
Citation: Steck, M.; Husung, S.

Surrogate-Based Calculation Method

for Robust Design Optimization

Considering the Fatigue Probability

for Variable Service Loads of eBike

Drive Units. Designs 2024, 8, 4.

https://doi.org/10.3390/

designs8010004

Academic Editor: Julian D. Booker

Received: 23 November 2023

Revised: 13 December 2023

Accepted: 18 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Surrogate-Based Calculation Method for Robust Design
Optimization Considering the Fatigue Probability for Variable
Service Loads of eBike Drive Units
Marco Steck 1,* and Stephan Husung 2,*

1 Bosch eBike Systems, TU Ilmenau, Product and Systems Engineering Group, 98693 Ilmenau, Germany
2 TU Ilmenau, Product and Systems Engineering Group, 98693 Ilmenau, Germany
* Correspondence: marco.steck2@de.bosch.com (M.S.); stephan.husung@tu-ilmenau.de (S.H.)

Abstract: This paper proposes a robust design-optimization approach for eBike drive units that
incorporates the highly variable driver-dependent load collectives and system conditions into a
fatigue calculation. In an initial step, the relevant influences and loads on the investigated system
are examined and reviewed in relation to the current normative requirements. From a methodical
viewpoint, this paper presents a surrogate-based simulation-based approach to assess reliability
across the entire geometry according to a probabilistic fatigue calculation. The probabilistic evaluation
considers the several measured load collectives of different drivers and driving scenarios to enable a
robust and type-oriented bike design. In addition to methods of fatigue calculation, this approach also
includes common methods of order reduction and reliability-based design optimization. To avoid
additional uncertainties in the calculation, this approach considers a complex critical-plane-based
multiaxial-fatigue calculation to correctly evaluate the multiaxial and non-proportional stress state
across the whole geometry. A data-based surrogate model that supports the fatigue calculation by
predicting the load across the given uncertainties is the key to the efficient assessment of the service
life of the eBike. Lastly, the identified uncertainties in the design of eBike drive units are investigated
and evaluated by this method.

Keywords: robust design; reliability-based design optimization; surrogate modeling; probabilistic
fatigue calculation; eBike; service life calculation; uncertainty quantification

1. Introduction

In recent years, eBikes have become increasingly popular and have come to represent
a significant percentage of all bikes used across bike categories. Due to the novelty of
the product and a fast-growing market, engineers are striving to rapidly improve the
design and functionality of eBike engines and batteries. The general focus is this on, e.g.,
extended range, supporting torque and power density, as well as on improving engine
control and riding experience to stay competitive. As the bicycle industry has historically
been only component-oriented, eBike engines, which are now highly complex mechatronic
sub-systems of the eBike, are considered standard components. Therefore, they should
fit into any bicycle system regardless of the mounting position and application, which
makes it necessary to focus the design process primarily on the reliability of the product
and a robust design. This factor is especially relevant in the category of middle engines
or so-called drive units (DUs), which replace the classic crankshaft and act as an interface
between the pedals, the rider and the bike frame by providing support for the drive torque.
For this purpose, this compact mechatronic system consists of a sensor system that detects
the rider’s torque, a control-and-power electronic system that applies additional engine
torque via a multistage gearbox and a free-wheel system to the crankshaft in relation to the
desired level of assistance. An example of such a DU can be seen in Figure 1.
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Figure 1. Bosch eBike Systems “Performance Line SX” [1]. 

Due to this integration of this mechatronic system as an interface between the pedal-
ing forces of the rider and the bicycle frame, the DU (as shown in the simplified hierar-
chical product structure of the eBike in Figure 2) is subject to external loads from the rider 
that are influenced and transmitted by parameterizable parts of the eBike and DU system, 
in addition to the internal loads from the motor and gear transmission. One examples of 
these influencing parameters is different crankshaft geometries, which affect the leverage 
of the pedal forces and thus have a strong influence on the DU loading. Comparably, dif-
ferent frame stiffnesses and mounting positions apparently influence the DU load. For 
consistency in nomenclature, these factors are classified as: 
• eBike-system-dependent parameter like the frame stiffness, mounting angle and ge-

ometry of the crankset and chain blade. 
• DU-dependent design parameters like the geometry and assembly of the housing 

and gears. 
• Loads consisting of driver-dependent dynamic pedal loads and DU-internal thermal 

and mechanical engine and gear loads, as well as static loads or residual stresses from 
assembly and manufacturing. 

 
Figure 2. Hierarchical overview of the product architecture of eBikes and relevant influences on the 
DU, according to [2]. 

With respect to the loads, tremendous uncertainties must be considered in the design 
of the DU. These uncertainties are mainly caused by the expected variety in driver-de-
pendent loads across users and driving scenarios. This variance in loads is increased by 
the case distinction of motor-assisted and non-assisted operation and the associated inter-
nal thermal and mechanical loads on the DU. Additional sources of uncertainty originate 
from assembly and manufacturing tolerances and influence the static loading of the DU. 

As the current normative requirements are derived from conventional bicycles, they 
do not consider effects of the additional engine, which potentially causes higher torques, 
as well as thermal or mechanical loads on the DU. Furthermore, these requirements are 

Figure 1. Bosch eBike Systems “Performance Line SX” [1].

Due to this integration of this mechatronic system as an interface between the pedaling
forces of the rider and the bicycle frame, the DU (as shown in the simplified hierarchical
product structure of the eBike in Figure 2) is subject to external loads from the rider that
are influenced and transmitted by parameterizable parts of the eBike and DU system, in
addition to the internal loads from the motor and gear transmission. One examples of these
influencing parameters is different crankshaft geometries, which affect the leverage of the
pedal forces and thus have a strong influence on the DU loading. Comparably, different
frame stiffnesses and mounting positions apparently influence the DU load. For consistency
in nomenclature, these factors are classified as:

• eBike-system-dependent parameter like the frame stiffness, mounting angle and
geometry of the crankset and chain blade.

• DU-dependent design parameters like the geometry and assembly of the housing and
gears.

• Loads consisting of driver-dependent dynamic pedal loads and DU-internal thermal
and mechanical engine and gear loads, as well as static loads or residual stresses from
assembly and manufacturing.
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Figure 2. Hierarchical overview of the product architecture of eBikes and relevant influences on the
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With respect to the loads, tremendous uncertainties must be considered in the design of
the DU. These uncertainties are mainly caused by the expected variety in driver-dependent
loads across users and driving scenarios. This variance in loads is increased by the case
distinction of motor-assisted and non-assisted operation and the associated internal thermal
and mechanical loads on the DU. Additional sources of uncertainty originate from assembly
and manufacturing tolerances and influence the static loading of the DU.

As the current normative requirements are derived from conventional bicycles, they
do not consider effects of the additional engine, which potentially causes higher torques,
as well as thermal or mechanical loads on the DU. Furthermore, these requirements are
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set only at a component level, neglecting the influences of the integration of the DU
into the overall eBike-system [3,4]. Overall, it can be questioned whether the current
normative requirements can account for the variety and uncertainty of these loads and the
given dependencies on all the parameters across the whole eBike system, which results in
challenges in the development and verification of eBike DUs [5,6].

To investigate and assess the gap between the state-of-the-art requirements for the DU
and the requirements in connection with potential use-case scenarios, fundamental studies
were performed to determine real load collectives, the influence of the bike frame, DU
internal loads and additional bike components on the load on the DU. These investigations
show that the current normative requirements do not cover the whole load spectrum that
can be observed during eBike use-case scenarios [5].

Consequently, for the DU design it is essential to quantify the impact of these load and
parameter dependent uncertainties arising from the required variability of the bike industry
with regard to the durability and a required service life of the DU to assure their application.
Therefore, the objective of the Robust Design approach is based on a reliability constraint
and aims at a probabilistic assessment of fatigue damage for all potential superpositions of
the potential loads, all variants of eBike and all DU parameters.

To consider and incorporate these uncertainties even in the early stages of the product
design process, a simulation-based approach of Robust Design and fatigue calculation
should be developed. Simulations provide a simpler and therefore more cost-effective
and faster adaption of load and parameter combinations, as well as an easily attainable
evaluation of stress and strain values necessary for reliability evaluation.

Against this background, the objective of this paper is to develop a simulation-based
method for the Robust Design, optimization and validation of products subjected to many
uncertainties and highly variable load collectives, like the eBike DU. In view of the variable
loads, the focus of robust optimization lies in a design that is resistant to fatigue and
that performs well in a service-life assessment. To reduce the computational cost, which
is typically the biggest impediment to industrial and practical applications of Robust
Design methods, the development and validation of a feasible simulation-based calculation
procedure based on reduced-order modelling techniques and a data-based surrogate model
is discussed. To adequately account for the multiaxial and non-proportional loads in a
cycle-based fatigue assessment, further methods incorporating fracture mechanics and the
fatigue calculation are included in the computation chain.

The housing of the DU, which can be seen as the key element interfering with all
further components of the DU and the overall eBike system, will be used as the research
subject for the reliability-based Robust Design approach. Finally, the deviations between
the existing normative and component-based requirements are determined in relation to the
load that can be realistically expected in different applications of DUs across all bike types.

For this purpose, the following research questions are addressed and discussed in
this paper:

• Which parameters and loads need to be considered in a reliability-focused Robust
Design process for eBike Drive Units?

• How can a fast-computing simulation model be formed that includes the fatigue and
service-life calculation and considers the uncertainties of the diverse load collectives
and influencing parameters?

• How can a cyclic multiaxial-fatigue calculation based on existing load collectives be
integrated into a simulation-based reliability-based optimization approach?

2. State of the Art

This chapter presents the essential insights of the bicycle industry and the currently
established and applied normative requirements. Additionally, the fundamental ideas and
existing methods for simulation-based Robust Design and surrogate-based simulation are
explained. Subsequentially, the most important steps of a fatigue calculation are explained.
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2.1. Normative Requirements for eBikes

With the introduction of eBikes, previously existing normative requirements for con-
ventional bicycles, which consist of component tests, were transferred to eBikes and their
components. These requirements are described in [3,4] and defined on a component level
by specifying load cases and boundary conditions for the testing of key components of the
bicycle. These components include, for example, the frame, the wheels, the brakes, the han-
dlebars, the saddle, the fork and the crankshaft, whose requirements have been transferred
to the entire DU in the case of the eBike. Regarding the safety of mechanical components,
the normative requirements of the eBike DU consist of two test variants that represent an
exclusively vertically-acting cyclic pedal force for a specific crank angle (see Figure 3). The
two variations consist of applying a pedal force (Fp) up to 1800 N either alternately to the
right and left in a motion similar to normal cycling, or simultaneously, which simulates
the load imposed by the rider’s weight in e.g., downhill riding situations. The magnitude
of the force is thereby varied depending on the type of bicycle. To conduct the test, the
DU is attached to a bracket that is not further specified. In the variant of alternating pedal
forces, the resulting torque is absorbed by a fixed chain. The target cycle number that must
be withstood to pass both tests again varies depending on the type of bicycle and the test
variant. For further details of this normative test, such as the exact number of cycles and
load specifications of individual bicycle types, please refer to the standard itself [3].
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Figure 3. Schematic illustration of the normative load case for eBike DUs and crankshafts
(according to [3]).

Regarding the bike frame, several load situations are defined, such as forces on the
saddle, pedaling forces and loads on the wheel axis due to uneven surfaces or braking
maneuvers [4]. Simplified boundary conditions are given for the bearing of the frame on the
wheel axles. These boundary conditions can be derived from the counter-torque of the rider
on the handlebars and the two contact points of the tires with the ground (see Figure 4).
The required numbers of cycles and amplitudes depend on the type of bicycle.
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Figure 4. Different load situations for the bicycle frame and its simplified boundary conditions
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Comparable simplified test scenarios, which allow testing of individual bicycle compo-
nents under a constant amplitude, which is presumably based on an estimated worst-case
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scenario, potential worst-case scenario and respective boundary conditions, can be found
for other components of the bike.

The different loading situations of the frame can be considered as matching counter-
parts to the individual loading situations of the other bike components that are linked to
the frame, like the saddle or the handlebars. Hence, specific definitions of the relevant
range of requirements for components besides the DU can be restricted to the frame, as that
is the only part directly connected to the DU. From the perspective of robust DU design,
however, it must be questioned whether separate consideration of the DU and the frame is
possible. The following two influences and load types must be distinguished:

• Determination of the forces that result from external loads on the frame and that are
transferred to the DU.

• Characterization of the influence of DU mounting on different bike-frame geometries
and stiffnesses or on a uniformly stiff testrig on the loading situation.

Regarding the pedal load, it is doubtful that the uniaxial cyclic load of the normative
requirement is comparable to the pedal force loading seen in real-life bike applications.
This normative load is especially questionable in the light of a previous study on existing
pedal-force measurements, which showed a considerably more complex picture of the
human pedal cycle [7–9].

Significant observations related to this question are explained in [8,9]. Those studies
describe the relevant proportions of pedal forces in all three Cartesian coordinates. Such
an approach is only logical when considering that riders should want to apply the highest
possible tangential force to increase their pedaling efficiency. Therefore, multi-axis pedal
loads should be expected. Likewise, different proportions of applied pedal force, generated
torque and the associated chain force can be anticipated. The study of [7] revealed clear
differences in pedal-force measurements for different riding situations and riders, with re-
sultant forces of up to 2000 N and individual force-to-weight ratios of up to 2.9. Transferred
to the normative requirements discussed above, these measurements show potentially
higher forces and, more importantly, confirm the assumption of individual cycling motions
and pedal loads. Furthermore, it should not be forgotten that in the case of eBike DUs,
the distinction between engine-assisted and engine-unassisted driving and the associated
thermal and mechanical loads increases the variance in the load collective, although this
variance is not even considered in the normative requirement. Therefore, the question
arises of what kinds of loads and variations due to different riders, riding scenarios and
DU assistance need to be considered in Robust Design. With regard to Robust Design for a
certain service life, the transferability of the existing test, which is performed at constant
amplitude, compared to the obviously multi-axial and variable amplitudes of real service
loads, must be examined.

2.2. Robust Design Based on Simulation Methods
2.2.1. Robust Design and Design of Experiment

In the field of engineering, design robustness is a widely used term and condition
that generally intends to minimize the sensitivity of a product function (or other product
properties) to certain changes through operational or environmental parameters [10]. This
perspective has origins in the ideas of Taguchi [11], who proposed an experiment-based
approach to investigating the effects of “noisy” or statistically scattered parameters in
relation to their impact on a targeted functionality of a product. Thereby, Taguchi defined
the terms of controllable parameters that can be deterministically set by the designer, as well
as of noise parameters, which cannot be controlled but can be described by a probability
density functions, as they underlie statistical variance. Based on these definitions, Taguchi’s
approach aimed at setting of the controllable parameters in such a way that the variations
in the noise parameter do not affect the function of the product and have minimal impact
on it [12].

Driven by this basic concept, the methods of DoE (Design of Experiments), as well
as the definition of the uncertainties of a system, are elementary components of Robust
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Design. In this context, DoE methods are mainly used to efficiently explore the outcome of
potential parameter combinations while also considering statistical variations.

Regarding uncertainties, different categories exist and must be considered differently
in the design process. Here, one of the most common classifications in the literature is the
division into aleatoric and epistemic uncertainty. Epistemic uncertainty is understood as
a lack of information and can therefore be reduced by obtaining more information, e.g.,
through a DoE approach or more accurate measurement methods. Aleatory uncertainty, on
the other hand, is often caused by inherent statistical variability and can be characterized
by an empirical quantity; it is consequently the most decisive factor in Robust Design [13].

Especially when robustness is considered in relation to the reliability and safety of the
product, an accurate evaluation of aleatory uncertainties arising from the environment, the
system and user behavior is of enormous importance [14].

This evaluation is particularly important because a consideration of the robustness
should be integrated as early as possible in the design process to enable the best possible
responses to statistical influences. In practice, however, this variation is often considered
only in later stages of the product-design process, when most design parameters are already
fixed. Thus, clearly, fewer possible combination must be considered and computed. Thus,
possible optimizations are voluntarily given up in order to reduce computational and
testing efforts [14].

2.2.2. Simulation in the Context of Robust Design

For the representation of uncertainties in optimization approaches with regard to
reliability, several methods in the field of Reliability-Based Design Optimization (RBDO)
have been published in recent years [15]. Thereby, the key idea of optimization problem,
minimizing a cost function dependent on a vector of design parameters, was extended to
include statistical scattering that needs to be evaluated based on a probabilistic constraint
regarded to a limit-state function. As the name would already indicate, the limit-state
function is a function of all random variables that describes the failure criterion for the
RBDO. For optimization approaches incorporating component safety, the limit-state func-
tion is often described by static variables like the maximum stress or strain [15–17]. Most of
these methods are based on a double-loop principle, with one loop solving the probabilistic
reliability analysis and the second loop dealing with the structural optimization [15,17].

According to [15], the methods used can be divided into gradient-based analytical and
numerical-sampling-based methods. The most commonly used gradient-based method is
the First Order Reliability Method (FORM), which approximates the limit-state function
(defined by the scattering variables) by a linear first-order Taylor series expansion to
identify the most probable point of failure and its probability. Further information about
this method and its extensions to e.g., second-order approximation or different and non-
Gaussian-distributed random variables can be found in [15,17,18].

The greatest advantage of this method is the low computing time, which is particu-
larly evident in analytically solvable explicit problems. Also, for implicit problems, the
FORM method can efficiently provide results in combination with a numerical simulation
determining the derivatives of the limit-state function, such as the FEM simulation.

This advantage can be observed using simple academic examples in e.g., [15,19–21].
However, there are also severe limitations to this method, which particularly affect nonlin-
ear limit-state functions with multiple potential error domains. Consequently, sampling
methods are more suitable for these applications, although they are associated with sig-
nificantly higher computational costs. To avoid errors due to the disregarding of these
limitations, the sample-based simulation approaches of RBDO, alongside some hybrid
approaches (as in [16]), have become well established for practical designs.

These simulation-based approaches are based on sampling methods such as the Monte
Carlo method to represent the variation in the scattering parameters in order to describe
the probabilistic changes in the respective fatigue conditions. As MC sampling operates by
selecting from distribution functions of individual parameters, it provides little variance
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and requires a large number of computations to achieve sufficient coverage, which raised
the demand for more efficient sampling methods. Widely used alternatives are space-filling
approaches like Latin Hypercube Sampling (LHS), which aims to cover every part of the
cumulative density function equally, or adaptive sampling strategies, which iteratively and
dynamically updates sampling density as the simulation proceeds [18,22].

Further difficulties arise with both approaches in their application to time-dependent
problems, which are usually caused by dynamic loads or decreasing material and compo-
nent properties, e.g., due to corrosion [17,23,24]. The limit-state function can be described
by time-variable parameter distributions and time-invariant parameters. This approach
gives rise to the main problem for the calculation of the reliability via to the additional
dimension introduced by time variance. Therefore, several methods of RBDO have been
developed to address time-variant optimization targets. With regard to analytical ap-
proaches, a number of methods, like outcrossing and the extreme-value-based methods,
were proposed. These methods mainly affect the discretization of the time course in order
to calculate individual time periods as time-invariant cases by existing methods like FORM.
Overall, in the practical application of time-variant problems, sampling approaches based
on simulation have become increasingly established [17,23,24].

Nevertheless, the application of simulation-based methods to more complex practical
industrial problems is usually difficult and limited due to the enormous computational
effort required [18]. To minimize exactly this computational effort in the optimization of
robust products with increasingly complex high-fidelity simulation models, the use of
surrogate models and so-called surrogate-model-based design optimization has become an
established practice in product development [25,26].

In this case, the primary purpose of the surrogate model is to replace the computa-
tionally expensive simulation involved in numerical high-fidelity models, such as FEM-
simulation, with less computationally expensive numerical, analytical, or statistical models.

2.2.3. Order-Reduction Approaches and Surrogate Modeling

Overall, there are different approaches to the simplification of highly detailed physical
models. Due to the basic principle of reducing model complexity, the term “surrogate
modeling” is heavily linked with order-reduction methods and order-reduced modeling
techniques. According to [27], these methods for order reduction and generation of a
surrogate model can be classified into three main types: projection-based reduced models,
hierarchical models and data-fit models.

Projection-based models are typically defined by simplified mathematical relation-
ships derived from the high-fidelity model. Examples include physically-based analytical
equations, the results of a spectral or modal analysis and decomposition and principal
component analysis.

In contrast, hierarchical surrogates, also called variable-fidelity models, are derived
from simplifications of the higher-fidelity models by simplification of physics-based rela-
tionships. Transferred to the example of an FEM simulation, this approach would include
a coarser discretization, other element orders, or relaxed solver tolerances. Data-fitting
surrogate models are instead non-physically-based approximations based on a relatively
small number of coherent input and output data, which are calculated by few of the expen-
sive high-fidelity calculations [28]. Consequently, the formation of this type of surrogate
model can also be regarded as an advanced type of post-processing [29]. However, this
approach has the disadvantage that, due to the absence of a physical reference, reliable
results can be expected only for an interpolation task inside the given parameter space [27].
Nevertheless, this method has already shown enormous potential for the exploitation of a
known parameter space, with the following references given as examples [30–33].

To perform a suitable approximation of the system behavior based on a small number
of input-output combinations, the use of data-fit surrogate models is again inevitably linked
to appropriate sample selection and DoE methods. This approach requires detection of
local changes in the target output throughout the entire input-parameter domain, which is
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particularly difficult for multidimensional data sets because the distances between the data
points increase exponentially. This method thus demands an enormous amount of sample
data [26]. This problem is therefore generally known as the curse of dimensionality [34].

For the previously described reasons, space-filling sampling or adaptive and actively
expanding sampling methods, rather than classical factorial or fractional factorial DoE meth-
ods and MC sampling, have been established for the formation of surrogate models [29,35].
For further information on sampling methods, readers are referred to [25,35].

For the creation of data-fit-based regression models, a variety of methods with different
methodical approaches and levels of complexity have been developed and established in
recent years. A general overview of these methods can be found in the work of [28]. Here,
different analytical and stochastic regression methods like the Respond Surface Method
and Kriging, as well as more modern machine learning methods based on decision trees
and neural networks, are discussed and explained. Despite the different mathematical and
logical operations that characterize each of these methods, they all have in common that
they need to be trained by a suitable strategy.

The most commonly used training strategy with regard to the generation of data-based
surrogate models of physical simulation data is the so-called supervised learning method.
This method is based on combined input and output data sets, which are taken from
measurements or simulations. Subsequentially, the data set is divided into training, test
and, in some cases, additional validation data. Then, training occurs via an optimization
loop to adjust and weight the model parameters of the selected model type to minimize the
error between the surrogate model’s prediction for a given set of input data and the output
data [36]. To describe this model prediction error, typical metrics like the root mean square
error (RMSE), the relative and absolute error, or the R2 value are used as general measures
of regression quality.

To maintain the robustness of the model and to prevent overfitting or memorizing of
the input-output correlations in the training data, the unseen data from the test split are
also integrated into the optimization loop during training. To prove the independence of a
data sample, additional comparisons with further validation data or a certain number of
different data splits within cross-validations are performed. Cross-validation is a technique
wherein the original training data set is split into k equal parts. Training is then performed
for several runs of k − 1 different parts, while testing is performed on the remaining kth
part of the data. This approach thus guarantees independence from any particular data
pair. Besides the selection of the input data, the quality of the surrogate model depends
on the choice of the so-called hyperparameters, which describe, e.g., the structure or the
learning procedure of the surrogate model.

As these hyperparameter settings drastically influence the performance of the model,
their adjustment is crucial for the comparison of different model types. Aside from the
influence of these settings on model performance, the need for their adjustment also
implies that different model types are only comparable if they possess equally adjusted
hyperparameters. When comparing different model types, a setting of the hyperparameters
equally adapted to application to the use case and the data set is crucial. In the following
section, commonly used model types for data-based surrogate models and supervised-
learning algorithms will be addressed briefly [37].

Artificial Neural Network

The architecture of Artificial Neural Networks (ANN) is inspired by biological func-
tions found in the brain or nervous system and transferred to mathematical and numerical
operations to process and assess data. Their general structure consists of several layers
with interconnected neurons (depicted in Figure 5). Data are processed from an input
layer throughout several hidden layers to calculate probability values for neurons in an
output layer. These values constitute the basis for the model’s prediction. To perform these
calculations, connections with parameterizable weights, activation functions and a certain
bias are formed between neurons of different layers [30,37].
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Figure 5. Principal structure of an ANN.

For a supervised-learning algorithm, ANNs are trained in the so-called backward
propagation, which works retrospectively from a given input-output dataset. Subsequently,
forward propagation can be used for a trained model, starting from the input data to deter-
mine the output values based on probability. Throughout the training process, the entire
training dataset is evaluated iteratively over multiple training cycles (epochs), repeating
backward propagation in separate batches to fit the training parameters. This fit is driven
by an optimization algorithm in which a loss function based on error metrics, such as the
RMSE or MSE, should be minimized. Thereby, limiting the maximum possible adjustment
of the weights per cycle by imposing a learning rate helps to prevent instabilities in the
optimization. As a result, the performance of the ANN depends significantly on the model
or on hyperparameters like the chosen structure (neurons and number of layers) of the
mathematical approach function and on the training parameters (learning rate, batch size,
epochs) [28].

Tree-Based Regressors

Decision trees are one of the most-used model types for machine learning. Reasons
for their popularity include their straightforward structure, their robustness against noise
and their good ratio between performance and computation time. In addition, they are
universally applicable due to the variability of processing nominal, numerical and text-
based data independent of missing or redundant data [38]. The basic principles of tree-
based models are the partitioning of the feature space and the fitting of a simple model or
constant for the output of this partition. Based on the outcome of those steps, a decision
tree can be built on simple Boolean decisions regarding the partitioned feature space (see
Figure 6) [37].

One of the most-used model types is the Random Forrest (RF) model, which was
proposed by [40], wherein several uncorrelated decision trees are built by bootstrap aggre-
gation, which generates multiple trees with a random split of the training data through
independent and individual training routines. For application to unseen data, the output
values of all these trees are aggregated to depict the model output value in the form of the
average value (for regression tasks) or the majority of votes (for classification).



Designs 2024, 8, 4 10 of 39

Designs 2023, 7, x FOR PEER REVIEW 10 of 41 
 

 

Tree-Based Regressors 
Decision trees are one of the most-used model types for machine learning. Reasons 

for their popularity include their straightforward structure, their robustness against noise 
and their good ratio between performance and computation time. In addition, they are 
universally applicable due to the variability of processing nominal, numerical and text-
based data independent of missing or redundant data [38]. The basic principles of tree-
based models are the partitioning of the feature space and the fitting of a simple model or 
constant for the output of this partition. Based on the outcome of those steps, a decision 
tree can be built on simple Boolean decisions regarding the partitioned feature space (see 
Figure 6) [37].  

 
Figure 6. Schematic illustration of decision-tree principles (left), bootstrap aggregation (middle) 
and the gradient-boost scheme (right) (according to [37,39]). 

One of the most-used model types is the Random Forrest (RF) model, which was 
proposed by [40], wherein several uncorrelated decision trees are built by bootstrap ag-
gregation, which generates multiple trees with a random split of the training data through 
independent and individual training routines. For application to unseen data, the output 
values of all these trees are aggregated to depict the model output value in the form of the 
average value (for regression tasks) or the majority of votes (for classification). 

Although the creation of multiple decision trees is computationally intensive, it min-
imizes the variance of individual trees and helps to prevent overfitting of the model by 
the “Law of Large Numbers” and the randomness of the tree building, which explains the 
robustness that is the trademark of the Random Forrest algorithm. In comparison to the 
simultaneous generation of decision trees in the RF, gradient-boosting algorithms like 
XGBoost (XG) grow decision trees sequentially to minimize the loss function of the model 
with each new tree while keeping the model size and tree number as small as possible [41]. 
To achieve this minimization rapidly, the gradient of the loss function with the previous 
model output is determined to generate the next data split. This potentially increases 
learning power by reducing computation time and improving performance at the expense 
of robustness and vulnerability to overfitting [39]. 

The decisive hyperparameters of the tree-based algorithms are the maximum num-
ber, depth and width of the decision trees, as well as the sample selection for the training 
data. Additional parameters can be defined for the process of gradient boosting. The ini-
tial claims of very good results with reasonable computational effort can also be confirmed 
by the benchmark investigations of [42], which show a generally good performance in 

Feature 1

Fe
at

ur
e 

2

𝐹2
𝐹2

𝐹1 𝐹1
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 1 𝐹1

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 1 𝐹1
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 2 𝐹2

Basic principal of desicion trees

True False

𝑂𝑢𝑡
𝑂𝑢𝑡𝑂𝑢𝑡

𝑂𝑢𝑡
𝑂𝑢𝑡

TrueFalse

…

𝑂𝑢𝑡
True False

…𝑂𝑢𝑡

Random Forrest Gradient Boost
Aggregation

Output obtained through the
evaluation of mean value or

mayority vote  

Evaluation of loss
function gradient

Output obtained directly
by the leave of the tree

Figure 6. Schematic illustration of decision-tree principles (left), bootstrap aggregation (middle) and
the gradient-boost scheme (right) (according to [37,39]).

Although the creation of multiple decision trees is computationally intensive, it min-
imizes the variance of individual trees and helps to prevent overfitting of the model by
the “Law of Large Numbers” and the randomness of the tree building, which explains
the robustness that is the trademark of the Random Forrest algorithm. In comparison to
the simultaneous generation of decision trees in the RF, gradient-boosting algorithms like
XGBoost (XG) grow decision trees sequentially to minimize the loss function of the model
with each new tree while keeping the model size and tree number as small as possible [41].
To achieve this minimization rapidly, the gradient of the loss function with the previous
model output is determined to generate the next data split. This potentially increases
learning power by reducing computation time and improving performance at the expense
of robustness and vulnerability to overfitting [39].

The decisive hyperparameters of the tree-based algorithms are the maximum number,
depth and width of the decision trees, as well as the sample selection for the training data.
Additional parameters can be defined for the process of gradient boosting. The initial
claims of very good results with reasonable computational effort can also be confirmed
by the benchmark investigations of [42], which show a generally good performance in
significantly less training time for tree-based regressors compared to deep learning ap-
proaches in the form of neural networks for heteroscedastic tabular datasets. These studies
also demonstrated the good performance of the RF and XG models for both regression
and classification.

2.3. Fatigue Calculation

As a consequence of the trend towards light-weight design and the additional demands
of minimizing costs and time-to-market intervals, product safety and reliability are of
immense and growing interest for engineering designers. For that reason, the amount of
research in the field of fatigue calculation and reliability is steadily increasing [43].

However, a distinction must be made between the experimental test-based determina-
tion of fatigue strength, which is mainly carried out in the final phase of the development
process for the validation of the design, and the fatigue calculation done during the design
phase of the product. The latter is usually based on simulation data evaluated in a local
concept, where fatigue is evaluated at a specific area of the geometry using (estimated) ma-
terial behavior. Given the focus of this work on robust optimization, the simulation-based
calculation of service life is discussed here.
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The origins of fatigue calculation for components made from metallic materials were
defined by Wöhler, who discovered that while high loads can cause the static failure of
structures, lower but cyclic loads can also lead to structural failure and fatigue. To discover
material-specific fatigue behavior, Wöhler used experimental methods to characterize
different materials and loads. Now, practical fatigue calculations are still based on empirical
tests of specified geometries and loads to define the material limits for cyclic loads at
different amplitudes. These tests are then combined to form the S-N-Curve (see Figure 7),
which represents the number of cyclic loads of a certain load type and amplitude that result
in the fatigue of the component [44].
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This general information regarding the material can then be used for a comparison
with calculated or measured loads of the investigated design to estimate its service life,
which can be considered to be the most important outcome of fatigue calculation. To
better subdivide the wide range of amplitudes and material-dependent fatigue properties
recorded in the SN curve, the diagram for metallic materials is divided into three sections:

• low-cycle fatigue, representing material behavior with plastic deformation;
• high-cycle or very-high-cycle fatigue, representing material behavior with elastic de-

formation;
• finite life, representing permanent durability.

Typical loads for these assessments are tension, compression, torsion and bending
loads that are applied with different constant mean loads or ratios in the range between a
fully reversed alternating or pulsating profile [46]. This ratio is important, as it characterizes
the mean stress level of the cyclic loading, which can have a significant effect on the
fatigue behavior, depending on the loading situation and material type. This influence
can generally be visualized by the Haigh diagram, although multiple models have been
proposed to describe it [46,47]. Besides the load type and the material, several other
influences of fatigue behavior must be considered to allow fair comparison of the load
conditions and data-based prediction of the service life. Further examples include the
hardness of the material, corrosion effects and the surface roughness or finish, which is an
important factor in the nucleation of microcracks. Likewise, the effect of stress gradients,
occurring in the wake of residual stresses or notch geometries, must to be addressed in the
comparison. To save experimental costs, these additional factors are usually not taken into
account during measurement of the SN-Curve and are subsequently adjusted by additional
correction factors [46,48].

Thus, not every amplitude or sample is inevitably and directly comparable using the
SN-curve, but if they are not, they can be transformed to that end. For the evaluation of
the desired service life, however, cumulative information on uniaxial loads at constant
amplitudes must be transferred to variable amplitudes of real load spectra and complex
load conditions from superimposed load channels.

As real loads are usually not uniaxial and of constant amplitudes and R-ratios, the
problem arises that comparison with the material limits of the SN curve for basic loads
can no longer be carried out directly. In practice, several superimposed load channels and
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real component geometries result in complex multiaxial stress states and loads, and these
combinations have different amplitudes depending on their load collective. In such cases,
the goal is to convert the calculated load to a reference value comparable with the values
on the SN-curve.

In general, strength hypotheses based on the idea of assigning a damage-equivalent
uniaxial load to each multiaxial stress state can be used to determine fatigue damage under
multiaxial loading. First, this equivalent stress drastically reduces the complexity of the
three-dimensional stress state. Second, it allows the calculation of fatigue life based on the
reference and fatigue limits for uniaxial test loading. Here, the equivalent stress is usually
compared with a typical SN curve for the material to predict the damage associated with
the load under consideration [46].

In the case of multiaxial loading, the separation into proportional and non-proportional
load components is of great importance. This is because non-proportional changes result
in a rotation of the principal stress system, which of course requires a different analysis.
In this case, common equivalent-stress theories such as von Mises or Tresca [47] are not
applicable. This distinction and the selection of the correct calculation model is particularly
relevant since experimental studies have shown significant differences in fatigue behavior
between non-proportional and proportional multiaxial loading, which is schematically
shown in Figure 7 [45].

Therefore, when calculating non-proportional loads, the entire load time sequence and
its effects must be considered and different types of strength hypotheses must be utilized
to account for these effects. Similarly, the simple scaling of the amplitude with respect to
the single load signal, which is often used for proportional variable amplitude loading, is
not recommended. Further information on this recommendation can be found for example
in [48].

In recent years, several proposals have been made concerning strength hypotheses to
determine an equivalent stress for a time-dependent multi-axial non-proportional load cycle.
Similar to the more common hypotheses for proportional loading, these hypotheses are
related to the physical quantities that are considered critical for fracture and crack initiation.
These hypotheses can be categorized into stress-, strain- and energy-related considerations
focusing on application in the low-cycle, high-cycle or infinite-life range of the SN curve.
They can be further subdivided for ductile or brittle materials in accordance with the
material behavior, which generally has a major impact on the failure mechanism [49].

With regard to the damage mechanism, the main factor causing fatigue cracking
is generally a combination of (cyclic) principal shear stress and the associated normal
stress. The theory thus implies that shear stress or strain is responsible for the formation
of microstructural cracks, which are further opened and enlarged by the normal stress
component acting on the crack plane.

Based on this fundamental theory of the development of fatigue cracks from a cer-
tain cracking plane, the most-used hypotheses for the investigation of non-proportional
loads are centered around the idea of evaluating the loads of the so-called critical plane.
Such critical-plane methods are intended to calculate either the most critical plane or the
aggregation of damage across all planes by a damage criterion derived from the normal
and shear-stress histograms in multiple planes. This approach requires subdividing and
evaluating the stress state, described by the stress tensor, at a specific location, for an
arbitrarily fine discretization of the potential planes [49]. A more detailed description of
this procedure can be found, e.g., in [49,50].

Subsequently, a resulting mean stress and amplitude can be determined for the relevant
shear and normal stress at each of these planes. Based on these results, an equivalent stress
amplitude for the selected load-time curve can be computed according to multiaxial damage
criteria such as the SIH, Findley or Papadopolous and Van Dang criterion [51–55]. Thus,
the amplitude of the equivalent stress for a respective load time sequence can be defined
and compared to the nominal loads of the SN Curve.
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To calculate the service life with regard to real component loading, the task involves
dividing the given load into a collective consisting of load cycles with different amplitudes
and frequencies. Typically, this subdivision is carried out by means of Rainflow count-
ing, which examines the load sequence according to closed hysteresis curves to obtain a
suitable material-mechanical measure for the cycle definition. For uniaxial or multiaxial
proportional-load cases, Rainflow counting is clearly defined by a single load signal. For
non-proportional loads, numerous variants have been published either focusing on the nor-
mal stress, shear stress or an equivalent stress or using a two-channel method representing
both the shear- and normal stress components [56,57].

For the sake of a complete overview, it should also be noted that, in addition to
time-dependent calculation methods, frequency-based spectral methods also exist. Such
methods are used primarily for completely random loads and vibrations, e.g., for car
suspensions on different ground properties and maritime or wind-induced loads. These
methods can deliver good results at a lower computational cost compared with time-based
methods. However, due to the difficulty of forming and subsequentially determining a
cyclic pattern of loads, a problem for which numerous methods have been published [58],
there are differing degrees of deviation compared to the direct evaluation of a given load-
time series [59].

For the calculation of the overall damage and the correlated service life of the given
load sequence with variable amplitudes, a method for damage accumulation is usually used
to combine the use lifetime or the damage of each load level. The most common method
is linear damage accumulation according to Miner, which linearly adds the proportional
damage Di of each individual cycle to obtain a damage value D for the given load collective.
Thereby, the damage associated with individual cycles is calculated by the ratio between
the given number of cycles ni and the potential number of cycles Ni that can be endured at a
given amplitude. This calculation leads to the idealized scenario in which the failure of the
component occurs when the proportional damage sum reaches a value greater than 1 [46].

D = ∑Ni
i=1 Di = ∑Ni

i=1
ni
Ni

= 1 (1)

Thus, the information from the SN curve can be transferred to variable amplitudes
and the Liftime curve or Gassner Line, which is fitted on the maximum amplitude of
the investigated load collective and represents the service life for the given collective
(see Figure 8) [48]. However, validation tests regarding the accuracy of linear damage
accumulation have revealed significant mispredictions and systematic prediction errors for
service loads.
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Subsequentially, several adjustments were proposed to overcome the justified doubts
that arose about this method. The most relevant adjustment in this regard was based on
the observation from experimental investigations that load cycles of amplitudes below the
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fatigue limit continue to contribute to the fatigue limit if they are coupled with amplitudes
above the fatigue limit. This conclusion arose from the fact that lower amplitudes can
lengthen cracks initiated at higher amplitudes even if they would not be able to initiate
them at a constant amplitude. To account for this effect, various methods, such as Miner
Elementar [46], can be used to extend the slope of the SN curve over the fatigue–strength
range, as indicated in Figure 8.

Further systematic deviations between the calculated and tested service life were
observed depending on the shape of the load spectrum, the sequence of loading and non-
linear damage behavior. These deviations are typically corrected with empirical factors
or in comparison with an experimental fatigue test of the component and the given load
spectrum [60]. As real tests have predominantly shown an unconservative damage sum
below the D = 1 assumption of the linear damage accumulation, correcting the calculated
damage using a real test has become common practice.

To account for the uncertainties in the load assumption and the variances that already
occur in the experimental evaluation of the SN curve, in a last step, a failure probability is
derived from the overlap of the distribution curves for the material and load side, as shown
in Figure 9.
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3. Preliminary Studies to Determine eBike Loads

The analysis of the state-of-the-art and existing normative requirements already re-
vealed questions and uncertainties regarding the integration of the DU into the eBike or,
more precisely, into its frame, as well as the load collective and additional loads from the
engine support. This chapter presents the main results of three important investigations
characterizing the DU service loads.

To evaluate the relevance of these loads, a first fundamental step was to record real
load collectives for the pedaling forces and, in parallel, record DU characteristic data
regarding driver assistance [5]. The simultaneous detection of DU assistance is decisive,
as it provides information about the real drive torque, the resulting chain force and the
gear transmission forces internally acting. Next, the influence of the bicycle frame was
investigated by analyzing both the loads that the frame introduces into the DU due to
external loads on the frame and the difference in DU loading for mounting in different
frame types [6].

3.1. Load Collectives

The main goal of determining the load collectives was to measure the variety and
the characteristics of the mechanical loads that are to be expected in real riding scenarios.
As the mechanical loads are predominantly defined through the pedal forces and their
generated torque, the determination of the pedal forces on both sides and for all three
Cartesian-coordinate directions is of vital importance.

Therefore, strain gauges were applied to measure tangential, radial and axial forces
of the crank. Additionally, the crank angle was tracked to account for the different crank
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orientations during its rotation and to determine the pedal forces in a global Cartesian
coordinate system. To capture the variance among riders and riding situations, a DoE
consisting of the body position, pedal type, motor assistance and the slope of the trail
was defined. Besides the normal cycling motion, downhill rides were also measured to
incorporate the variance in offroad and MTB cycling. These separate riding situations were
tracked and divided into cycles of one crank rotation each to store them uniformly in a load
collective. More detailed information on this measurement and the aggregation of different
load collectives can be found in [5].

These measurements were generally aimed at investigating the upper limits of pedal
loads that can be expected, for example, during acceleration or when driving uphill or
with engine support. Therefore, the assumption was made that pedal loads and thus, DU
loads, at high cadences or for long, constant rides on planar ground are not highly relevant
to the fatigue calculation due to the limits of the human body. Despite the fact that even
lower-load amplitudes of a load collective can contribute to fatigue damage, the work
focused on a more precise definition of the higher-loaded parts of the load collective. This
choice was based on the assumption that variation in the upper ranges of the load spectrum
has a more significant influence on the uncertainty of the service-life calculation and thus
plays a greater role in the reliability-based optimization of the DU housing. Furthermore, it
was important to properly map the variance within this higher-load spectrum in a limited
measurement program.

The key results of this measurement included the following:

• Relevant forces were measured in each Cartesian orientation;
• Resulting pedal forces were in the range of 1500–1600 N;
• Comparable pedal forces can be measured even at maximum motor assistance;
• Each rider shows individual differences and asymmetries for their pedal loads;
• The torque acting on the crankshaft was massively increased by the engine support,

while pedal forces remained nearly the same;
• The results are generally in line with previous measurements of biomechanical cycling

motion and resultant pedal forces.

To illustrate the potential differences across riders and riding situations, Figure 10
shows examples of the pedal loads for different crank rotations. This figure shows one of
the main characteristics of human pedaling, the differences in horizontal pedal forces due
to the change in body position during seated and standing cycling. A holistic overview
is shown in Figure 11, which includes the minimum and maximum pedal loads of each
component throughout the whole measurement.
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Based on the results of this investigation, it can be stated with regard to Robust
Design of the DU that the enormous variance of the driver-load spectra represents a large
aleatory uncertainty and thus a potential noise factor that must be considered during the
design process. Due to the limited scope of measurement, it cannot be assumed that there
are no further epistemic uncertainties for the load collective. However, for the present
work, given the variation and diversity presented, the decision was made to work with
the current load collective, which is already challenging to incorporate into a reliability-
based Robust Design approach. Once the diversity of the existing load spectrum can be
methodically covered, further measurements can be integrated in a later step. From a
mechanical point of view, the variety of the three-dimensional pedal forces cause different
proportions of bending, torsional and tensile or compressive loads within the housing
(see Figure 12). Therefore, multiple non-proportional multi-axial stress states are to be
expected for the fatigue calculation. To accurately incorporate these conditions into the
service-life calculation, the combinations and sequences of the individual load channels
must be considered in a coherent sequence. For this reason, the formation of the load
collective is based on the bundling of the measured load time sequences of all individual
load channels (individual pedal forces, chain force, etc.).
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With regard to the normative requirement, it can therefore be stated that the multiaxial
nature of real cycling loads is not taken into account. In addition to the multiaxiality, the
suitability of the constant amplitude test of the normative requirement must be questioned
in light of the differences in the assessment of load collectives with variable amplitude
loading and constant load amplitudes for the fatigue calculation (Section 2.3).

Comparable statements have already been made about conventional bicycles by [61],
which demonstrates the need for a more detailed investigation of these eBike loads.

3.2. Relevance of the eBike Frame

To investigate the influence of the frame, the two load cases shown in Figure 4 of either
a force transmission through the frame into the DU or the change of the load distribution
inside the DU through the connection between the DU and the frame and the consideration
of its boundary conditions were investigated in an FEM simulation.

For this purpose, the four different frame types shown in Figure 13 were investigated
in a simulation-based study. The examples of these basic categories were intended to
deliver at least a rudimentary representation of the diversity of real bicycle frames in terms
of sizes and geometries. To ensure the comparability of the frame types, all example frames
were selected with the material aluminum and similar DU mounting angles.
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The relevant output quantities for the evaluation were the transversal loads of the four
bolted connections between the DU and the frame interface, as well as stresses occurring
within the DU geometry. Together, these values provide a quantitative measure that can
be used to answer the two main questions about the load transfer across the interface of
the DU and frame connection and its influence on the DU load. A study conducted on
the effect of external forces that are transmitted to the DU via the frame showed marginal
effects on the DU for both output quantities during testing for the loading on the seat post,
as well as on the front and back axis. For this study, the load amplitudes were chosen
according to the requirements in [4].

This result suggests that only the loading on the seat tubes of low-entry bike frames of
type 1 caused a relevant transverse force component on the screws connecting the frame
and the DU. This findings can be explained by the relatively low structural stiffness of this
frame variant. Nevertheless, even with this variant, significant loads were not observed
within the housing, where only marginal stresses arose. Consequently, it can be concluded
that this type of loading has little to no influence on the DU loading.

In contrast, different frame types and their effects on the boundary conditions of the
DU showed an enormous influence for different quasistatic pedal-force combinations. Here,
the mounted DU was simulated for all selected frame variants and a DoE of characteristic
pedal loads of the previously determined load collectives. To obtain a reference representing
the existing normative requirements of the DU without a frame, a fixed boundary condition
with constant stiffness at each mounting point was added in this study. For this loading,
the evaluation of the bolt transverse forces showed significant amplitudes and, more
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importantly, striking differences between the different frame types. These differences were
even more pronounced in comparison with the stiff test rig of the normative requirement.
Thus, for all bicycle frames, strongly increased forces were observed at the front mounting
point towards the handlebars and lower forces were observed at the rear mounting point.
The most pronounced deviations were observed for the two low-entry variants, while
incrementally decreasing differences could be observed from frame type 1 to frame type
4. It could also be observed that the differences in the bolt load depend on the loading
situation, which is why the results indicate a load-dependent influence of the frame. A
second glance at the loading situation inside of the DU housing reveals a similar picture,
as the stresses of the maximally loaded areas around the front and rear mounting points
behaved in a similar manner. Figure 14 shows the curve of the Mises equivalent stress of a
higher-loaded point over a number of quasi-static measured pedal forces for each bicycle
frame, as well as for the normative set-up.
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Figure 14. Stress amplitude at the maximum loaded point of the DU housing for different frames
and across a time series of loads [6].

These observations can be explained by the stiffnesses of the individual frame ge-
ometries and their boundary conditions. The loads on the drive unit and its crankshaft
result in bending and torsional moments that can be absorbed only at the front axle and
its given rotationally free boundary condition. Hence, an increased force is transmitted
through the front screw if the rear mounting point shows significantly more compliance
towards the frontal axis. In simplified terms, the force flow is defined by the ratio of the
stiffness between the mounting points of the motor and the bearing point of the front wheel.
Due to the dependence on the load type, this finding applies for the resulting stiffness at
all degrees of freedom. For frame types with a rather low individual stiffness, the load
dependence can also be attributed to the chain force and its reaction force and moment
on the rear axis. As a result, the moment and the tensile force of the chain stays have a
strong but asymmetric effect on the deformation of the frame, which characterizes the load
situation within the DU.

The simulation clearly showed that the moment and the tensile force of the chain stays
have a strong but asymmetric effect on the deformation of the frame and the load situation
inside the DU. In general, these results show that the frame-free analysis of the present
norm requirements for the drive unit represents a simplification that has enormous impact
for calculation of the mechanical load on the eBike DU. Therefore, it can be concluded that
the variance of the bike-frame stiffness and the according boundary conditions have to be
included in the Robust Design approach. However, external loads on the bicycle frame
exerted little to no influence, leading to the conclusion that these loads do not need to be
considered in the uncertainty quantification.
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3.3. DU Internal Loads

For the study of the DU internal loads, the worst-case thermal and mechanical effects
of the motor support especially should be identified to derive their principal relevance and
impact. To investigate the influence of the thermal loads, a CFD simulation of the DU was
conducted to determine the distribution of the housing temperature.

It was assumed that the worst-case scenario was a DU covered due to design specifica-
tions and thus not cooled by any external airflow and forced convection. It would have
been difficult to define a suitable outflow, as the weather and environmental conditions, as
well as the geometry of the front wheel and the frame, would constitute too-large scattering
factors. The dissipated heat flows of the stator and the power electronics served as the
heat source. The connection to a bicycle frame was modelled as an additional heat sink.
The transient simulation was then performed until the stationary temperature field was
reached. The simulation was then run until the steady-state temperature field was reached.
To consider the derating behavior of the drive control, a virtual sensor was included in
the simulation to track the temperature and to control the heat sources comparable to the
real DU.

Next, an FEM model of a prestressed DU mounted in the frame was mapped with the
temperature field of the CFD simulation. A static simulation step was used to determine
the load condition due to thermal expansion. Figure 15 shows the determined temperature
field, as well as the mechanical loads caused by the expansion (with the stress level of
pretensioning and mounting process subtracted) of the DU housing.
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The quasi-static calculation of the mechanical stresses due to thermal expansion reveals
noteworthy stress values in relation to the static yield strength of the housing, which in
principle can have a significant influence on the load situation and fatigue. However, as
this load type can be considered rather static in comparison with the driver-related loads,
an estimation of the thermal impact on the otherwise dynamic and multiaxial cycling load
remains impossible. For this reason, the uncertainty associated with the thermal expansion
needs to be incorporated into the load variation of the Robust Design approach.

Regarding motor support, which is the core characteristic of the eBike DU, the abstract
comparison of the nominal DU torque of 65–85 Nm with the more frequent upper torque
limits of 200–250 Nm for unsupported cycling already shows a relevant influence of the
mechanical loads. In this context, it should be noted that, unlike a rider, the engine applies
a constant torque over the entire crank revolution. This difference is especially relevant
regarding the cyclic multi-axial load situation, wherein the gear and chain force components
are changing the typical load situation of the engine. Therefore, the effects of engine support
on the mechanical load situation of the DU must be examined in combination with the
driver torque, the pedal forces and the geometry of the crankset.
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4. Methodological Approach for the Calculation and Optimization of eBike DUs
4.1. Deriving the Overall Approach

Based on the insights of the previous chapters, it can be stated that the Robust Design
of a DU must consider the variance and noise of the load spectrum of both the external and
internal DU loads, as well as the different system configurations of the eBike, consisting
of its bicycle frame, the crank arrangement and the mounting angle. In Robust Design
terminology, the load collective and manufacturing and assembly tolerances represent
the noise and aleatory uncertainty and the topology of the housing represents the design
parameters. The configurations of the eBike system constitute additional “system param-
eters”, like the frame or geometry data of the crankset, which must be varied to reduce
epistemic uncertainties.

This necessity results in two potential optimization approaches. On the one hand, in
order to meet the demand of the bicycle industry to install the DU as a standard component,
the optimization of the design parameters can aim at reducing the impact of the noise
parameters (or ensuring component safety) for as many system configurations as possible
or for all system configurations. On the other hand, this necessity also opens up a new
perspective wherein the system parameters can be restricted in order to find an optimal
DU for a certain category of system parameters, e.g., based on the bicycle type. In the
process, any objective can be selected for optimization, as can be seen in Formulas (2) and
(3) below. Typical examples may include minimizing the component weight or dimensions
and the product or manufacturing costs. However, as this paper is related to the formation
of a probabilistic fatigue constraint, the objective function will not be discussed further.
With regard to the targeted fatigue constraint, for each of the two approaches, the existing
aleatory uncertainty regarding the diversity of static and rider-dependent dynamic loads
must be considered to ensure component reliability.

Using differently sampled load sequences for each load channel, a certain failure
probability can be determined across all assessed locations under consideration.

For the eBike DU, the objective is a design in the high-cycle fatigue range of the SN
curve similar to the existing norm, which already defines the limit-state function for the
fatigue constraint focused on the required service life of the DU. This constraint can be
described by a fatigue calculation based on the damage accumulation in a local concept
of a selected load sequence and the given design and system parameters. According to
Formula (1), a limit for the fatigue constraint corresponding to the accumulated damage
can be assumed from a damage sum of 1. The optimization problem can thus be formulated
as follows:

minimize : F(d A) or F(d A(sA)) (2)

subjected to : Pi(Dacc(LA , dA, sA) < 1 − f) < Pallowable (3)

with

• F = objective function describing, e.g., the component weight, manufacturing costs, etc.
• LA = matrix of sampled load sequences for each load channel according to the de-

sired runtime
• dA = vector of design variables according to the required application (e.g., bike type)
• sA, = vector of system variables according to the required application
• f = scalar-valued safety factor
• Dacc = damage accumulation
• Pi = vector of the failure probability for the ith assessed location
• Pallowable = constraint for the tolerated failure probability

To convert this constraint of the service-life requirement into a suitable calculation
chain for the evaluation of the limit-state function, the following must be considered with
regard to the current state of research (see Section 2) on fatigue calculation:
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• Due to the complex geometry, the use of FEM methods is mandatory to evaluate the
limit-state function based on fatigue lifetime.

• The fatigue calculation must be conducted in a cyclic and time-based calculation
of realistic load collectives to address the effect of damage accumulation for the
fatigue behavior.

• The variance of the effective damage in relation to various load-collective compositions
associated with different riders and riding situations must be determined to derive
the failure probability.

• The information about the correlation of the different load channels already acquired
by measurement can be taken into account in order to characterize the real driving
load more precisely.

• As detailed measurements of the potential loading on the DU are already available, these
loads should be considered to form potential load collectives for the fatigue assessment.

• The multi-axial and simultaneously acting load channels, in combination with different
static loads and the complex geometry, imply that a multi-axial and non-proportional
load case must be expected at many local areas.

• A stress-based approach based on the critical planes must be applied with respect to
the HCF area in order to perform a suitable fatigue calculation.

• No general static stress- or strain-based constraints, like those common in examples of
RBDO and especially in FORM methods [15,16,56,57], can be applied in service-life
calculation. This conclusion arises from the fact that the proper evaluation of reliability
must be treated as time-dependent regarding both the calculation of equivalent stress
amplitudes for multiaxial non-proportional load cycles and the damage accumulation
of potential load collectives.

• The geometry of the DU housing must be evaluated by multiple local-concept fatigue
calculations because no clear critical area and most-likely failure point can be defined
prior to the investigation.

Due to the complexity of the eBike DU and the necessity of an accurate fatigue
estimation to avoid overly conservative or, worse, unsafe designs, the focus of this paper is
on the inner loop of the fatigue calculation. This necessity of a detailed fatigue calculation
can be derived from the fact that an uncertainty quantification and a Robust Design
approach are not feasible if an unknown error and uncertainty in the fatigue calculation are
tolerated by a simplified calculation of the target variable.

Based on the previously defined requirements, a methodical approach for the calcu-
lation of fatigue damage based on a simulation and sample-based method, a collective
of load time sequences and a critical plane approach can be derived. A sample-based
RBDO methodology (see Section 2.2.2) was chosen because of the indisputable necessity of
numerical FE simulation, the evaluation of multiple potential failure domains across the
geometry and the requirement to evaluate a broadly distributed load collective instead of a
single critical load combination. In the process, different load collectives must be formed
by sampling techniques regardless of the methodology used.

Instead of the commonly used sampling methods based on statistical variation of
individual load-channel amplitudes, samples are taken directly from the measured load
sequences, wherein the correlation of each load cycle is already defined. On the one hand,
this approach reduces the dimensions to be sampled from many load channels to one cycle,
which makes it easier to estimate a representative sample number. On the other hand,
unrealistic combinations of load channels and load-time sequences can be avoided, as
the already-acquired correlations of the individual load channels are used, not discarded.
Additionally, this variation across riders and riding scenarios enables a more explainable
evaluation of the fatigue constraint and thus a bicycle-type-oriented design optimization.

To avoid inefficient MC sampling of all the measured load sequences, classifications
of the ratio-load channels, the maximum pedal force or torque amplitude can be used
to perform space-filling sampling techniques. These classifications can also depend on
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information about the measured driving situation or the rider, which may yield more
interpretable results and the possibility of assessing different riding scenarios.

A probabilistic evaluation can then be obtained by calculating the equivalent stress
amplitude for multiple load time sequences of crank cycles from different riding situations,
bicycles and riders. In that way, the division into clearly defined sequences of pedal cycles
can be seen as a natural separation of the load-time signal, without implementing further
cycle-counting procedures. This approach directly enables fatigue calculation for different
collectives of these cycles according to the linear damage accumulation.

For this subsequent step, it is crucial to assign the obtained equivalent stress amplitudes to a
realistic frequency distribution reflecting the riding behavior. An incorrect frequency assignment
will lead to over- or under-dimensioning in the probabilistic evaluation.

This step is decisive, as the main purpose of the existing measurements (Section 3.1)
was to predominantly cover higher-loaded sequences. Therefore, finding a reference to
realistic frequency values and the probability of occurrence of the more severe load cycles
in the field application is highly relevant to generating a realistic fatigue calculation.

This reference value can be obtained from the maximum occurring torque over one
pedal cycle, which is recorded by the DU control, thus delivering a representative distri-
bution. Hence, the equivalent stress amplitudes of the sampled and measured crankshaft
revolutions can be assigned to their respective frequencies, considering their maximum
torques to account for them in a probabilistic fatigue-damage or service-life calculation. The
resulting two-dimensional distribution of the potential stress amplitude and its probability
of occurrence can further be used for the probabilistic evaluation of the fatigue constraint.

However, for the simulation-based time-based evaluation and calculation of these
crank cycles, enormous computing capacities are required. This requirement suggests the
need to use surrogate models. In such models, the majority of the computational cost is
devoted to the FEM calculation to determine the stress tensor across the time sequence,
while a relatively small proportion is required for the calculation of the damage criterion
and the critical-planes method.

This use of the surrogate model is supported by the comparatively low computation
time of the critical-plane model and the fact that a direct prediction of the surrogate model
for the damage of different load cycles and the underlying load time histories for a multi-
axial load case is difficult to realize. The reasons for this difficulty lie in the quantity and
variety of possible load signals, which are both difficult to parameterize or categorize, and
also have far too different properties to allow for training with reasonable effort.

For this reason, the surrogate model should serve as a regressor that can predict or
interpolate the local stress-tensor values according to the sampled design, eBike system
and load parameters. In this way, the surrogate model delivers the local stress-tensor
components of all observed areas of the DU housing for a defined quasi-static load and
parameter combination. This approach makes it possible to obtain the sequence of local
stress tensors for the fatigue calculation of an arbitrary discretized load-time sequence.
The reasons for this approach lie in the quantity and variety of possible load channels,
which are both difficult to parameterize or categorize and also have far too many different
properties to allow for training with reasonable effort. Thus, by starting with high initial
computational effort for the adequate sampling of the selected parameter space and the
training and validation of the surrogate model, a regressor can be defined that allows the
efficient computation of many load-time sequences due to the extremely low computational
effort required for each additional sequence. To further increase the efficiency of the whole
approach, the basic but high-fidelity FEM model, as well as the initial parameter space that
is used for the calculation of the sample points and the generation of the training data, is
subjected to further order reductions. The focus is thus on projective methods that minimize
the number of input dimensions in the model. This approach brings the advantages of
faster computation time and the ability to compute more sample points to generate a
better-performing data-based surrogate model in the same time period. Such a model is
crucial if new training data for a new product geometry must be calculated repeatedly in
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an iterative optimization. On the other hand, this initial dimension reduction generally
also increases the efficiency of the data-based surrogate model, as it is (given the same
amount of training data) more capable of interpolating between a few dimensions with
many expressions than between many dimensions with only one or a few expressions. This
difference arises due to the curse of multidimensionality and the exponentially increasing
distances between the used samples.

To calculate this fatigue constraint in a local concept across the whole geometry, it
is crucial to discretize the complex housing geometry and to evaluate the relevant and
critical local areas in separate calculations of the local cumulative damage distribution. This
approach is necessary because the enormous diversity of the load spectrum and changes
in design and system parameters make it impossible to identify the most critical point in
advance of the presented fatigue assessment.

Regarding this discretization, the question naturally arises as to in which steps the
geometry must be divided to avoid the disadvantages of a too-large loss of information
in an almost global evaluation, as well as the excessive calculation effort required for a
very fine grid. Concerning the surrogate-model approach, this discretization offers the
possibility of data reduction via a gradient-based clustering procedure to minimize the
number of locations for which the surrogate model has to be trained. In summary, the
requirements for the computational method consist of computationally efficient simulation
and a surrogate model, as well as reasonable discretization and the data structure of the
input and output data. In addition, these calculation processes and data evaluations must
be implemented with the maximum degree of automation.

Overall, this necessity leads to a double-looped optimization approach wherein the
inner loop calculates the fatigue probability, incorporating the variance in the load collective,
and the outer loop is a deterministic parameter optimization of the system and design
parameters that can be conducted, e.g., by an evolutionary optimization algorithm and
a given objective function. This approach can be seen in Figure 16. A more detailed
overview of the proposed procedure and the central topic of the surrogate-based fatigue
calculation can be seen in Figure 17. Across the following sections, the individual areas of
this methodical procedure and their application to the eBike case study will be addressed
in detail.
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4.2. Defining the Parameter Space

To avoid the curse of dimensionality and thus the need for an enormously increased
amount of sample data, the parameter space for the generation of the training sample
and the resulting surrogate model should be reduced as much as possible. To achieve
this reduction of the input dimensions within the eBike system, substitute variables were
identified inside the DU sub-system that can be described by a mathematical function and
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the combination of multiple input parameters without the loss of relevant information. To
identify these variables, the top-down and bottom-up relationships between the individual
components were investigated in a system analysis of the eBike system. The results of
this analysis revealed that many relevant influences can be mapped via the stiffness at
the frame interface and the resulting bearing load of the DU. With regard to the load and
fatigue calculation, further dimension reductions can be achieved by separating the static
and dynamic loads. The result is lower-dimension input.

A general overview of the eBike parameters and their dimensional reduction is shown
in Figure 18. The applied methods and assumptions are further described below.
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For the dimension reduction of the load channels, the high-resolution load-time se-
quences of the load-spectrum measurements were superimposed over all relevant geometry
parameters of the crank setup and the DU in order to define a resulting radial-bearing load
for each measured load situation based on its amplitude and orientation. The assumption
was accordingly made that the axial bearing load can be neglected. The reason for this
assumption was the low amplitude and relevance of the axial bearing load relative to the
radial load. Regarding the overall DU load, the circumferential load resulting from the
axial force and the adjusted bearing would be of negligible importance, but would require
further input parameters to describe the load condition. Hence, the input dimension of the
six pedal-force components, several geometry parameters and the DU engine support could
be reduced to the five parameters of amplitude and orientation of the surface pressure in
the right and left bearings, as well as the chain force (see Figure 18). These values could be
calculated using fundamental mechanical equations. The chain force still must be consid-
ered because it introduces a reaction force into the frame via the rear axis. Figure 19, below,
illustrates the mechanical forces and the relevant geometries around the crankshaft, as well
as the potential range of loads on the right and left bearing. These values can be calculated
by superimposing the channels of the measured load collective over all variable geometries
of the DU Design. Because the mounting angle of the DU affects only the orientation of the
bearing forces due to the rotation of the DU housing around the crankshaft, this system
parameter can also be incorporated into the dimension reduction.
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Hence, the input variable of the six pedal-force components, several geometry param-
eters and the DU motor support can be reduced to several correlated values of the five
parameters for the amplitude and orientation of the surface pressure in the right and left
bearings, as well as the chain force (see Figure 18).

As a simplified description of the connection between the DU and the frame and
its boundary conditions, a discrete equivalent-stiffness matrix can be derived for specific
bicycle types as an alternative to considering different geometries and materials.

Further reductions can be achieved by the separate consideration of static (thermal and
production-related stress conditions) and dynamic loads (depending on the load spectrum
of the rider). Thus, the complexity and the size of the DoE can be significantly reduced.
This approach is feasible because these two stress states can easily be superimposed in a
later step. Obviously, this approach requires the assumption that static and dynamic loads
have few to no dependencies and can be calculated separately.

Here it should be mentioned that pretensioning forces that define the contact between
the housing parts and the frame interface were also modeled to calculate the dynamic
loads in order to ensure a feasible simulation. Following the order reduction of the input
parameters and the replacement variables, modifications were also made to the existing
and already-validated Abaqus FEM model, which was used for the calculation of the
norm requirements. This model consists of the housing, bearing and crank geometry
of the DU, which are assembled and pre-tensioned in two initial calculation steps. In a
first step, the geometry of the crankshaft and its contact definitions at the DU bearing
position were replaced by an analytical description of the surface-pressure profile defined
by the orientation, amplitude clearance and geometry of the bearing. This analytical
profile was calculated using a Python routine and integrated using a Abaqus subroutine.
These routines deliver an easily editable interface for the required automatization of the
calculation. Compared to bearing-and-contact modeling, the direct calculation and use of
surface pressure is a numerically less error-prone and, above all, more computationally
efficient. A comparison with the previously existing FEM model, which had already been
validated in detail within the company on the basis of the standard load case, showed no
notable differences in results and a significantly minimized computing time.

The Frame Interface was added and modeled by the aforementioned equivalent stiff-
ness matrix, which was extracted by the Guyan-Reduction scheme [62]. This scheme repre-
sents a projection-based reduced-order modelling technique for the completely meshed
bike frame geometry. The Guyan-Reduction condenses the whole stiffness matrix to a
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linearized stiffness matrix for only a few remaining degrees of freedom. In this case, the
remaining degrees of freedom were defined for nodes at the mounting points of the DU, as
well as the front and rear axes. The retained nodes were coupled to the rest of the respective
geometry by a coupling constraint. Thus, the DU can be mounted and pretensioned at the
interface and the boundary conditions can be enforced at the retained nodes of the axis.
Further hierarchical simplifications were carried out regarding the material model, which
was set to be purely elastic given the targeted fatigue range in the HCF area. Due to the
focus on the methodological steps, the already existing FEM model will not be discussed
further at this point.

4.3. Building the Surrogate Model

The formation of the surrogate model depends on the two major steps of data gen-
eration, including a data reduction to form the output data and the generation of the
data-based model. These two steps, as well as their key factors, are highlighted in Figure 16
based on the general methodical approach shown in Figure 20.
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4.3.1. Data Generation and Reduction

As an initial step for the creation of the surrogate model, sample data must be created
and calculated according to sampled input data and the simulation model. For an adequate
representation of the parameter space, the LHS was selected as a space-filling sampling
algorithm. To ensure that the FEM simulation model yields sufficient accuracy, a fine
discretization and a high element count of more than one million elements must be expected.
For this size, data processing and storage, as well as the planned construction of a data-
based surrogate model, can be completed only with enormous computational resources.

To achieve the required coordinate-based and simultaneously clustered and reduced
data structure, a gradient- and volume-based clustering procedure was developed. This
method identifies the local maxima of the selected target variable inside an observed
volume to build a locally refined but generally coarser mesh via variable discretization. As
a convergence condition for this algorithm, suitable threshold values for the gradient and
the minimum value, as well as variable and maximum refinement steps of the discretization,
are defined. The fundamental idea behind this method is that areas of the FEM mesh that
possess nearly constant values over the entire output of the simulated samples can be
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clustered and described by only one representative value for this volume. Furthermore,
areas associated with a very low target value and thus are not relevant to the fatigue
calculation can be filtered and excluded.

To generate a clearly defined and coordinate-based discretization pattern of the geome-
try and the corresponding FEM output, the basic geometry of a cube covering the maximum
component dimensions is defined as the starting volume. Subsequently, this initial volume
is refined in a manner analogous to the scheme shown in Figure 21, by bisecting the edge
lengths of the original cube and its children. The refinement is performed if more than one
local maximum of the target value above a certain threshold is detected within an observed
volume. This refinement is executed until either a convergence criterion regarding the
minimum stress gradient or the minimal cube size is reached.
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Figure 21. Schematic illustration of the clustering process.

Finally, this algorithm is intended to provide a significantly reduced discretization with
only a slightly reduced information density as a foundation for the training of the data-fit
surrogate model. Hereby, of course, it is assumed that the previously simulation-generated
sampling data is sufficient to be able to perform this clustering reasonably. However, as
the formation of the data-fit surrogate model generally allows only the interpolation of
the results, sufficient sampling is inevitable. Therefore, the derivation of the critical points
based on the sampled data is seen as a reasonable assumption.

Thus, the relevant parts of the housing can be focused on and represented with a
significantly smaller amount of data, leading to an efficient hierarchical order reduction for
the database. The distinct algorithm of coordinate-dependent volumes additionally allows
the integration of different meshes and simulations. Furthermore, the coordinate-related
discretization allows the comparison of different geometries in different optimization loops.
Although some cube volumes may be added or omitted due to the geometry change, a large
part will remain and can thus contribute to the robust optimization process. Consequently,
an application to arbitrary geometries is conceivable.

Each of these cube objects can then be assigned the output values of the target value,
its coordinates and the exact parameter definitions of the simulation step, these being
the essential information for the data-based surrogate model. Both the algorithm and the
required data transfer from the Abaqus output file were programmed in Python. Figure 22,
below, shows an example of the reduced discretization of a DU geometry that was simulated
for 400 sample points.
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4.3.2. Generation of the Data-Based Surrogate Model

For the creation of a surrogate model, the initial task consists of forming the input and
output data for supervised learning and selecting an appropriate model type and algorithm.
In this case, the input data are built from the load, eBike system and design parameters of
the individual samples, which are supplemented on the output side with the evaluated
stress-tensor components. The details of the data structure depend on the arrangement and
processing of the coordinates-based data of the adapted discretization.

In this way, either individual regression models can be created for each discretized
data point, or the adapted and filtered mesh can be considered collectively in one single
surrogate model by incorporating the coordinates into the input data to guarantee an
unambiguous assignment.

To create individual surrogate models, however, a rapidly increasing memory require-
ment and high computational costs for the training of the individual models arise for
each additional considered location. In light of the filtered yet still respectable number of
potentially relevant points (see Figure 19), the following assessment involves only the use
of a cumulative data structure within a singular surrogate model, while the approach of
several individual surrogate models is ruled out.

However, as this approach is associated with an increase in dimensionality due to
the incorporation of the x-, y-, z-coordinates, this increased number of input dimensions
is accompanied by a reduction in the sampling quality. The severity of this reduction
depends on the number and density of the included data points. In addition to the pure
number of incoming sampling points, their geometric distance in the x-, y-, z-coordinates
is of particular importance, as this factor has an enormous effect on the spacing of the
multidimensional dataset. As can be seen in Figure 21, filtering the data sets to highly
loaded locations will lead to an uneven distribution of the sample data. As a result,
the training data become increasingly heterogeneous due to the varying influence of
geometrically adjacent data points. Therefore, the possible influence of differently finely-
distributed data points must be accounted for in model-building and validation.

Besides the data structure, the performance of the surrogate model depends in partic-
ular on the model type and its hyperparameters, as well as on the number and selection of
the initially calculated training data. To reach a decision in this context, different model
types and sample data sets are evaluated by their performance. Due to the iterative appli-
cation of this fatigue calculation within an optimization loop, the performance is evaluated
qualitatively from the ratio of computing time and prediction accuracy.

Regarding the algorithm used for building the surrogate model, this study considers
supervised learning ML and DL approaches for regression, including tree-based machine
learning algorithms in the form of XG and RF, as well as an ANN with multiple hidden
layers, to explore this data-driven approach. The selection of these model types was derived
from a literature study in which the most common algorithms were evaluated based on
fundamental characteristics such as training time, prediction time, precision and their scope
of application in terms of the number of features, data size and the number of outputs.

To define a suitable number of training samples, the metrics of the individual model
types were evaluated for different sample sizes in steps of 100 FEM samples. This study
revealed good model performance for the given input parameter space from a size of 400
sample data sets. The parameter space of this study was set for the entire driver load
collective (including different crank-setup geometries), a bicycle frame and an installation
position range of 20◦. To eliminate the bias arising from different sampling variants, all of
these samples were generated by the LHS method.

To evaluate the applicability of the method to different discretization filters and
data sizes, the upper 5%, 12.5% and 20% of the data points were selected according to
the height Mises equivalent stress across the sample range. Commonly, influences and
dependencies from the chosen training and validation dataset were excluded by a ten-fold
cross-validation. To evaluate the results, the common metrics of the RMSE and the R2 value
were considered. The RMSE was determined from the mean of all single-tensor component
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predictions, as well as their combination in the form of the equivalent von Mises stress. To
ensure the comparability of the algorithms, an elementary hyperparameter optimization
was performed. To keep the computing times for this optimization within a reasonable
limit (that would also allow an iterative and practical application of the method), this
hyperparameter optimization was carried out only for the lowest amount of data and, in
the case of the ANN, only for a limited set of parameters. This approach was based on the
assumption that the hyperparameter setting can also be applied to larger data sets without
a significant reduction in performance.

The hyperparameter optimization was performed using a Bayesian Optimization algo-
rithm based on the Python module Hyperopt. This optimization was based on minimizing
the average RMSE value of the six output channels for the worst-performing data split of
the cross-validation by adjusting the hyperparameter settings in a predefined range.

These computations were performed on a PC with a 12 Core CPU of 4,2 GHz and
32 Gb RAM. The data structure was processed using a Python code, and the model types
for the ML and DL models were retrieved by the SKlearn and TensorFlow. The results are
shown in Table 1.

Table 1. Overview of calculation time and performance metrics of different surrogate model types
and data slices.

RF XG ANN

Data Base 400 Samples 400 Samples 400 Samples

Highest loaded
5% of all

discretizations
(1500 data points)

Training Time t [min] 6 7 40

Metrics average
over 10-fold

cross-validation

R2 0.974 0.979 0.971
RMSE 2.54 2.379 2.67
Std. RMSE 0.831 0.177 0.171
RMSE Mises 5.085 4.45 4.62
Std. RMSE Mises 1.23 0.335 0.39

Highest loaded
12.5% of all

discretizations

Training Time t [min] 11 13 170

Metrics average
over 10-fold

cross-validation

R2 0.972 0.972 0.969
RMSE 2.13 2.186 2.49
Std. RMSE 0.51 0.35 0.32
RMSE Mises 4.1 3.91 4.31
Std. RMSE Mises 0.74 0.6 0.49

Highest loaded
20% of all

discretizations

Training Time t [min] 24 23 325

Metrics average
over 10-fold

cross-validation

R2 0.972 0.969 0.968
RMSE 1.851 2.1 2.41
Std. RMSE 0.27 0.19 0.24
RMSE Mises 3.61 3.97 4.17
Std. RMSE Mises 0.54 0.43 0.39

Based on these results, it can be confirmed that in general, all model types yield
good-quality predictions of the results and a sufficient R2 coefficient. This result is evident
regardless of the number of data points considered. However, a general trend of increasing
error values can be observed for decreasing numbers of data points. Similarly, the R2 value
decreases for larger sample sizes. This result may be explained by the filtering of the data
points according to their quasi-static equivalent stress amplitude, which leads to generally
higher absolute values for the collection of filtered data points. Further explanations for
this outcome could include the lower dependence on individual mispredictions and the
denser quantity of training data for higher numbers of data points.

Nonetheless, it is striking that this trend is significantly weaker for the XG and the
ANN than for the RF. Here, the RF shows a generally larger scatter, but also better per-
formance compared to the XG and ANN applications for larger data sets. This result can
presumably be explained by the lack of generalization in the XG and ANN model types,
which were hyperparameter-optimized only for the smallest data set. In contrast, the RF
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regressor, which is generally less sensitive to overfitting, shows a more robust performance
and the expected trend for a larger and less-filtered data set based on the extreme values.
On the other hand, the hyperparameter-optimized XG is the better-performing model for
the small data set containing generally higher and more heterogeneous values. Such a
result highlights the importance of the hyperparameter optimization. At this point, it may
be assumed that the XG also provides the best performance for other sample sizes if a
corresponding hyperparameter optimization is used.

Regarding the general model types, lower RMSE values can be seen for the tree-based
models of the RF and the XG compared to ANN. This is an important finding, especially
because of the significantly longer computing time of the ANN. Thus, the superiority of
the tree-based regressors over the ANN for tabular data can be proven based on this data
set, in a finding analogous to that of the benchmark study of [42].

For all model types, the expected increase in the RMSE is apparent for the cumulative
consideration of the output values based on the Mises stress. In view of the potential stress
amplitudes, which amount to 0–200 MPa for this case study, this value also appears to
represent a reasonable error. However, the results of the general cross-validation do not
allow for a complete validation of the surrogate approach for the time-based assessment
of a cyclic load. For this reason, a second validation loop was established to evaluate not
only the performance of the surrogate model, but the results of the subsequential fatigue
calculation for a series of predicted stress tensors. This validation consisted of a comparison
of the results from the fatigue calculation of load sequences calculated by the surrogate
model and an FEM simulation.

Therefore, the measurement data from two example crank rotations were discretized
into 72 uniform sections of the crank angle and then processed by the FEM model to gener-
ate a validation data set for the evaluation of the entire calculation approach. Subsequently,
these input data were also processed with the machine learning model of the XG and
the RF. The use of the ANN was already excluded due to its poorer performance and
the enormous computing time. The results of this second validation loop can be seen in
Table 2. For more details of this validation, please refer to [50]. It became apparent that
the evaluation of entire load sequences by the critical-planes model, which is fed by the
surrogate model, results in even lower error values for the equivalent stress amplitude for
this load cycle compared to the mean RMSE of the quasi-static mises equivalent stress of
the general cross-validation. Therefore, the principle of a surrogate-based approach for
fatigue calculation can be validated.

Table 2. Results of the validation loop regarding for the fatigue calculation for hyperparameter
optimized and default RF and XG model.

Validation of Surrogate-Based Models

XG Optimized RF Optimized XG Default RF Default

RMSE 3.32 3.425 13.81 3.63
R2 0.967 0.951 0.259 0.947

In addition, the influence of hyperparameter optimization on the two tree-based model
types was considered in this second validation loop. For this purpose, both model types
were used once with the default settings and once with the optimized hyperparameter
settings. The results (Table 2) reveal the robustness of the RF and highlight the necessity
and benefit of hyperparameter optimization for the XG.

Overall, it can therefore be concluded that the ANN is not suitable for such high
sample sizes and input dimensions due to the enormous computing time it requires. It
can be assumed that further performance improvements for the ANN would be possible
due to the ability of this model type to learn. Such improvements can be achieved only
through investing significantly increased effort in the hyperparameter optimizations, which
is simply not cost-effective with the data volumes required for this particular method. The
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use of the XG regressor is therefore recommended for accurate evaluation. However,
hyperparameter optimization is necessary to achieve the necessary generalization and
good results. As the computational effort for hyperparameter optimization is rapidly
increasing with the number of data points, the sample size should be chosen with respect
to the intended objective. For faster estimations that do not focus on low prediction errors,
the RF is recommended and can also be used appropriately without hyperparameter
optimization. Transferring these findings to the application of this method in different
development stages, the RF can be recommended for the concept phase and the rapid
testing of different parameter combinations. Conversely, the XG is preferable for more
mature designs and especially in the validation phase.

4.4. Fatigue Calculation

To calculate the service life and the probabilistic fatigue constraint, measured load-
time sequences are discretized into a sequence of quasi-static single loads. Subsequently,
these loads are combined with the system and DU parameters to generate a sequence of
input data for the surrogate model. As a result, the data-based surrogate model provides a
sequence of the stress-tensors components for each local area considered during surrogate
generation. Based on this sequence, a fatigue calculation incorporating a multiaxial non-
proportional damage criterion and based on the critical-plane approach is performed to
convert the multiaxial loading sequence to an equivalent cyclic-stress amplitude that can
be compared to existing material data from the SN-Curve. The further application of
this calculation chain for the formation of a probabilistic fatigue constraint is described in
Figure 23 and in the following section.
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To represent the variance of the driver-load spectrum, multiple load sequences were
sampled from the measurement data and evaluated for one configuration of the DU and
the bicycle system. To obtain a reference value for the likelihood of occurrence of each load
sequence, the maximum torque (where the distribution is known from the DU recording)
on the crankshaft was captured for each sequence.

Subsequently, all the equivalent stress amplitudes of the selected load sequences wee
assigned to their maximum torque. To evaluate this sample of a discrete 2D distribution,
a regression fit based on the quantiles of this assignment was performed to evaluate and
represent the variance. Thus, a system of functional descriptions was formed. This system
extrapolates the statistical sample distribution to a continuously described distribution
of equivalent stress amplitudes over the maximum acting crankshaft torque. Dependent
on the order of the function type used for the regression, non-Gaussian distributions can
also be determined along the driver torque. In the next step, these functions can be used
to determine the load collective for an arbitrary confidence interval and a given torque
distribution. This information can then be used to estimate the fatigue life for a given
operating time or driving distance, which again can be converted to an effective damage
value via the linear damage accumulation and the material data from the SN- curve. As
this evaluation can be conducted for several confidence intervals, this information can be
transferred to a probabilistic service-life constraint. Figure 24 illustrates this evaluation
based on the evaluation of the quantile regression fits for selected local areas of the housing.
The function type for the regression was quadratic and according to Formula (4), with m, a
and t as the variables for the regression fit, can be represented as follows:

y = mx + ax2 + t (4)
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Figure 24. Examples for the probability assessment of equivalent stress amplitudes for given samples
of load sequences.

Furthermore, this evaluation can provide vital information about the robustness of the
evaluated local area of the housing to the potential load collectives. From the mean value
and standard deviation of the accumulated damage over a given torque distribution and
frequency, scalar values for the evaluation of the respective design and system parameter
combinations can be determined. This evaluation of the damage must be performed based
on the regression functions of a specified confidence interval or quantile, as a normal
distribution cannot be assumed for this two-dimensional distribution. As an example, the
damage evaluation of the 50% and 95% quantile can be conducted to derive the mean value
and the variance. Next, the quantile functions can be used to calculate a load collective
based on a required service life and torque distribution to obtain the load collective and the
damage value according to the linear damage accumulation. Besides the binary information
of failure or no failure for the fatigue constraint, this probability-based information can
deliver key information for the evaluation and optimization of the robustness of the DU.
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5. Results and Application

In addition to the potential application of this method to parameter optimization, the
detailed damage calculation has been used for the evaluation of the normative load case, in
contrast to the variance of the measured load collective. For this purpose, the equivalent
stress amplitude of the norm load case, consisting of the left and right purely vertical pedal
load, was added to the torque and equivalent stress distribution of 500 sample sequences
of the load collective. To ensure that this investigation is comparable, no bicycle frame
was considered and the test rig of the normative testing requirement was used for all load
sequences. The results revealed many local areas of the housing where the loads of the
norm load case do not cause critical equivalent stress amplitudes, while the variance of
the load collective reveals significantly higher loads with more or less scattering of the
distribution. Apart from a few exceptions, the results usually showed a less conservative
loading of the normative load case, which was mostly within the scatter band or in its
lesser-loaded areas. For the exceptions, however, the standard load case also revealed local
areas with a higher stress amplitude than the scatter band of the real load spectra.

Examples of this evaluation are shown in Figure 25. It can thus be shown that the
standard test, which is designed for a single worst-case load, shows an overspecification
that can restrict the design and further optimizations. On the other hand, the norm proves
to be non-conservative and not robust at several local spots when compared to real field
loads of lower amplitude but different orientations. This finding is crucial in terms of
component safety.
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Figure 25. Comparison of the local equivalent stress amplitude for the current norm loading and
cycles of measured cycling loads.

However, this result clearly shows that the cyclic but one-dimensional norm load
case should not be applied as the only release criterion for a robust and safe design of an
eBike DU.

As these results could be determined on two different DU housing geometries of differ-
ent series and as the test requirements had already been questioned after the measurement
of the load collectives and the literature review, it can be assumed that this observation can
be transferred to the DU design generally.

A consideration of the complexity of the housing geometry reveals that multiple
multi-axis load sequences result in a large spread for the equivalent stress amplitudes for
individual local notches of the geometry. Obviously, this variance cannot be accommodated
by a superposition of a single uniaxial alternating load case and its constant chain force. The
discrepancy can be explained by the different load combinations caused by the inclusion of
all Cartesian pedal-force components and a total crank rotation in contrast to a cyclic load
at a constant crank angle. This discrepancy may not be as significant for the original norm
application for the almost rotationally symmetrical crankshaft or bearing of conventional
bicycles because the load conditions here are caused by cyclic bending and torsional loading
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independent of the pedal orientation. However, for eBike Dus, it is therefore recommended
to avoid designing or optimizing and thus specializing the design based only on the
norm load case; that case can be applied only to a limited extent to the non-rotationally
symmetrical geometry of the DU housing and its boundary conditions.

In addition to the evaluation of the norm load, the results up to a specified and local
threshold value show the expected correlation between higher equivalent stress amplitudes
and increasing operating torque. This trend is more or less pronounced depending on the
local point, a variation that is presumably attributable to the sensitivity of the individual
points to either the chain force and the drive load or the pedal loads. However, different
degrees of scattering of the equivalent stress amplitude across the torque range can be
observed. Such variation across different riders and riding situations clearly shows the
importance of considering a Robust Design approach to design a reliable eBike drive train.
These results should therefore encourage the further development or extension of the
existing normative requirements to provide the growing eBike market with a robust and
safe product design.

To define an alternative load collective capable of extending the current normative load
case, load sequences were sought that cause above-average cumulative damage across most
of the locally assessed points of the geometry. Thus, a compact load-time series of multi-axis
load channels should be defined to represent the range of driver loads for a robust and
conservative design. This definition was approached using a straightforward optimization
loop that determines the load cycle composition according to a desired damage level and
incorporates a penalty for deviations from the desired damage or equivalent stress level for
all considered local areas. An example of such an alternative load collective can be seen in
Figure 26.
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Apart from the pure evaluation of the load collectives with regard to service life,
this method also opens the possibility of assessing other influences, like the static loads
from assembly processes, thermal expansion or different frame types over the variation of
the driver load collective. As an example, Figure 27 shows the effect of a bike frame for
potential driver loads and at two chosen data points of the geometry. This result clearly
demonstrates that the integration of a bicycle frame results in significant differences in
loading. As in the evaluation of the load spectrum, it can be observed that the frame
may result in both conservative and less-conservative loads. The modified boundary
condition and the stiffness of the DU interface also show a clear influence on the dispersion
of the cyclic load amplitude. Similarly, an over- or under-dimensioning is also possible
due to a the disregard of the frame. In general, this result confirms the influence of the
frame assumed by the preliminary investigation in [6]. Considering the results of these
investigations, it can also be anticipated that testing of other frame types will result in
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further deviations in the results of a systematic test of the eBike compared to a pure
component test. Thus, the bicycle frame should be included in any reliable assessment of
the eBike as a complete system.
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Comparable studies can be carried out for any other superpositions with system and
design variables, as well as thermal- or manufacturing-related static load cases for each
local discretized volume of the geometry. Based on the results, further methods such
as a sensitivity analysis can be performed to gain information about critical loads and
parameters for design. Due to the probabilistic evaluation, a suitable confidence interval
can always be selected. The method thus proves to be a valuable and versatile analysis tool
for robust optimization, as well as for the investigation of a system.

6. Conclusions

Overall, this paper presents the methodological procedure for Robust Design and
uncertainty quantification, in which the variance of user- and riding situation-dependent
load collectives for a reliability-based optimization can be considered using a probabilistic
fatigue constraint regarding the service life. From a methodological point of view, the
decisive factors here are the application to a real and complex geometry of the eBike DU
and the detailed time- and cycle-dependent calculation of different samples of the multi-
axis non-proportional loads to obtain a probabilistic fatigue constraint. The enormous
computational effort, which is generally seen as the biggest constraint in both time-based
fatigue calculations and the application of RBDO methods for industrial problems, could
be reduced to a reasonable scale by combining suitable data- and order-reduction methods.

The key factors to achieving this result (compared to the common computational
limitations) were the implementation of a decision tree-based surrogate model for the
prediction of the stress tensor and the data—reduced discretization that was derived from
quasi-static equivalent stresses of the training samples. Together, these changes enable
the examination of the entire geometry with significantly less computational effort. For
the selection and validation of this surrogate model type, common cross-validations and
hyperparameter-oriented model types were applied. This analysis was conducted to
determine the required sample size for the initial training and to validate the surrogate
approach for the fatigue calculation. The results showed the superiority of tree-based
regressor models considering computation time and robustness, as well as performance,
which was determined based on the loss function. This finding is in accordance with
existing benchmarks for large amounts of heterogenous tabular data.

The secondary validation loop, in which the desired fatigue calculation was performed
using the surrogate model and two FEM-simulated load sequences, validated the applica-
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tion of the surrogate prediction to the fatigue calculation and showed no major mismatches
due to the effect of a summed error of the individual tensor component predictions. Thus,
the application of this method to the probabilistic consideration of variable load collectives
in a time-based fatigue calculation can be verified. Based on the results and the typical
requirements of a product-development cycle, recommendations could be made for the use
of the robust and rapidly trained RF for the early development phases, with the potentially
more accurate but more computationally intensive XG reserved for the later development
phases, wherein its potentially higher accuracy is more important. The implementation of
a hyperparameter optimization for the XG seemed to increase the performance.

From a product-development point of view, it should be emphasized that the use of
real load collectives provides a huge advantage in terms of the interpretability of the results.
As a result, certain use cases can be evaluated and used for optimization. In addition, this
finding opens the possibility of using a sensitivity analysis to identify the critical factors
and loading situations.

With regard to the case study, the eBike DU, the influencing factors that were initially
identified in individual investigations were also investigated in a holistic analysis using the
proposed method. Overall, these investigations showed relevant differences in the complex
and real loading situation in comparison to the existing normative requirements. Therefore,
an extension of the norm requirements is recommended. In addition to considering different
pedal and chain forces, real-world boundary conditions and frame stiffnesses should also
be considered in constructing systematic eBike requirements. Obviously, this approach
would result in a more complex testing procedure for the bicycle industry. However, in
light of the rapid development and electrification of the bicycle industry, such a change is
probably indispensable to ensure product safety and the progress of the industry.
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