and
mechanical properties, except for the D/t ratio, which varied. The first pair consisted
of the D12T5N2H35FC381 and D12T3N2H36FC388 models, whereas the second pair
comprised the D12T5N2H63FC610 and D12T3N2H64FC610 models. The D/t ratio in-
creased by approximately 40% (from 24 to 40) when comparing the D12T5N2H35FC381
and D12T3N2H36FC388 models. Similarly, the D/t ratio of the D12T5N2H63FC610 and
D12T3N2H64FC610 models increased as well.

The D/t ratio, which changed by approximately 40%, was considerable; however,
Figure 15 illustrates that the bearing strength between the two pairs of models only varied
by approximately 2% to 6%. This indicates that the D/t ratio had a minimal impact on the
bearing strength of the column’s infilled concrete. This finding is entirely logical since all
damage to the models was due to the tensile damage of the infilled concrete. Nevertheless,
the tensile strength of all models was relatively low and did not significantly differ from
one another.
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Figure 15. The force-slip displacement curves of infilled concrete in the case of using steel tubes with
different D/t ratios.

Please note that, in this study, as D/t increased, the steel tube wall thickness de-
creased, whereas the column diameter remained constant. Therefore, to assess the validity
of the transverse displacement of the steel tube wall, it was necessary to check the re-
sults. The data presented in Figure 16 indicate that the transverse displacement of model
D12T3N2H64-FC610 (where the steel tube thickness was reduced by 40%) increased by
42.87% compared to model D12T5N2H63FC610 (the original model with a steel tube wall
thickness of 50 mm). This suggests that the confinement effect of the infilled concrete in
model D12T3N2H64FC610 decreased but that the bearing strength remained relatively
unaffected. This further supports the conclusion that concrete tensile damage significantly
affects the bearing strength, as demonstrated in Figure 15.
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of the D12T5N2H63FC610 and D12T3N2H64FC610 models.

Based on the analyzed results, we cannot accurately determine the degree of influence
that each investigation parameter had on the bearing strength of the infilled concrete, nor
can we evaluate how these parameters interacted with each other. To address this issue,
this study employed analysis of variance (ANOVA), which is described in the following
section.
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3.5. Investigation of the Impact of Geometric and Mechanical Parameters on Bearing Strength

In this section, ANOVA was utilized to investigate the degree of influence of the
factors and their interactions on bearing strength. The four factors examined were the D/t
ratio (A), the number of shear stoppers (B), the height of the shear stoppers (C), and the
CCS (D). Each factor was examined at only two levels, low and high. The results of the
multilevel factorial design are presented in Table 2, with “bearing strength” taken from the
simulation results and provided in the last column.

Table 2. Multilevel factorial design.

StdOrder RunOrder CenterPt Blocks t N hw fc
′ Bearing Strength

7 1 1 1 30 3 6.4 38.1 4505
4 2 1 1 50 3 3.3 38.1 4100
2 3 1 1 50 1 3.3 61 3250
6 4 1 1 50 1 6.4 38.1 3050
1 5 1 1 30 1 3.3 38.1 2150
5 6 1 1 30 1 6.4 61 3580
8 7 1 1 50 3 6.4 61 4620
3 8 1 1 30 3 3.3 61 4050

The results of the analysis in Figure 17a indicate the influence of the four investigation
parameters on bearing strength, arranged in descending order as follows: number of shear
stoppers, shear stopper height, CCS, and D/t ratio. The figure also illustrates that the
interaction between the number of shear stoppers and the height of the shear stoppers had
a considerable effect on the bearing strength. This implies that if only one shear stopper is
used, a significant increase in its height may not greatly affect bearing strength. However,
if both the number of shear stoppers and their height are increased simultaneously, it may
significantly impact the bearing strength. Figure 17b outlines the impact of each parameter
on bearing strength.
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Considering the interaction between parameters is essential in the design process to
achieve the desired results. Interaction analysis allows us to understand how the parameters
coordinate to influence the outcome. For instance, observing the interaction between CCS
and the number of shear stoppers in Figure 17c revealed that, even when the number of
shear stoppers was high, increasing the CCS did not impact the bearing strength when the
shear stopper height was low. However, when only the shear stopper height interacted
with the number of shear stoppers, it significantly affected the bearing strength. In other
cases, when shear stopper height interacts with other parameters, it may not substantially
impact bearing strength.
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4. Conclusions

The parametric method utilizes numerical results to demonstrate the impact of geo-
metric and mechanical parameters on the bearing strength of infilled concrete in circular
CFST columns with a large diameter. Several conclusions were drawn from this study:

• The number of shear stoppers was among the most critical parameters that signifi-
cantly impacted the bearing strength of the infilled concrete in circular CFST columns
with a large diameter. When the number of shear stoppers was high, the bearing
strength of the infilled concrete increased considerably. Firstly, the high number
of shear stoppers increased the contact capacity between the infilled concrete and
the steel tube, allowing them to work together efficiently. This mutual transmission
mechanism enhanced the bearing capacity of the CFST column. Secondly, the shear
stoppers served as reinforcing ribs for the steel tube wall, enhancing its ability to
resist lateral deformation, preventing local buckling, increasing the confinement effect,
and enhancing the concrete strength. Thus, they considerably increased the bearing
capacity of the CFST column.

• Although the analysis results indicate that the height of the shear stopper was one
of the parameters that affected the bearing strength of the infilled concrete, ranked
second only to the number of shear stoppers, increasing the height of the shear stopper
did not significantly enhance the bearing strength of the infilled concrete. However,
this parameter considerably improved the bearing strength when complemented with
an increase in the compressive strength of the concrete. Thus, when seeking to improve
the bearing strength of infilled concrete, we must consider adjusting the parameters to
collaborate synergistically to achieve maximum efficacy.

• The study confirmed that an increase in concrete strength had only a slight effect on the
bearing strength. Additionally, the use of high-strength concrete reduced the lateral
expansion of the infilled concrete, decreasing its confinement effect. Furthermore,
when the infilled concrete slipped through the shear stoppers, the concrete part inter-
acting with the shear stoppers could have been damaged, leading to the incapacity of
the infilled concrete to bear the load. Therefore, it is necessary to carefully consider
reinforcing the compressive strength of concrete to achieve maximum efficiency while
avoiding unnecessary waste.
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