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Abstract: Microelectromechanical system (MEMS) vibrating gyroscope design considerations are
always intriguing due to their microscale mechanical, electrical, and material behavior. MEMS
vibrating ring gyroscopes have become important inertial sensors in inertial measurement units
(IMU) for navigation and sensing applications. The design of a MEMS vibrating ring gyroscope
incorporates an oscillating ring structure as a proof mass, reflecting unique design challenges and
possibilities. This paper presents a comprehensive design analysis of the MEMS vibrating ring
gyroscope from the mechanical, electrical, and damping perspectives. The mechanical design of the
MEMS vibrating ring gyroscope investigates the various frame designs of the vibrating ring structure,
as well as the various beam structures, including rectangular and semicircular beam structures,
which are analyzed using mathematical models and finite element analysis (FEA) simulations that
provide an in-depth analysis of the stiffness and deflection of the vibrating structures. The electrical
designs of the MEMS vibrating ring gyroscope are analyzed using various electrode configurations,
electrostatic actuation, and capacitive detection mechanisms. The design analysis of various forms of
damping, including viscous, structural, thermoelastic, and anchor damping, is discussed. The variety
of design structures is investigated for MEMS vibrating ring gyroscopes’ mechanical, electrical, and
damping performance.

Keywords: MEMS; MEMS gyroscope; vibrating ring gyroscope; ring resonator; inertial sensors; IMU;
MEMS design; mechanical design; electrical design; damping design

1. Introduction

In the advent of modern technology, where miniaturization, energy efficiency, and
high-performance devices are paramount, microelectromechanical system (MEMS) devices
made themselves integral to many advanced electronic systems and applications [1–5].
These microscale devices combine mechanical and electrical structures on the same plat-
form to provide diverse applications, from healthcare to automotive. Among the variety
of MEMS devices, MEMS vibrating ring gyroscopes contribute significantly to inertial
sensing and navigation in various household and space applications [6–9]. Vibrating ring
gyroscopes are quite popular in inertial navigation systems, where they detect precise
rotational motion and accurately dictate the position for navigation. Additionally, using a
MEMS vibrating ring gyroscope in military applications to control and target the missile
on a specific location is another example of its stabilizing system importance in the sensor
technology. Automotive applications for rollover stabilization with a MEMS vibrating ring
gyroscope are key sensors to equip with the accelerometer.

The MEMS vibrating ring gyroscope’s symmetric design structure provides numerous
advantages over other vibrating gyroscopes. The symmetric design offers greater precision,
resolution, mode matching at resonance frequencies, thermal stability, and gyroscope
sensitivity [7,10–12].
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Continuous design innovation contributed to the evolution of MEMS vibrating gyro-
scopes from the first developed single-ring resonator gyroscope with eight springs and
anchor support to the new complex design structures. Single-ring resonators [13–15], multi-
ring resonators [16,17], disk resonators [18–20], star-shaped resonators [21], cobweb-shaped
resonators [22,23], cylinder-shaped resonators [24–26], etc., are some of the possible geo-
metrical classifications for ring resonators. These design variations have been investigated
to achieve optimal gyroscope performance [27].

The design’s mechanical, electrical, and damping properties are crucial to the operation
of the MEMS vibrating gyroscope. The mechanical integrity ensures the design’s reliability
under inconsistent conditions without compromising the gyroscope’s sensitivity [13,28,29].
The electrical design components translate and provide continuous actuation to the motion
of vibrating mechanical systems, as well as detect the motion and convert it into electrical
signals for the operation of the gyroscope [30]. The placement of the electrodes whether
outside or inside of the ring structure plays a pivotal role in the design and performance of
the vibrating ring gyroscope.

The damping design analysis is crucial for controlling the vibrational energy, as it
provides a system that can withstand severe environments and vibrate without causing
damage. There are various damping mechanisms like viscous, structural, thermoelastic,
and anchor damping mechanisms that affect the overall performance of the gyroscope.
Material selection is another important factor that describes the geometric orientation
and alters Young’s modulus in different directions. The altercation in the mechanical
properties of the material brings a significant mode mismatch between the driving and
sensing resonance frequencies. However, silicon is the most popular choice of materials for
fabricating MEMS vibrating gyroscopes.

However, many anomalies are still present regarding the conceptualization to the
functionalization of the MEMS vibrating ring gyroscopes. For example, microfabrica-
tion processes while fabricating complex microstructures also introduce imperfections
in the structures that affect the overall performance of the gyroscope [8,31]. Material
selection, damping parameters, and mechanical and electrical design setups are just a
few considerations that must be investigated before developing the MEMS vibrating ring
gyroscopes [13,32].

This paper emphasizes and discusses mainly the MEMS vibrating ring gyroscope.
The design considerations are from the perspective of mechanical, electrical, damping,
material selection, and microfabrication processes for the vibrating ring gyroscope. The
fundamentals of mechanical design, including the dynamic study of beam structures and
different design frames, are mainly discussed and investigated. In the electrical design,
the setup of the electrodes, the basics of electrostatic actuation and detection mechanisms,
and fundamental equations are discussed. The damping section briefly discusses viscous,
structural, thermoelastic, and anchor damping mechanisms for the MEMS vibrating ring
gyroscope. Further, the selection of materials and their geometrical orientations on the
gyroscope’s performance and the microfabrication processes’ complexities on the gyroscope
performance are discussed in the following sections.

2. Mechanical Design

There are numerous mechanical vibrating structures presented for MEMS vibrating
gyroscopes [33]. Four common types of MEMS vibrating gyroscopes were discussed in
detail [27]. This paper aims to provide readers with a comprehension of the mechanical and
electrical design fundamentals of the MEMS vibrating ring gyroscope. MEMS vibrating
gyroscopes have a highly sensitive ring structure. The symmetric design of the vibratory
ring gyroscope eliminates the cross-axis sensitivity, which is a major issue for other de-
sign structures. Additionally, the mechanical design provides temperature stability and
enhanced shock resistance for harsh environments.

In Figure 1, the basic design structure of the MEMS vibrating ring gyroscope is depicted
schematically. The ring structure acts as the system’s proof mass; beam support structures



Designs 2023, 7, 106 3 of 28

typically support the ring mass structure, and a centrally placed anchor holds up the entire
vibrating structure. Several electrodes are positioned around the ring structure for driving,
sensing, and tuning purposes. Figure 1 depicts the rectangular beams attached to the outer
ring function as the system’s proof mass.
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Figure 1. A schematic view of a simple vibrating ring gyroscope. (a) Gyroscope with electrodes.
(b) Electrodes only. (c) Vibrating ring, beam support, and anchor support.

2.1. Dynamic Design System

The typical MEMS vibrating ring gyroscope design consists of the driving and sensing
suspension systems. The driving suspension system has a set of driving electrodes, whereas
the sensing suspension system has a set of sensing electrodes. The respective structure
is positioned on top of the substrate. The driving and sensing electrodes are positioned
at an angle of 45 degrees. Typically, the vibrating ring gyroscope has many mode shapes
and can be represented by n modes. Elliptical mode shapes of vibrating rings are mostly
considered for the ring gyroscope driving and sensing operation due to their identical
shapes and minimum mode mismatching frequencies. The driving oscillation elliptical
shape appears on the 45-degree node of the ring when the device is subjected to Z-axis
rotation. The sensing electrodes detect the change in displacement and transmit the signal
to the system in order to realign its position to its initial state. Figure 2 depicts the vibrating
ring design structure’s schematic diagram.
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Figure 2. A schematic view of a simple vibrating ring gyroscope patterned on the substrate.

2.2. Beam Structures

Microelectromechanical system (MEMS) gyroscopes play a pivotal role as essential
inertial sensors in a wide range of applications, encompassing navigation systems, mobile
devices, digital cameras, gaming peripherals, and numerous other domains. The beam
structures of these sensors consist of essential components. The design, selection of ma-
terials, and manufacturing processes employed in constructing these beam structures are
crucial factors that significantly impact the reliability and operational effectiveness of the
gyroscope. The beam structures facilitate the oscillation of the gyroscope mass in two
opposing directions: the driving direction and the external rotation detecting direction. The
driving and sensing systems utilize the same gyroscope mass for their operation. In order
to ensure proper functioning, it is necessary for the gyroscope proof mass to possess the
ability to oscillate freely along two axes.

The proof mass should also be constrained in one vibrational mode while oscillating
in the other direction. The dynamic gyroscopic suspension system’s design has significance
in achieving these objectives, as it assumes the responsibility of suspending the proof mass
above the substrate. Several elastic beam structures are frequently employed in MEMS
vibrating gyroscopes, and a selection of these structures is provided below.

2.2.1. Rectangular Straight Beam

A rectangular straight beam refers to a beam with a rectangular cross-section that
maintains a straight shape. The suspended gyroscope construction consists of a proof
mass that is connected to micro elastic beams. These beams are microfabricated using the
same structural layer as the suspension system used in MEMS vibrating gyroscopes. The
compliance of these elastic beams occurs along the driving direction while they remain stiff
in the other sensing direction in the absence of rotation. Rectangular-shaped beams are
frequently used in the domain of MEMS vibrating gyroscopes for translational oscillation.
The rectangular beam structures are integrated with other beam structures in order to
provide structural support for intricate gyroscope designs. Figure 3 shows the typical
rectangular straight beam.
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The length of the rectangular beam is denoted as L when it is suspended along the
X-axis. The width of the beam, suspended along the Y-axis, is represented as w. The height
of the beam along the Z-axis is shown as h. The equation for the deflection of a rectangular
beam can be stated as follows [34].

δr =
F
k

(1)

where F is the force applied toward the beam, k is the stiffness constant, and δr is the
deflection that occurs when the beam is exposed to the applied force. The equation can be
written as

k =
24 E MoI

L3 (2)

where E is the Young modulus, MoI is the moment of inertia, and L is the length of the
rectangular beam. The moment of inertia is expressed in the axis differently. If the force is
applied along the X-axis, the MoI is mathematically expressed as

MoIx =
1

12
hw3 (3)

MoIz =
1

12
h3w (4)

We can write stiffness constants for the rectangular beams along the three axes.

kx = E
hw3

L3 (5)

ky = E
hw
L

(6)

kz = E
h3w
L3 (7)

In the same way, the rectangular beam experiences a shear force, and therefore it is
needed to find the stiffness constant because of the shear force exposed to the rectangular
beam. The deflection occurs due to the applied force for the rectangular beam and is
given as

δr =
3
5

FaL
whG

(8)

where δr is the deflection due to the applied force, Fa is the applied force, G is the shear
modulus G = E

2(1+µ)
, µ is the Poisson’s ratio, L is the length of the beam, and w × h is the

cross-sectional area of the rectangular beam. The stiffness constant due to the applied force
can be written as

1
kr

=
6
5
(1 + µ)L

whE
(9)

2.2.2. Semicircular-Shaped Beam

There are many beam designs to consider for MEMS vibrating ring gyroscopes,
with the semicircular-shaped beam being the most popular for vibrating ring gyroscopes.
Figure 4 demonstrates the semicircular beam’s schematic diagram.

The semicircular beams are subjected to applied force Fa and bending moments Mc.
The stiffness constant kt for semicircular beams is the sum of the stiffness constant kt due to
the applied force and stiffness constant due to bending moment kb. The schematic view of
the semicircular beam under applied force and bending moment is shown in Figure 5.
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When a semicircular beam is subjected to applied force or external rotation, it experi-
ences bending moment and normal forces; the stiffness constant for the semicircular beam
can be calculated using the strain energy equation [35].

Us =
∫ 1

2
σεdV (10)

where σ is the stress, ε is the strain, and Us is the strain energy under applied force. The
same equation can be written as

Us =
∫ 1

2
σ2

E
dV (11)

Us =
∫ 1

2
Eε2 dV (12)

ε =
My
EI

(13)

Us =
∫ 1

2

(
M2y2

EI2

)
dV (14)
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Ic =
∫ h/2

−h/2
y2w dy (15)

Us =
∫ L

0

1
2

M2

EIc
dx (16)

where Ic is the moment of inertia, y is the distance from the neutral axis, w is the width of
the beam, h is the height of the beam, M is the bending moment, E is the Young’s modulus
of the material, and dx is the differential length of the beam.

The deflection of the semicircular beam can be described as

δc =
∂Us

∂Fa
(17)

δc =
∂

∂Fa

∫ L

0

1
2

M2

EIc
dx (18)

The length “L” of the semicircular beam can be described as

L = 2
∫ π

2

0
r dϑ (19)

where r is the defined radius of the semicircular beam, and ϑ is the angle in the semicircular
beam. Only half of the semicircular beam will be considered because of the symmetrical
structure design of the semicircular beam. The schematic view is shown in Figure 6.
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The deflection of the semicircular beam due to the applied force can be derived from
the given equations shown below.

δc =
∂U
∂Fa

=
∂

∂Fa

[
2
∫ π/2

0

Mc
2

2EIc
r dϑ

]
(20)

δc =

[
2
∫ π/2

0

Mc

EIc

∂Mc

∂Fa
r dϑ

]
(21)

The semicircular-shaped beam is cut in half, and the bending moment Mc with the
angle ϑ is given [36].

Mc = Mi −
Far
2

(1 − cosϑ) (22)
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The half section of the semicircular-shaped beam experiences an imaginary bending
moment due to the strain energy. The strain energy for the half section of the semicircular
beam is shown below.

Uh =
∫ π/2

0

1
2EIc

Mc
2r dϑ (23)

Uh =
∫ π/2

0

1
2EIc

[
Mi −

Far
2

(1 − cosϑ)

]2
r dϑ (24)

Since the above equation is for the half section of the semicircular beam, and if we have
to find the strain energy of the complete semicircular beam Uc, the final equation becomes

Uc = 2Uh = 2
∫ π/2

0

1
2EIc

[
Mi −

Far
2

(1 − cosϑ)

]2
r dϑ (25)

The structure is symmetric, so ϑ = 0, and ∂Uh
∂Mi

= 0.

0 =
1

EIc

∫ π/2

0

[
Mi −

Far
2

(1 − cosϑ)

]
r dϑ (26)

∫ π/2

0

[
Mi −

Far
2

(1 − cosϑ)

]
r dϑ = 0 (27)

Mi =
Far
2

− Far
π

(28)

Equation (28) is substituted into Equation (22):

Mc =
Far cosϑ

2
− Far

π
(29)

The partial derivative is taken with respect to the applied force Fa.

∂Mc

∂Fa
=

r
2

cosϑ − r
π

(30)

Equations (29) and (30) are substituted into Equation (21).

δc =
2

EIc

∫ π/2

0

[
Far cosϑ

2
− Far

π

]
×
[ r

2
cosϑ − r

π

]
r dϑ (31)

δc =
2Far3

EIc

∫ π/2

0

[
cosϑ

2
− 1

π

]
×
[

cosϑ

2
− 1

π

]
dϑ (32)

δc =
2Far3

EIc

∫ π/2

0

[
cosϑ

2
− 1

π

]2
dϑ (33)

The stiffness constant due to the applied and reaction forces of the semicircular-shaped
beam can be expressed as Equation (34).

1
kc

=
2r3

EIc

∫ π/2

0

[
cosϑ

2
− 1

π

]2
dϑ (34)

The semicircular beam deflection due to the bending moments referred to in Figure 5c
is investigated by using the strain energy equation method, as shown below.

Uc =
1
E

∫ π/2

0

Mc
2

Ic
r dϑ (35)
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Uc =
π

2
× Mc

2r
EIc

(36)

As we know, the energy is equal to the work done on the system; therefore, we can
write E = 1

2 Fδ, substituting the energy equation into Equation (36).

1
2

Faδb =
π

2
× Mc

2r
EIc

(37)

Similarly, Figure 5c shows the bending moment value of Mc = Fa L
2 substituted

into Equation (37). The final deflection equation for the bending moment is given as
Equation (38).

δb =
πFaL2r

4EIc
(38)

The semicircular-shaped beam’s stiffness constant is caused due to bending moments,
and it can be determined by using Equation (39).

1
kb

=
πrL2

4EIc
(39)

2.2.3. Semicircular Support Spring Structure

Semicircular support springs are commonly used in MEMS vibrating ring gyroscopes
as support beams. This beam’s design structure consists of a combination of a semicircular
beam and two rectangular beams. In earlier sections, the deflection and stiffness constant
equations were presented. Figure 7 demonstrates the semicircular beam’s fundamental
design. Typically, one end of the beam is connected to the anchor support as a fixed support,
and the other is attached to the resonating structure.
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Applying the previously presented equations can determine the semicircular beam’s
deflection. As the semicircular beam experiences applied forces, reaction forces, and
bending moments, it undergoes deformation. To determine the deflections, we must use
multiple equations presented in Table 1 for beam structures.
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Table 1. Various beam design descriptions.

S. No. Beam Design Deflections Stiffness

1 Rectangular
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2.2.4. Beam Structural Analysis

The analysis of semicircular beam deflection is conducted using Ansys 2023 R1. The
study is conducted using the static structural module. The semicircular beam is composed
of two rectangular beams and a semicircular-shaped beam. The semicircular beam used in
the comparison experiments has a radius of 75 µm and a length of 60 µm. The heights of
the beam vary between 30 µm and 60 µm. The semicircular beam is subjected to an applied
force ranging from 100 µN to 1500 µN. The deflections of the beams are simulated, and
analytical results are achieved by using the derived equations. The comparative results
obtained from varying beam heights are presented in Figure 8.
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The frequency analysis of the semicircular beam is examined using both Ansys 2023 R1
and analytical methods. The measured frequency observed in the simulation is 5.25 MHz,
while the calculated natural frequency is determined to be 5.57 MHz. Table 2 displays
the stiffness constant findings obtained from the modeled and analytical methods for the
semicircular beam. The minimal percent errors for the frequency and the stiffness constant
show the reliability of the derived analytical equations for the semicircular beam and the
comparison of the results with Ansys 2023 R1. Figure 9 illustrates the modal frequency of
the semicircular beam.

Table 2. Comparative design results for semicircular beam.

Frequency (MHz) Error Stiffness Constant (kN/m) Error

Ansys 2023 R1 5.25
5.74%

353.6
1.61%Analytical 5.57 347.9
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2.3. Design Frames for MEMS Vibrating Ring Gyroscopes

The frame structures of MEMS vibrating ring gyroscopes are crucial parameters
for improving performance, reliability, and decoupling vibrational modes. The frame
structures are mainly divided into two broad categories: internal ring structure and outer
ring structure. Both of the design frames are discussed below.

2.3.1. Internal Ring Frame Design

In internal ring designs, the anchor support is placed outside the vibrating structure,
and the ring structure is connected to the fixed anchor support pillar via flexible elastic
beams [37]. By isolating the vibrating structure from any undesirable external vibrations,
this internal ring design configuration has the potential to enhance the gyroscope’s per-
formance. Internal ring structures are highly adaptable and durable, making them crucial
inertial sensors for severe, harsh environments [10]. They are well-suited for use in space-
craft and other related applications that may be exposed to harsh environments due to their
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resistance to unwanted vibrations. The schematic representation of the internal ring frame
design is shown in Figure 10.
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2.3.2. External Ring Frame Design

Incorporating an external ring frame is a common design technique utilized in design-
ing and developing MEMS vibrating ring gyroscopes. The design of the external ring frame
includes the placement of the support anchor and the elastic beam structure inside the
ring structure. Significantly enhancing the overall sensitivity of the gyroscope, this design
approach’s ability to accommodate a reasonably larger vibrating structure is a significant
advantage. In contrast to the internal ring frame design, however, this particular design ap-
proach presents numerous challenges, particularly in its robustness in harsh environments.
A schematic diagram of the external ring frame design is shown in Figure 11.
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Numerous designs of vibrating ring gyroscopes can benefit from the use of internal
and external ring frame designs. The structures include single-ring gyroscopes, multi-
ring gyroscopes, disk resonator gyroscopes, cylindrical shapes, shell forms, and star-
shaped structures. The design of the external ring frame can accommodate all of these
gyroscope structures. In contrast, the internal ring design of single-ring gyroscopes is
quite advantageous. The internal area could be used to install additional tuning electrodes
or to deploy and design a small inertial sensor in that space, such as an accelerometer
or magnetometer.

2.3.3. FEM Modal Analysis

The FEM modal analysis is an essential computational analysis, especially when
finding the vibration characteristics of mechanical structures like the MEMS vibrating
ring gyroscope. This method provides a deep understanding of the behavior and modal
frequencies of the vibrating ring gyroscope. The FEM modal analysis provides a clear
picture of the vibrational modes and frequencies by breaking down the gyroscope structure
into finite elements and resolving equations. The FEM modal analysis was conducted for
both internal and external ring frame designs.

Internal Ring Frame Design: As illustrated in Figure 12, the internal ring frame design
of the MEMS vibrating ring gyroscope is analyzed by its unique structural modification.
The design constitutes eight semicircular beams, all of which are attached to the internal
ring resonator. The whole vibrating structure is supported by externally placed anchors
around the vibrating structure. This design strategy isolates the vibrating ring structure
from external disturbances that could affect the gyroscope performance. The design
specifications include a ring radius of 1000 µm, a radius of the semicircular beam of
200 µm, the thicknesses of the ring and beams of 10 µm, and a height of the structure
of 30 µm. The modeled frequencies shown in Figure 13 for the internal ring design are
48,263 Hz and 48,277 Hz for mode 1 and mode 2, respectively.
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External Ring Frame Design: On the other hand, the external ring frame design,
as illustrated in Figure 14, presents a typical vibrating ring design approach [38]. This
design also shows eight semicircular beams attached to the external ring resonator, and the
whole vibrating structure is connected to the centrally placed circular anchor. The design
specifications include a ring radius of 1000 µm, a semicircular beam radius of 200 µm,
thicknesses of the ring and the beams of 10 µm, and the height of the structure of 30 µm.
The recorded frequencies are shown in Figure 15, which are 40,241 Hz for mode 1 and
40,272 Hz for mode 2, respectively.
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Both designs have the same design features, except the design geometry. The vibrating
ring radius and radiuses for semicircular beams are the same for both designs. However,
the internal ring frame design records elliptical mode shapes around 48 kHz, and the
external ring frame design records elliptical mode shapes around 48 kHz. As can be seen in
Table 3, the mode mismatches are recorded at 14 Hz and 31 Hz for internal and external
ring frame designs, respectively. The results show that the internal ring frame design has
better sensitivity and less split between the identical modes of vibrations, which makes the
internal ring frame design more desirable than the external ring frame design for vibrating
ring gyroscopes.

Table 3. Comparative design FEM modal analysis.

Frequency (Hz) Internal Ring
Design

External Ring
Design Ring Radius (µm) Ring Thickness (µm) Beam Radius

Mode 1 48,263 Hz 40,241 Hz 1000 10 200
Mode 2 48,277 Hz 40,272 Hz 1000 10 200

Mode Mismatch 14 Hz 31 Hz 1000 10 200
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3. Electrical Design

MEMS vibrating ring gyroscopes are those MEMS devices that require a constant force
to operate. In general, MEMS gyroscopes require an actuation mechanism for continuous
oscillation and a detecting system when the gyroscope is subjected to external rotation. The
MEMS vibrating ring gyroscope is typically operated using a variety of actuation and de-
tecting techniques. The actuation mechanisms include piezoelectric, magnetic, electrostatic,
and thermo-actuation, whereas the detecting mechanisms include piezoelectric, capacitive,
optical, and magnetic.

The electrode setup is also very significant when developing a gyroscope design, as
the designed electrodes provide actuation and detecting mechanisms. The electrode setup
design for the MEMS vibrating ring gyroscope is discussed in detail below.

3.1. Electrode Setup

The vibrating ring structure is the most essential part of the MEMS vibrating ring
gyroscope design. Multiple electrodes encompass the structure of the vibrating ring for
driving and sensing purposes. The driving electrodes provide a continuous motion in
two orthogonal axes. On the other hand, the sensing electrodes detect the change in
displacement between the ring and the sensing electrode when the gyroscope is exposed
to external rotation. There are many ways in which electrodes could be placed around
the vibrating ring structure. Some of the common electrode placements in vibrating ring
gyroscopes are discussed below.

3.1.1. Outside Placement

In this configuration, the electrodes are positioned outside of the vibrating ring struc-
ture, while the inner portion of the ring is sustained by flexible beams with a central
anchor. This configuration offers numerous advantages, including simple design, efficient
connection, simple fabrication, and reduced electronic complexity. However, this design
configuration tends to increase device size, which could restrict its use in many electronic
applications due to space constraints.

3.1.2. Inside Placement

In this design configuration, the electrodes are positioned within the vibrating ring
structure, while the ring’s exterior is covered and supported by flexible beams with an
outer anchor. This design configuration accommodates a compact device area, making it
suitable for miniaturized electronic devices. However, positioning electrodes within the
ring structure complicates the design and requires intricate microfabrication processes.

3.1.3. Both Inside and Outside

In this design configuration, electrodes are positioned inside and outside the vibrating
ring structure for optimal results. This type of design configuration effectively minimizes
undesirable errors, such as geometrical imperfections caused by microfabrication toler-
ances, matches resonance frequencies, and eliminates other related errors. However, the
complexity of the device’s design, fabrication, and electronic circuitry is increased by this
design configuration.

All three electrode setup designs are shown in Figure 16.
The design configuration of electrodes can be utilized for a variety of purposes. The ad-

vantage of the ring structure is the placement of numerous electrodes around the vibrating
structure. Some of the primary functions of electrodes are listed below.

1. Driving Electrode: Driving electrodes apply a continuous electrostatic actuation force
to the ring’s structure, causing it to oscillate in the driving direction.

2. Sensing Electrode: These electrodes detect the change in displacement when the
device is subjected to rotation via an electrostatic detection mechanism.

3. Tuning Electrode: This type of electrode adjusts the resonance frequency to achieve
optimal results, thereby enhancing the ring gyroscope’s sensitivity. The tuning elec-
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trodes used to be placed around the vibrating ring structure. These electrodes tune
the frequency shift between the two operating resonance frequencies [39].

4. Quadrature Electrode: These electrodes mitigate the quadrature error that arises as a
result of microfabrication or geometrical inaccuracies.
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The portion of the vibrating ring with the electrode is considered as a parallel plate
capacitor driving and sensing mechanism in the MEMS vibrating ring gyroscopes. The
concept of moving parallel plate capacitors is most commonly employed for MEMS vibrat-
ing gyroscopes. The capacitors store charge “Q” when the voltage “V” is applied to their
terminals. The stored charge between the two parallel plates can be expressed as Q = CV.

The two parallel plate capacitors for a portion of the vibrating ring structure with the
electrode are shown in Figure 17. The capacitance “C” between the ring structures is given
as Equation (40). Where yo represents the gap between the two electrodes, w is the same
width for both electrodes, h is the same height for both electrodes, and εo is the free-space
permittivity constant.

C =
εowh

yo
(40)

The energy stored in the capacitor is usually found as a function of charge and by
using Equation (41).

UQ =
1
2

Q2

C
(41)
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In the same way, the energy stored in terms of voltage can be determined by using the
above equation as the function of voltage.

UV =
1
2

CV2 (42)

MEMS vibrating ring gyroscopes require actuation and detection mechanisms for their
operations. The most popular and easy-to-implement method is electrostatic for actuation
and capacitive for detection. Electrostatic actuation and capacitive detection offer many
advantages over other methods as they provide good results and are easy to implement.
This section will cover the electrostatic actuation and capacitive detection mechanisms for
MEMS vibrating ring gyroscopes.

3.2. Basics of Electrostatic Actuation

Electrostatic actuation is a common mechanism to be utilized in the operation of
MEMS vibrating gyroscopes. This mechanism generates electrostatic forces between the
two closely placed electrodes. The generated electrostatic forces induce oscillations in
the ring structure and maintain those oscillations for driving and sensing purposes. The
parallel plate electrodes cause this electrostatic actuation. The electrostatic force field arises
when the voltages are applied between the two parallel electrodes.

In the MEMS vibrating ring gyroscope, the electrostatic actuation force provides and
regulates the ring structure’s continuous oscillation. The parallel plate electrodes generate
the electrostatic force via actuation, creating a conservative force between the parallel
electrodes. The voltage around the parallel plate electrodes is precisely controlled. The
generated electrostatic force is expressed below.

Fe =
∂UV
∂e

(43)

Fe =
1
2

∂C
∂e

V2 =
1
2

εowhV2

(yo − e)2 (44)

where Fe is the electrostatic force, εo = 8.85 × 10−12 Farads per meter (F/m) is the permit-
tivity of free space, h is the height of the electrode, w is the width of the electrode, yo is the
gap between the parallel electrodes, and e is the displacement of the ring that ultimately
reduces the gap between the parallel plates. The schematic diagram of the two parallel
plates is shown in Figure 18.
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MEMS Vibrating Ring Gyroscope Actuation

The ring structure in the MEMS vibrating ring gyroscope oscillates by an electrostatic
actuation that is generated by applying a voltage across the parallel plate capacitors. The
electrostatic actuation force generated by the set of electrodes is directly proportional to
the square of the applied voltage difference. When a sinusoidal actuation force is needed,
the actuation applied voltages must be selected appropriately to linearize the driving force.
The total electrostatic force equation generated by the two opposite parallel plate capacitors
C1 and C2 is given below.

Ft =
1
2

∂C1

∂e
V1

2 − 1
2

∂C2

∂e
V2

2 (45)

The net balanced electrostatic actuation is a widely used strategy to compensate the
force as linear with respect to the steady bias voltage VDC and an alternating voltage
vAC. This technique involves applying a voltage V1 = VDC + vAC to one set of driving
electrodes and a voltage V2 = VDC + vAC to the opposite set of driving electrodes, as
presented schematically in Figure 19. In a symmetrical vibrating ring gyroscope, the overall
electrostatic force simplifies to

Fb = 2
∂C
∂e

VDCvAC (46)
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The MEMS vibrating ring gyroscope’s electrostatic actuator structure can be deter-
mined using Equation (47).

Fb−g = 2
εowhN

yo2 VDCvAC (47)

where Fb−g is the net electrostatic actuation force for the MEMS vibrating ring gyroscope,
N is the number of driving electrodes and ring portion, yo is the gap between the two
electrodes, VDC is the steady bias voltage, and vAC is an alternating voltage.

3.3. Basics of Capacitive Detection

There are various methods to detect the deflection at sensing electrodes of the MEMS
vibrating ring gyroscope. The capacitive detection method is quite popular and easy to
design for gyroscopic operation. The capacitance of the parallel plate capacitors with a gap
yo and overlap area Ao is expressed as Equation (48).

C = εoεr
wh
yo

= εoεr
Ao

yo
(48)

where εr is the dielectric value of the material between the parallel plate capacitors, and the
deflection of the ring structure changes the gap yo between the electrodes. The microfabri-
cation requirements usually determine the ring-to-electrode gap; this gap usually ranges
from a few micrometers to a sub-micrometer value. Even a very small deflection provides
a high capacitance value.

The capacitance is a nonlinear function of the deflection in capacitive detection for
parallel plate capacitors. However, the change in capacitance can be linearized because the
deflections used to be very small as compared to the gap between the two electrodes. Let
us denote the deflection as d, which is assumed to be very small compared to the gap. The
change in capacitance can be determined by using Equation (49).

∆C = εo
wh

yo − d
− εo

wh
yo

∼= εo
wh
yo2 d (49)

MEMS Vibrating Ring Gyroscope Differential Detection

The ring structure oscillates as an elliptical shape, and when the gyroscope is exposed
to the external rotation, the same elliptical shape of deflection starts to appear on the sensing
electrodes. The sensing electrodes sense the deflection as capacitive detection between two
parallel plate electrodes. The deflection appears orthogonally on the sensing electrodes
in the MEMS vibrating ring gyroscope design. The change in capacitance is detected on
two orthogonal sets of electrodes. Differential capacitance detection is used to linearize
the change in capacitance with deflections. The symmetrical sets of sensing electrodes
are placed around the vibrating ring structure. The schematic diagram of the capacitive
detection for the MEMS vibrating ring gyroscope is shown in Figure 20.

When the vibrating ring gyroscope oscillates in the sensing direction, the opposite sets
of symmetrical electrodes sense the positive deflection along the sensing electrodes and the
higher capacitance CD+ at those respective electrodes. At the same time, the elliptical ring
is away from the other set of sensing electrodes; then, the lower capacitance CD− value is
detected on those electrodes. In this way, the differential detection method is expressed
mathematically below.

CD+ = εo
whN

yo − d
(50)

CD− = εo
whN

yo + d
(51)

∆C = CD+ − CD− ∼= 2εo
whN
yo2 d (52)



Designs 2023, 7, 106 21 of 28

In Equation (52), the change in capacitance is inversely proportional to the square of
the gap between the two parallel plate electrodes. Therefore, it is believed to minimize the
gap between the electrodes to enhance the sensitivity and performance of the vibrating
ring gyroscopes.
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4. Damping Design

Damping in the MEMS vibrating gyroscopes means a decrease in the amplitude of
the oscillations in the gyroscope operation over time. It is the energy that is being lost
to the surroundings. In any oscillatory system like a gyroscope, damping is one of the
important parameters to control the vibrations and stabilize the system. The following
types of damping are discussed below for the MEMS vibrating ring gyroscope.

4.1. Viscous Damping

Vibrating structures are subject to viscous damping phenomena due to the resistance
offered by the surrounding gases. The vibrating ring, stationary electrodes, and anchor
placements cause the viscous damping in the MEMS vibrating ring gyroscope. Due to the
drag force in the gyroscope’s stationary and oscillating systems, the motion of the ring
structure through the atmosphere results in energy dissipation. Typically, viscous damping
is linear and proportional to the vibrating ring structure’s velocity.

Squeeze film damping is a type of viscous damping. It occurs when two parallel plate
surfaces move toward one another and compress the gas-filled space between them. The
concept of squeeze film damping for the MEMS vibrating ring gyroscope is quite complex
due to the energy dissipation and system stiffness effects. The effective viscosity is crucial
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for describing the behavior of a gas or its rarefaction effects in squeeze film damping. The
term effective viscosity ve in squeeze film damping is given by [40].

ve =
v

1 + 9.638 Kn
1.159 (53)

where v is the actual velocity of the gas, and Kn is the Knudsen number, which defines the
rarefaction effect and is dimensionless. The solution of the linearized Reynolds equation
attributes one of the forces as inphase with the movement of the parallel plates, and the
other force is outphase. Both inphase and outphase forces are spring Fs f and damping
forces Fsk, respectively. The equations for the respective forces are given by [41], which are
shown below.

Fs f

y
=

64σPa A
π6d ∑

m,n odd

m2 + c2n2

(mn)2
[
(m2 + c2n2)

2 + σ2

π4

] (54)

Fsk
y

=
64σPa A

π8d ∑
m,n odd

m2 + c2n2

(mn)2
[
(m2 + c2n2)

2 + σ2

π4

] (55)

where y is the deflection of the plate, d is the spacing between the plates, m and n are odd
integers, A = w h is the area of the parallel plate, c = h/w, h is the height, w is the length
of the plate, and Pa is the ambient pressure. The squeeze number σ is given by [42]. Where
ω is the angular frequency.

σ =
12veh2

Pad2 ω (56)

4.2. Structural Damping

Structural damping for the MEMS vibrating gyroscope depends on the material’s
internal structure. This kind of damping is quite a complex model. An easy method is to
describe first the material’s properties and then proceed to the damping properties. The
model could be analyzed using finite element method Ansys 2023 R1.

Fsd = −τωy (57)

where Fsd is the structural damping force, τ is the loss parameter related to the material’s
internal friction, ω is the frequency, y is the deflection of the vibrating element.

4.3. Thermoelastic Damping

Thermoelastic damping is one of the main damping mechanisms under vacuum
conditions. It is a phenomenon of the material’s intrinsic behavior in which the system
dissipates thermal energy because of the elastic deformation in the system. In the vibrating
ring structure, the tensile and compressive forces generate heat dissipation in the vibrating
system that finally affects the vibrational energy of the system. Thermoelastic damping
significantly affects the gyroscope quality factor under vacuum conditions ranging from
100 k to 200 k values. The thermoelastic loss factor τTED can be determined by the given
Equation (58).

τTED =
α2G

ρCpV

∫ (
∂σ

∂T

)2
dV (58)

where α is the coefficient of thermal expansion, G is the shear modulus of the material, ρ is
the density of the material, Cp is the specific heat at constant pressure, V is the volume, σ is
the stress, and T is the operating temperature of the vibrating system.

4.4. Anchor Damping

Anchor damping could be determined by modeling with consideration of the energy
losses at the anchor points through the anchor’s design and material properties. This type
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of damping can be predicted through an accurate finite element analysis. The following
simple equation could be used for evaluating anchor damping.

Fad = −τay (59)

where Fad is the damping force, τa is the anchor loss factor, and y is the deflection of the
vibrating structure in the MEMS vibrating gyroscope.

5. Microfabrication

The MEMS vibrating ring gyroscopes’ operation depends on the microscale vibrat-
ing structures. In recent years, the technological revolution in microfabrication processes
has allowed technology to fabricate microscale intricate MEMS designs for various ap-
plications. The micromachining process in the MEMS fabrication originated from the
semiconductor fabrication processes. The micromachining process enables the merging of
the microscale mechanical and electrical components on the same electronic chip to operate
on the respective MEMS devices.

In recent developments, many microfabrication processes have been introduced to
fabricate various free-standing microscale vibrating structures on the wafers. The micro-
fabrication process of the vibrating ring gyroscopes involves many complex steps. The
gyroscope design structure is usually patterned layer by layer by different microfabrication
techniques. Each layer is designed for distinguishing purposes. Silicon on insulator (SOI)
is a technique of bulk micromachining that is currently quite popular in the fabrication
of MEMS vibrating ring gyroscopes. The section below highlights the SOI process for the
MEMS vibrating ring gyroscope.

5.1. Silicon on Insulator

Silicon on insulator (SOI) wafers provide base material for the bulk micromachining
process. The structural layer of silicon material is bonded on the insulator layer. The
structural layer patterned above on the oxide layer makes them electrically isolated with
the mechanically supported free-standing structures. The SOI wafers with varied layer
thicknesses of structural, oxide, and others with varying conductivities fulfill the complex
design requirements for the MEMS vibrating ring gyroscopes.

The basic, simple, and quite cheap SOI microfabrication process was introduced by
the Multi-User MEMS Processes (SOIMUMPs) [43]. There is no substrate placed under the
structural layer in this process, which ultimately provides high-aspect-ratio structures with
low air damping. These two characteristics are essential to design the high-performance
MEMS vibrating ring gyroscope. SOI is a single-wafer microfabrication process that allows
for patterning and etching on the wafer with various thicknesses of the four mask layers.
The process can offer specific thicknesses of the structural layer, and the minimum feature
size in µm.

5.2. Post-Fabrication Process

The post-fabrication process includes various steps, from dicing the gyroscopes to
placement in the dual inline package (DIP) for static to dynamic characterizations. A
schematic illustration of the MEMS vibrating ring gyroscope after the microfabrication
processes is shown in Figure 21. A complete design of the vibrating ring gyroscope is
placed into the DIP, where the gyroscope’s electrodes are connected to the electrical pads in
DIP with the wire bonding process for the MEMS device characterizations.
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5.3. Material Selection

The selection of material is essential for fabricating the MEMS vibrating ring gyroscope.
The material properties significantly impact the mode mismatch frequencies and the quality
factor of the gyroscope. Silicon is the primary material for the MEMS vibrating ring
gyroscope because of its high availability, low fabrication, and low overall costs. Different
forms of silicon material have been extensively used in the fabrication of MEMS vibrating
ring gyroscopes, some of which are listed below.

Single Crystal Silicon (SCS): It is one of the most commonly used materials in the fab-
rication of MEMS devices. The SCS has two primary orientations (100) and (111) [44]. Each
orientation possesses different properties that can be advantageous or disadvantageous in
terms of the fabrication of the MEMS devices. A (100) SCS is highly anisotropic, resulting
in a MEMS vibrating ring gyroscope that tends to have a higher mode mismatch between
driving and sensing resonance frequencies. Anisotropy indicates that the mechanical prop-
erties of a material can vary depending on the direction. The different directions of (100)
silicon possess different Young’s modulus and Poisson ratio values that react differently
when exposed to the etching process and subsequently undercut the defined structures.
The faster etching rate of (100) SCS, which can reduce the fabrication time, is a significant
advantage of its use. However, there is a disadvantage regarding the high number of mode
mismatch resonance frequencies. However, due to the symmetric structure of the ring,
the mode mismatch can be reduced by adjusting the width and placement of the beams
regarding the gyroscope anchor’s design. The anchor design can accommodate the various
placement shifts of the beams, and this can be done by exhaustive parametric modeling of
the design parameters.

Polysilicon: Another material extensively utilized for MEMS vibrating ring gyroscope
fabrication. Polysilicon MEMS vibrating ring gyroscopes typically have a low-quality factor.
A low-quality factor results in more significant energy loss, which may compromise the
gyroscope’s sensitivity and precision.

Fused Silica: It is distinguished by its isotropic properties, in which its properties
are the same in all directions. In addition to its low thermoelastic damping and better
temperature stability, it is a quite suitable material for gyroscope fabrication for harsh
environments. The vibrating ring gyroscopes that comprise fused silica provide excel-
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lent gyroscope performance. However, MEMS fabrication techniques are not completely
compatible with fused silica as the material for vibrating gyroscopes.

The material selection for MEMS vibrating ring gyroscopes is an important parameter.
Each material has advantages and disadvantages, and ongoing research seeks to optimize
these properties for improved gyroscope performance.

5.4. Imperfections in Vibrating Ring Gyroscope

The imperfections are always present in the MEMS vibrating ring gyroscope. These
imperfections exist for many reasons, including fabrication and exposure to different
environments. These imperfections cause frequency mode mismatches to reduce me-
chanical sensitivity, drifting, and noise in the gyroscope operations. Some of them are
discussed below.

5.4.1. Microfabrication Imperfections

The anisotropy of material and microfabrication imperfections could not be completely
mitigated from the overall process. The microfabrication errors affect the material char-
acteristics and design of the MEMS structures. The structures’ thickness depends on the
deposition rate and processes, and the width of the structure elements depends on the
etching processes. The non-uniformity of the etching processes causes the mechanical
structures’ undercuts, often called side wall angles. These anomalies affect the resonance
frequencies of the vibrating ring gyroscope, resulting in mode mismatching. The mode
mismatch significantly deteriorates the performance of the gyroscope. The equation below
can be used to find the mode mismatch because of the imperfections of microfabrication.

∆ f = fs − fd =
1

2π
(ωs − ωd) (60)

where ωs and ωd are the sense mode and drive mode frequency of the system. The
deposition process alters the Young’s modulus of the material, and undercuts, fluctuations
in the damping parameters, and other related factors significantly affect the performance
of the gyroscope.

These errors can be minimized by analyzing the prefabrication design study prior to
the fabrication of the MEMS vibrating ring gyroscope. The symmetric design of the ring
gyroscope provides better results as the design has the same configurations in the other
directions, which impacts the gyroscope overall. For example, material anisotropy can
be minimized by adjusting the location of the beam structures connected to the anchors.
However, these adjustments require extensive design parametric modeling to mitigate the
effects of the imperfections of the fabrications.

Prefabrication Design Modification: This design approach requires extensive paramet-
ric modeling of various design parameters. In a vibrating ring gyroscope, the widths of the
beam structures and ring structure can be modeled in accordance with microfabrication
undercuts because of different etching rates. A comparative design parameters analysis
was performed to minimize the mode mismatch for the vibrating ring gyroscope for silicon
(100) [6]. There is another method to increase or decrease the ring’s mass to gain the optimal
results in vibrating ring gyroscopes. This method was successfully demonstrated [45] by
tailoring the mass of the rings to eliminate the mode mismatch from 15 Hz to less than
100 mHz for 14 kHz gyroscope resonance frequencies.

Tuning Frequencies: The other design approach mitigates the errors by adjusting and
matching the resonance frequencies. The design structure of the vibrating ring gyroscope
provides enough space to accommodate as many electrodes as possible around the ring
structure. As described in the electrical design section, these electrodes could be used for
multiple purposes such as tuning and quadrature electrodes. This method can reduce
the gap between the two operating resonance frequencies [46]. This method uses the
electrostatic stiffness effect and adjusts the mode mismatch. In other words, the driving
resonance frequency is adjusted in a way to equal the sensing resonance frequency, as
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shown in Equation (60) ( ωd = ωs), so the mode mismatch becomes zero. This tuning
frequency approach is used to maximize the mechanical sensitivity of the vibrating ring
gyroscope.

5.4.2. Temperature Effects

A vibrating ring gyroscope generally faces difficulty maintaining the scale factor’s
stability and bias when exposed to various temperature profiles. Temperature differences in
MEMS gyroscopes proceed to thermal expansion, ultimately affecting the gyroscope design
geometry and the actuation and detection electrodes. Also, due to temperature changes,
these thermal expansions and contractions can introduce stresses in the MEMS structure,
further affecting the stiffness of the MEMS gyroscope. The temperature fluctuations affect
the design geometry of the gyroscope, which affects the Young’s modulus of the material,
impacting the stiffness of the structure. Furthermore, the temperature fluctuations affect
the gyroscope’s scale factor and bias.

Due to their symmetric design structure, MEMS vibrating ring gyroscopes usually
have uniform thermal expansion into the ring geometry [29]. The vibrating ring gyroscope
generally operates at two identical elliptical modes of vibrations. Therefore, the uniform
temperature effect affects both modes with the same thermal expansion. Therefore, the
vibrating ring designs have the same expansion in the whole geometry, making them quite
suitable and robust against temperature fluctuations.

6. Conclusions

This paper presents an exhaustive analysis of the MEMS vibrating ring gyroscopes, ex-
ploring the complexities of mechanical, electrical, damping, material, and microfabrication
design considerations. A number of different setups of electrode designs, beam structures
designs, and frame designs are studied; each design finding presents its own set of dif-
ficulties and opportunities in the MEMS gyroscope field. The paper further investigates
the effects of various types of damping, including viscous, structural, thermoelastic, and
anchor damping, and their roles on the performance of the vibrating ring gyroscope. The
complexities of the microfabrication processes are pivotal in developing the MEMS vibrat-
ing ring gyroscopes, including the effects of material selection to the effects of temperature
variations. These findings contribute to a better understanding of the MEMS vibrating ring
gyroscope technology and make avenues for further future investigations in fields such
as navigation systems and other related electronics applications. The research analysis
between design complexity, performance, and size limitations is an important objective,
highlighting the complexity of MEMS vibrating ring gyroscope design.
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