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Abstract: The accurate modelling and simulation of vehicle dynamics is a fundamental prerequisite
for the design and experimental flight testing of aerospace vehicles. In the case of high-altitude
supersonic sounding rockets, it is critically important to produce realistic trajectory predictions in
a representative range of operational and environmental conditions as well as to produce reliable
probability distributions of terminal locations. This article proposes a methodology to develop high-
fidelity flight dynamics models that accurately capture aeroelastic, turbulence, atmospheric and other
effects relevant to sounding rockets. The significance of establishing a high-fidelity model and of
addressing such a problem in the context of developing a digital twin are discussed upfront, together
with the key tools utilised in the analysis. In addition to state-of-the-art computational methods to
determine the aerodynamic forces, moments and mass changes in various flight regimes (including
parachute release), a detailed methodology for incorporating the dynamic aeroelastic response of
the rocket is presented. The validity of the proposed method is demonstrated through a simulation
case study, which utilises data from an existing rocket prototype. Results corroborate the correct
implementation of the proposed algorithms and provide foundations for future research on virtual
sensing and digital twin for autonomous navigation and guidance.

Keywords: rocket design; sounding rocket; multi-physics; rocket dynamics; aeroelasticity; digital
twin; aerodynamics; flight dynamics; virtual prototyping; computational fluid dynamics; computational
structural mechanics

1. Introduction

High-fidelity multi-physics models are very instrumental in the design and virtual
testing of aerospace vehicles. Accurate dynamics and simulation models are equally im-
portant to support the design of the intended aerospace vehicle payload as well as its
navigation [1] and guidance [2,3] systems. For instance, realistic flight dynamics models
have proven their effectiveness through numerous past studies to compensate for the
outages and error spikes of common navigation sensors such as Global Navigation Satel-
lite Systems (GNSSs), strap-down Micro-Electro-Mechanical Inertial Measurement Units
(MEMS-IMU) and magnetometers [4,5] and have also been extensively used to inform the
design of autonomous integrity monitoring and augmentation systems [6–8]. This article
presents a methodology to accurately determine the dynamics model of a sounding rocket
also considering its aeroelastic response, which can be used to accomplish an accurate
trajectory simulation from the ignition, launch rail motion, boosting phase, coasting phase
and recovery phase. At a sufficiently high fidelity, these models allow one to create a digital
twin or even a virtual prototype of the physical system, not only supporting the Design,
Development Testing and Evaluation (DDT&E) of the vehicle and its systems but also
enabling predictive maintenance (diagnosis and prognosis) of the vehicle parts as they
undergo wear and tear during use [9]. The digital twin can also support the study and post
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hoc assessment of atypical and unforeseen events during flight, for example, the failure of
the parachute to deploy. A degree of confidence in the behaviour of the rocket in nominal
and off-nominal conditions and in the associated touchdown locations is also required to
complete risk assessments and inform new safety standards, relieving some of the most
imposing requirements for the evacuation of launch and re-entry sites [10].

High-fidelity dynamics models shall address an appropriate integration of Computa-
tional Fluid Dynamics (CFD), Computational Flight Mechanics (CFM) and Computational
Structural Dynamics (CSD) to calculate the forces and moments acting on the system at any
given point in-flight (Figure 1). These models incorporate the physical phenomena that the
rocket will experience during flight, such as atmospheric property changes and turbulence,
unsteady aerodynamic forces and moments, thrust variations, parachute forces and change
in inertia due to fuel burn.
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The remainder of this section presents a review of the relevant literature. Next,
Section 2 outlines the methodology and key models that are incorporated into the analysis,
with a focus on the method of determining the aerodynamic forces and moments, and the
aeroelastic response of the rocket. These methods are then applied in Section 3 to the Ad
Astra II rocket to determine its trajectory under expected conditions and to analyse the
deformations occurring in such a scenario due to aeroelastic interactions. Finally, the article
concludes with a summary of the findings of this research project and recommendations
for future work.

1.1. Aerodynamic Coefficient Determination

Central to the development of a high-fidelity dynamics model is the accurate calcula-
tion of the rocket’s aerodynamic coefficients and stability derivatives as these define the
overall response of the vehicle at different angles of attack, sideslip, atmospheric conditions
and altitudes. While wind tunnel and range tests [11] have been the predominant methods
to estimate a rocket’s aerodynamic coefficients, modern tools such as semi-empirical, analyt-
ical and CFD methods have also seen widespread use for both rockets [12,13], missiles and
launch vehicles [14]. Industry-standard software such as USAF Missile Data Compendium
(DATCOM) [15] and Aeroprediction Code [16] in particular has seen extensive use. These
methodologies are based on a combination of analytical and empirical methods, which can
jointly overcome their limited validity as a function of the Mach regime, flow conditions,
angles of attack and components under analysis.

Increasing computing power has supported the prevalence of CFD methods and the
direct application of these methods within 6DoF rigid-body flight dynamics simulations has
been successfully demonstrated in the literature, also for hypersonic rigid-body motion [17].
Another study using direct CFD/Rigid Body Motion (RBM) interactions focused on a
spinning, finned projectile [18]. Real-time rigid-body flight data were simulated through
the use of a Reynolds-averaged Navier–Stokes (RANS) flow solver with CFD++ codes,
coupling directly with a 6DoF dynamics module to receive the relevant aerodynamic
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coefficients of the resultant displacements and rotations to be reapplied to CFD simulation
through the manipulation of ‘Chimera’ or ‘overlapping’ grids. This methodology resulted
in high agreement with experimental data and, therefore, is ideally suited to calculate flight
trajectories considering unsteady aerodynamics. This approach was further developed
in [19] where CFD/RBM interactions were additionally coupled with CFD/CSD. This and
subsequent studies demonstrated that spin introduces non-negligible inertial coupling
modes also in conjunction with induced structural vibrations.

To overcome the still prohibitive computational costs involved in the direct integra-
tion of the RANS model in full-size trajectory simulations, alternative approaches in the
literature implemented linearly interpolated look-up tables as in [13]. This methodology,
however, runs the risk of correlating poorly within flow regimes dominated by non-linear
aerodynamics. Thus, the application within large time-scale trajectory simulations requires
alternative methodologies, particularly where more complex and coupled CFD/CSD/CSM
simulations are needed such as in the aeroelastic analysis.

Table 1 summarizes the findings of the literature review on aerodynamic coefficient
determination methods by comparing the various approaches discussed in this section and
their respective advantages and disadvantages.

Table 1. Comparison of rigid-body aerodynamic coefficient calculation methods.

Method Pros Cons

Direct CFD Calculation - Any rocket configuration can be
calculated.

- High computational intensity prevents direct
usage for real-time simulations.

Look Up Table
Development using CFD

Calculation

- Any rocket configuration can be
calculated.

- After data are generated, it will
enable the rapid interpolation of
aerodynamic coefficients within the
dynamics model.

- Interpolation methods may not provide accurate
enough information.

- With a scope of trajectory simulation, parameters
such as angle of attack, sideslip, Mach number
and other flow characteristics would require
alteration to enable an adequate data set.

Semi-Empirical and
Analytical Calculation

- Rapid calculation of coefficients and
stability derivatives.

- Geometrically defined
characteristics allow for
continuously updating calculations.

- Without corrections, it only calculates
characteristics for low angles-of-attack.

- Cannot directly calculate in the transonic region.
- Supersonic assumptions include a sharp nose

and straight and tapered fins.

1.2. Aeroelastic Modelling

Aeroelastic phenomena impact the lift, drag, moment coefficients and stability of the
rocket and have become a major consideration for increasing the slenderness factors and
control forces [20]. For instance, high-Mach number testing campaigns in the 1950s found
that large aerostructural deformations could lead to inaccurate results or failure of the
model-booster combination [21]. In more recent periods, aeroelastic analysis has grown in
importance for modern gas turbomachinery; however, in this application, it is possible to
rely on potential flow theory through many assumptions and approximations [22], which
are not valid for rocket bodies.

One of the most common avenues for aeroelastic modelling is to use coupled fluid-
mechanical solvers in order to solve for the steady-state aeroelastic aerodynamic coefficients
and deformation. This method is used in [23] for slender spinning missiles, showing that
a one-way coupled method is insufficient to accurately capture the effects of aeroelastic
deformation at larger angles of attack.

A promising approach to overcome the still high computational costs of coupled
CFD/CSD methods is surrogate modelling, which can rely on a neural network trained
using CFD data to ‘learn’ the behaviour of the body being studied. A surrogate modelling
technique based on a Radial Basis Function (RBF) Artificial Neural Network (ANN) is
used in [24] to reproduce non-linear aerodynamic effects under high Reynolds’ Number
conditions. In this study, a reduced-order model (ROM) is generated for a 3D wing structure
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with both a static and transient aeroelastic case. After 255 CPU hours of training on the
static case and 6961 h of training on the transient case, the ROM was able to accurately
model the deformation and aerodynamic loads experienced by the wing.

An alternative is to undertake a modal analysis of the static Euler bending modes, as
in [25], where the impact of the different bending modes on the static aeroelastic deforma-
tion of a slender rocket is studied. This method allows one to create a linear reduced-order
modal approximation of the bending characteristics as an alternative to more computation-
ally expensive finite-element methods (FEMs). In that study, the static aeroelastic bending
was found to be dominated by the first two bending modes, and bending modes above the
6th order were found to play a negligible role in the static deformation of the rocket.

The Modal Projection and Force Reconstruction (MPR) is also based on modal analysis
with a two-way fluid-structural interface (FSI) force allocation [26]. This method is highly
accurate, achieving results within 0.6% error for the vertical displacement of a beam.

The Nonlinear Strip Method (NSM), on the other hand, solves the nonlinear aerody-
namic effects using a database of rigid force coefficients [27]. This method discretises the
outer structure of the rocket into strips, calculates the deformed angle of attack using a
static CFD model and a database and then iterates the new aerodynamic forces due to the
deformed angle of attack. This method was found to be significantly more computation-
ally efficient than a full nonlinear aeroelastic analysis while maintaining high fidelity—it
predicted aerodynamic effects to within 10% of traditional aeroelastic methods [27].

1.3. Atmospheric Properties and Disturbance Modelling

Critical to the development of a high-fidelity 6DoF trajectory simulation is the ac-
curate modelling of relevant atmospheric properties and disturbances as these all affect
the unsteady flight dynamics during flight. Non-standard models have traditionally been
implemented using MIL-HDBK-310 [28], which introduces climactic variations in how
atmospheric conditions are calculated. Local disturbances, on the other hand, significantly
influence the performance and handling qualities of all aerospace vehicles, and their con-
sideration within the design, evaluation and certification of civil and military aircraft have
been well documented. Wu, et al. [29] provide a comprehensive evaluation of prevalent
and emerging gust models related to vehicle performance. Existing gust models are largely
categorised as either discrete, continuous or statistically discrete in nature. Discrete gusts
are employed for the investigation of performance in the event of a large, static load. These
come in the various forms of step, linear-ramp and ‘1-cosine’ gust velocity distributions.
In the event that more random disturbances and structural analyses of the aircraft are
being investigated, continuous stochastic models are implemented. The most common are
the Dryden and von Karman power-spectra models. Where continuous gusts implicate
a Gaussian or ‘normal’ distribution that results in a more ‘real-world’ model, Statistical
Discrete Gust (SDG) models implement a non-Gaussian, worst-case model, where a highly
damped aircraft can exhibit a response.

While British regulations implement SDGs as part of their airworthiness evaluation,
regulations such as FAR-25, MIL-F-8785C and MIL-HDBK-1797 favour the implementation
of a combination of discrete and continuous models. For the evaluation of aircraft handling
qualities and control performance in particular, both MIL-F-8785C and MIL-HDBK-1797
prescribe the parallel implementation of at least the 1-cosine discrete gust model and,
ideally, the von Karman continuous turbulence model [30,31]. This is typically due to the
observed atmospheric data supporting both.

Not dissimilar to modern vehicle aerodynamic characteristic calculations, CFD meth-
ods have also seen use within the investigation of vehicle behaviour in atmospheric distur-
bances. Reimer, et al. [32] demonstrate a high-fidelity, but highly computationally intensive
CFD approach to gust modelling using a RANS-based solver to model the application of a
1-cosine gust on an aircraft. This implementation allows for the simulation of CFD-CSD
modelling to analyse the aircraft’s accurate response. Where a rapid analysis of many differ-
ent gust conditions is required, the application of ROMs in the form of Proper Orthogonal
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Decomposition (POD) has also been demonstrated to accurately simulate discrete gust
disturbances on an aircraft with minimal error [33].

During the development of the Space Shuttle, there was a need for a more realistic
representation of high-altitude turbulence. A new model was needed to allow for the
accurate estimation of the Reaction Control System (RCS) fuel usage due to the turbu-
lence model being implemented assuming severe turbulence throughout the whole flight.
Justus et al. [34], therefore, developed a methodology that implemented a more realistic
turbulence model which used a stochastic turbulent intensity model with the capability to
model gusts up to 200 km in altitude. This program has now developed into the NASA
Earth Global Reference Atmospheric Model that continues to implement a robust gust
modelling functionality, paired with a comprehensive array of supplementary information
about historical climactic data worldwide [35].

1.4. Recovery Methods and Parachute Modelling

An important phase of the trajectory of a sounding rocket is its descent and recov-
ery, where the forces and moments produced by the parachutes, including during their
deployment, have a massive impact on the 6DoF dynamics of the vehicle. Similar to the
case of aeroelastic analysis, the most rigorous yet computationally expensive approach
for parachute inflation modelling is CFD. Because of this, much of the research on high-
performance parachutes, especially in earlier periods, involved fitting empirical functions
to flight test data taken on sled tests, rocket tests and aircraft drop tests to predict the drag
of the parachute and its filling time [36]. These models have been validated up to Mach 2.2;
however, due to the relatively simple nature of these models, the error margins for the
functions remain high.

Arbitrary Lagrangian–Eulerian (ALE) CFD methods, on the other hand, can model
the permeability of the parachute fabric to more accurately solve for the drag force [37];
however, they are severely limited by computational costs. A compromise is to use ALE for
the inflation portion of the flight, but then to use traditional CFD models for the steady-state
response [37].

Incorporating parachute models into a 6DoF trajectory analysis also presents a chal-
lenge due to unpredictable atmospheric characteristics. A possible approach is to perform a
Monte Carlo analysis to find the dispersion due to uncertainties in aerodynamic coefficients,
atmospheric characteristics and the flight parameters at the start of the re-entry [38]. This
study, however, produced instability in the angle of attack. An alternative method for
finding the trajectory of a parachute is to simplify the equations of motion to use a simple
3DoF model. While this method is significantly simpler than a full 6DoF model, it was
found that it is accurate to within engineering tolerances for most applications [39].

1.5. Model Verification

Uncertainties can be found in the integration of design tolerances within the com-
ponents, variations in the initial conditions or environmental conditions such as wind
direction and intensity. In many studies, these uncertainties have been considered by adopt-
ing nominally deterministic dynamics functions using Monte Carlo Simulation (MCS) [40].
For instance, MCS can be used to model the effects of turbulence and gusts on the final
touchdown location of a rocket [12,13]. However, MCS as a random sampling method
requires a very large number of samples to adequately capture the uncertainty and ro-
bustness associated with a variety of linear and nonlinear effects. Recent studies have,
therefore, seen the application of different random sampling methods aiming for a more
robust and less computationally expensive characterization of uncertainties. For instance,
Eerland et al. [41] noted that the application of MCS can result in probabilistic output
distributions containing unrepresentative, low-probability outcomes that overall contribute
to invalidating the probability distribution, instead opting for the use of a Gaussian process
to obtain more representative outcomes. On the other hand, Refs [14,41,42] focussed on an
Improved Latin Hypercube Sampling (ILHS), which resulted in better-filled sample spaces.
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2. Materials and Methods

This section describes the methodology that was implemented for the high-fidelity
modelling and simulation of sounding rocket flight dynamics, comprehensive of each factor
considered and how these interact, as well as the assumptions and approximations.

This section starts by introducing the frames of reference and all the models, such as
the 6DoF equations of motion, atmospheric and turbulence, aerodynamic loads, parachute
and thrust. Subsequently, the methodology used to calculate the aeroelastic response of
the rocket due to aerodynamic loads and its structural response and the methods used to
calculate the touchdown location using a statistical distribution are presented. Figure 2
outlines the overall model determination process.

Designs 2023, 7, x FOR PEER REVIEW 7 of 42 
 

 

 
Figure 2. Flowchart of the overall model determination process. 

After calculating the properties of the current state of the rocket, a CFD-based aero-
dynamic model is used to calculate the aerodynamic forces and moments acting on the 
body. Next, the additional forces and moments due to the thrust and the parachute model 
are applied to find the total forces and moments acting upon it. Finally, these forces are 
integrated using the 6DoF equations of motion to find the next state of the rocket. 

2.1. Frames of Reference, Equations of Motion and Numerical Integration 
Within this dynamics model, the body frame of reference has been oriented in ac-

cordance with the traditional right-hand rule; where the x-axis is oriented towards the 
nose, the y-axis is oriented towards the starboard side of the rocket, and the z-axis is ori-
ented downwards (Figure 3). 
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After calculating the properties of the current state of the rocket, a CFD-based aero-
dynamic model is used to calculate the aerodynamic forces and moments acting on the
body. Next, the additional forces and moments due to the thrust and the parachute model
are applied to find the total forces and moments acting upon it. Finally, these forces are
integrated using the 6DoF equations of motion to find the next state of the rocket.
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2.1. Frames of Reference, Equations of Motion and Numerical Integration

Within this dynamics model, the body frame of reference has been oriented in accor-
dance with the traditional right-hand rule; where the x-axis is oriented towards the nose,
the y-axis is oriented towards the starboard side of the rocket, and the z-axis is oriented
downwards (Figure 3).
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For the inertial frame, we resort to a spherical Earth-Centred-Earth-Fixed (ECEF)
frame of reference (Figure 4), with positions expressed in latitude, longitude and altitude
components. Finally, the local north–east–down (NED) cartesian coordinate system is
chosen as the navigational (auxiliary) frame of reference.
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The position, velocity and acceleration of a body about the individual translational
and rotational directions are derived from Newton’s Second Law. These equations for a
general case are presented below.
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For the translational frame, the velocity of the body in the xb, yb and zb axes is
given by:

vb =

u
v
w

 (1)

With thrust (T), lift (L) and drag (D) acting through the centre of gravity of the rocket,
we can find the forces acting on the body.

Fb =

X
Y
Z

 =

−Dcos(α) + Lsin(α) + Tcos(φT)
Faero, y

−Dsin(α)− Lcos(α)− Tsin(φT)

 (2)

The rate of change of the translational position is given by:

.
xI = u cos θ cos ψ + (− cos φ sin ψ + sin φ sin θ cos ψ)v

+(sin φ sin ψ + cos φ sin θ cos ψ)w
.
yI = u cos θ sin ψ + (cos φ cos ψ + sin φ sin θ sin ψ)v

+(− sin φ cos ψ + cos ψ + cos φ sin θ sin ψ)w
.
zI = −u sin θ + v sin φ cos θ + w cos φ cos θ

(3)

where φ, θ and ψ represent Euler angles. Finally, the rate of change of translational position
is given by the following equations:

.
u = X

m − g sin θ + rv− qw
.
v = Y

m + g sin φ cos θ + ru + pw
.

w = Z
m + g cos φ cos θ + qu− pv

(4)

where p, q and r are the rotational velocities in the x, y and z body axes. The rotational
velocities and accelerations are found using a similar method.

In the case of sounding rockets, the vehicle can potentially reach and exceed 90 degrees
of pitch, resulting in an ambiguity of the equations (and the associated phenomenon of
‘gimbal lock’ in real systems). To prevent this mathematical singularity within the dynamics
model, the quaternion representation has been adopted following Siouris [44]. This is
applied with a direct cosine matrix, transforming the body velocities calculated into inertial
velocities, which is constructed using the Euler angles and quaternions parameters:

vb = Cqvi (5)

where:

Cq =

A2 − B2 − C2 + D2 2(AB− CD) 2(AC + BD)
2(AB + CD) −A2 + B2 − C2 + D2 2(BC− AD)
2(AC− BD) 2(BC + AD) −A2 − B2 + C2 + D2

 (6)

where A, B, C and D are calculated as the following:

A = sin
(

ψ
2

)
sin
(

θ
2

)
cos
(

φ
2

)
− cos

(
ψ
2

)
cos
(

θ
2

)
sin
(

φ
2

)
B = − cos

(
ψ
2

)
sin
(

θ
2

)
cos
(

φ
2

)
− sin

(
ψ
2

)
cos
(

θ
2

)
sin
(

φ
2

)
C = − sin

(
ψ
2

)
cos
(

θ
2

)
cos
(

φ
2

)
+ cos

(
ψ
2

)
sin
(

θ
2

)
sin
(

φ
2

)
D = − cos

(
ψ
2

)
cos
(

θ
2

)
cos
(

φ
2

)
− sin

(
ψ
2

)
sin
(

θ
2

)
sin
(

φ
2

) (7)

Once the forces and moments are determined in each axis, they are integrated to find
the position, velocity and acceleration at the next time step. In addition to implementing
the quaternion representation, this model considers the reduction in mass of the rocket
due to burning fuel by assuming a linear change in the mass moment of inertia from the
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full mass to the empty mass. The integration technique used is a 4th order Runge–Kutta
method, detailed below:

K1 = h f (xn, yn)

K2 = h f
(

xn +
h
2 , yn +

k1
2

)
K3 = h f

(
xn +

h
2 , yn +

k2
2

)
K4 = h f (xn + h, yn + k3)

yn+1 = yn +
k1
6 + k2

3 + k3
3 + k4

6

(8)

This method is included in Matlab/Simulink as the ODE45 method and was chosen
due to its large region of stability over more simple integration techniques as well as its
high accuracy.

2.2. Amospheric and Turbulence Models

The atmospheric model implemented within the current dynamics model is that of
the (COESA-extended) U.S. Standard Atmosphere Model as it has been implemented
within Simulink. While this affords the model simple tuning to convert the model block
to output conditions representing that of MIL-HDBK-310, the handbook showcases the
general environmental conditions globally. Hypothetical launches within Victoria can be
modelled using the U.S. Standard Atmosphere, and future HIVE launches near Queensland
can potentially be modelled using the high-temperature extreme condition. This is of
course subject to the season and approximate weather on the hypothetical day of launch.

The preliminary implementation of the discrete and continuous gust models has
been through the manipulation of the body-fixed frame velocity. In accordance with
standard MIL-HDBK-1797A, the discrete 1-consine gust is mathematically represented by
the following [31]:

Vwind =


0 x < 0

Vm
2

[
1− cos

(
πx
dm

)]
0 ≤ x ≤ dm

Vm x > dm

(9)

where Vm is the amplitude of the gust and dm is the gust length.
To maintain consistency with the above standards, the continuous von Karman turbu-

lence model is represented mathematically by the following Power-Spectral Density (PSD)
functions for continuous gusts in the longitudinal, lateral and vertical directions relative to
the rocket body to calculate both induced velocities (u, v, w) and rotational rates (p, q, r):

Φu(ω) =
2σ2

u Lu

πV
· 1[

1 +
(

1.339Luω
V

)2
] 5

6
(10)

Φp(ω) =
σ2

w
VL w

·
0.8
(

πLw
4b

) 1
3

1 +
(

4bω
πV

)2 (11)

Φv(ω) =
σ2

v Lv

πV
·

1 + 8
3

(
1.339Lvω

V

)2[
1 +

(
1.339Lvω

V

)2
] (12)

Φr(ω) =
∓
(

ω
V
)2

1 +
(

3bω
πV

)2 ·Φv(ω) (13)
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Φw(ω) =
σ2

wLw

πV
·

1 + 8
3

(
1.339Lwω

V

)2[
1 +

(
1.339Lwω

V

)2
] (14)

Φq(ω) =
∓
(

ω
V
)2

1 +
(

4bω
πV

)2 ·Φw(ω) (15)

where Φ is the power-spectral density, σ is the RMS gust velocity, ω is the frequency and
L are the length scales in each along each respective axis. Equations (19) and (21) allow
for the discretional selection of which direction the lateral and vertical rotational rates are
applied to the rocket. In this case, positive lateral and vertical angle rates were selected.
As these rates act within the body-fixed frame of reference, the body-fixed velocities and
the current altitude of the rocket need to be sourced from the 6DoF equations of motion,
as well as the transposed DCMned. The resulting turbulence velocities and rotational rates
are then added to the rocket’s body-fixed velocities whereby the next time step within the
model is calculated. This is applied throughout the duration of the launch.

2.3. Aerodynamics Models

Based on the considerations discussed in Section 1.1, to calculate all the necessary
aerodynamic coefficients throughout the rocket’s flight while maintaining high modelling
accuracy, it was elected to run a series of CFD studies in a carefully defined set of represen-
tative conditions, and successively allow the coupled FSI analysis to interpolate (but not
extrapolate) the response between calculated values in the obtained look-up table. This
practice is in line with the majority of studies not specifically tackling the aerodynamic
transients or flutter phenomena.

2.3.1. CFD Modelling

A CFD-based model is used to calculate the aerodynamic forces and moments pro-
duced by the rocket during flight. The enclosure sizing is sized using the relationship
described in [25] using a cylindrical enclosure with a distance of 5 times the rocket diameter
(5D) to the inlet, 15D laterally and 30D to the outlet downstream. In order to find an
appropriate mesh resolution for the CFD model, a mesh sensitivity study was conducted.
The study was conducted at an angle of attack of 0 degrees and at standard sea level
conditions of pressure and density being 101,325 Pa and 1.225 kg/m3, respectively. In
addition, the viscosity of the fluid varies with the Sutherland three coefficient formula, and
the turbulence model used is the SST k-omega model.

The SST k-omega model combines the k-omega model and the k-epsilon turbulence
models, which simulate the flow regions close to the wall and away from the wall, respec-
tively [45]. The SST k-omega model is governed by the following equations. First, the
turbulent kinetic energy equation is given by:

∂k
∂t

+ Uj
∂k
∂xj

= Pk − β∗kω +
∂

∂xj

[
(v + σkvT)

∂k
∂xj

]
(16)

With a specific dissipation rate calculated by:

∂ω

∂t
+ Uj

∂ω

∂xj
= aS2 − β∗ω +

∂

∂xj

[
(v + σωvT)

∂ω

∂xj

]
+ 2(1− F1)σω2

1
ω

∂k
∂xi

∂ω

∂xi
(17)

The first blending function is given by:

F1 = tanh

{
min

[
max

( √
k

β∗ωy
,

500v
y2ω

)
,

4σω2k
CDkωy2

]}4

(18)
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where CDkω = max
(

2ρσω2
1
ω

∂k
∂xi

∂ω
∂xi

, 10−10
)

. Next, the kinematic eddy viscosity is calcu-
lated by:

vT =
a1k

max(a1ω, SF2)
(19)

The second blending function is then given by:

F2 = tanh

[
max

(
2
√

k
β∗ωy

,
500v
y2ω

)]2

(20)

Finally, the production limiter is found with the equation:

Pk = min

(
τij

∂Ui
∂xj

, 10β∗kω

)
(21)

2.3.2. Calculation of Aerodynamic Coefficients and Derivatives

The CFD analysis, which in our case was carried out in ANSYS FLUENT, allows one to
determine the lift, drag and normal coefficients, as well as the moment coefficients about a
centre of gravity. A mesh sensitivity analysis is to be completed upfront to validate the CFD
results. As this is standard practice in the domain, no extensive description is provided
here, but the interested reader is advised to refer to Section 3.1, as part of the verification
case study, further down the article for additional information. This section, therefore,
details how coefficients are determined by summing the pressure forces on the face of each
cell of the rocket and dividing by the dynamic pressure. In order to find the coefficient in
direction j, the force is found by multiplying the pressure on cell i by the area of that cell in
the i-direction.

Cj =
∑N

i=1 Pi Aji
1
2 ρv2S

(22)

For this rocket, the reference area S is the area of the rocket tube. The moment
coefficients were calculated about 16 possible centres of gravity, allowing us to determine
the change in the moment due to the burning of solid fuel and the associated movement of
the centre of gravity.

The aerodynamic derivatives are derived from the forces and moments by studying
their variation as a function of a single independent variable. For instance, to find the
derivative of lift with respect to the angle of attack between two points, the following
equation is used:

dCL
dα

=
CL2 − CL1

α2 − α1
(23)

These derivatives are found with respect to each variable of interest, and this is how the
CFD modelling is incorporated into the Simulink trajectory simulation. With the coefficients
and derivatives known, these can be used to linearly interpolate between collected points
of data to estimate data within the different combinations of incidence angles and Mach
numbers. This is organised into arrays—2D for the force coefficients and 3D arrays for the
moment coefficients—to account for the additional change due to a change in rocket mass.
The process to interpolate instantaneous coefficient values can be seen below. Let Cxij be
an instantaneous value to determine. x may be an axial, normal or side force coefficient of
the rocket in the body frame. i and j are the instantaneous incidence angle (angle of attack
or sideslip) and the Mach number. Cx is the corresponding coefficient database with the
format of:

Cxmn =


Cx11 Cx12
Cx21 Cx22

. . . Cx1n
...

...
Cxm1 . . .

. . .
...

. . . Cxmn

 (24)
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where m and n are the number of incidence angles and Mach number data points available,
respectively.

The first step is to interpolate a column of data that represent the different incidence
angles available for the Mach j, which is calculated using the following.

Cxmj = Cxnlower +
Mj −Mlower

Mupper −Mlower

(
Cxnupper − Cxnlower

)
(25)

where:

Cxmj =


Cx1j
Cx2j

...
Cxmj


The lower and upper subscripts are the column value or column vectors containing

the closest set of data above and below the instantaneous Mach number, respectively. The
final interpolation for the instantaneous incidence angle can be calculated in a similar way
to determine the final coefficient value.

Cxij = Cxmlower +
αi − αlower

αupper − αlower

(
Cxm upper − Cxm lower

)
(26)

where upper and lower refer to the likewise angles above and below the instantaneous
angle. This results in the final force coefficient Cxij . Moment coefficients are calculated
similarly; however, due to the mass variation during flight, an additional interpolation
needs to be completed at the start to interpolate the instantaneous mass k. The moment
coefficient database hosts an additional dimension of length o which is the number of
different mass data points considered in the creation of the database.

Cxmnk = Cxmlower +
mk −mlower

mupper −mlower

(
Cxo upper − Cxo lower

)
(27)

where the upper and lower subscripts once again refer to the closest arrays of masses above
and below the instantaneous mass of the rocket, respectively. The procedure from then
onwards follows exactly as per the force coefficient method to obtain the final, interpolated
coefficient value for pitch or yaw.

In the event that the instantaneous angles of attack and sideslip exceed that of what
is available within the database, linear extrapolation will be implemented. Within small
angles of attack, it can be adequately estimated that increases in the coefficient values
are linearly proportional with increases in the angle of attack. For angles larger than that
simulated, Equation (23) can be used to generate a coefficient derivative database for any
given Mach number datapoint. This allows for the application of Equation (24) in the
same manner to determine the coefficient derivatives between the largest two angle data
points. This can then be used to extrapolate the instantaneous coefficient value with the
following equation:

Cxij = Cxjmax
+

dCx

dα
(αi − αmax) (28)

where the max subscript refers to the maximum coefficient or angle of attack within the
given coefficient database. It must be noted that linear extrapolation is not possible with
Mach numbers exceeding that of what has been determined using CFD modelling as there
is no clear linear relationship between the coefficient values.

2.4. Parachute Model

The parachute deployment and recovery stages are an important part of the trajectory
of the rocket (Figure 5). Once the parachute has been deployed, the characteristics of the
parachute itself dominate the dynamics of the trajectory. The adopted modelling technique
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is a modified version of the work presented in [39], which results in values within an
acceptable engineering tolerance. That work used a simplified 3DoF method to model
the rocket after the deployment of the parachute; however, the approach used in this
article incorporates the generated additional drag into the already existing 6DoF model.
A modified version of this method is present, with the notable change being that the
force is applied in the wind direction rather than along the body axis. This allows for
simpler integration into the existing 6DoF model while conserving the total amount of
drag generated. The aerodynamic force on the point mass is dominated by the drag of the
parachute. The drag is given by:

FP =
1
2

ρaltV2(t)CDS(t) (29)

where both the velocity and drag area (CDS(t)) are functions of time. The inflation model
of the parachute is from Macha [46] and is shown below:

CDS(t) = (CDS)0·
(

t
t f

)β

(30)

β = 1 for slotted canopy parachutes
β = 6 for solid canopy parachutes
where t f is the filling time and is calculated from the equation below, where n is the

filling time index from [47].

t f =
n· D0

V0
(31)

Finally, the parachute sizing is determined using the required touchdown velocity and
the drag of the chosen parachute.

S0 =
mg

qterminalCD0
(32)
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This allows us to accurately model the drag caused by the parachute and the trajectory
of the descending object. The specific type of parachute used in the trajectory simulation
must be chosen. A summary of parachutes and their characteristics is presented in Table 2.

The trigger for the deployment of the parachute is the rocket reaching apogee. This
is generally the point of deployment for a drogue parachute, and this method can be
applied to trigger the deployment of the recovery phase at any arbitrary point chosen by
the designer.
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Table 2. Parachute models and characteristics [36].

Type Constructed
Shape DC/D0

Inflated Shape
DP/D0

CD,0
Average Angle
of Oscillation General Applications

Flat circular ribbon 1.0 0.67 0.45–0.50 0–3 Pilot, drogue, deceleration, descent
Conical ribbon 0.95–0.97 0.70 0.5–0.55 0–3 Pilot, drogue, deceleration, descent

Hemisflo ribbon 0.62 0.62 0.30–0.46 2 Supersonic drogue
Ringslot 1.0 0.67–0.70 0.56–0.65 5 Extraction, deceleration, descent

Disk-gap-band 0.73 0.65 0.52–0.58 10–15 Supersonic drogue, descent
Ballute 0.51 0.51 0.51–1.20 <1 Stabilisation, supersonic drogue

2.5. Thrust Model

The method for applying thrust to the rocket is simply by applying the force along the
body axis of the rocket. This is a simple method but is representative of the force application
in a real rocket. The thrust profile is able to be modelled in a way that is defined by the
user, such as by creating a linear thrust model or using a dataset of the thrust developed in
a commercial off-the-shelf rocket. These datasets are widely available and allow for the
selection of an appropriate motor for the mission profile of the rocket.

2.6. Aeroelastic Model

The aerostructural response of the rocket governs the change in aerodynamic response
due to structural loading. This is achieved using three steps:

1. Extraction of mode frequencies and mode shapes of CSD representation;
2. Mapping of aerodynamic pressures onto the CSD nodes;
3. Calculation of the aerodynamic response of the deformed shape.

This process is outlined in Figure 6 and closely follows the method outlined by [26].
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The interplay between the CSD and the CFD modelling lies in the mapping of the
pressures on the CFD mesh onto the structural mesh to determine the loads. This deformed
shape is found using the superposition of the displacements due to the excitation of
the CFD forces on the CSD mesh. This is outlined in Figure 7. The initial step in this
procedure is to calculate the modal response of the rocket. A modal approach to finding the
displacements of nodes in a system is useful as it greatly reduces the degrees of freedom,
as the displacement is assumed to be a superposition of the basis functions. The general
dynamic equation of motion for a system is given as:

M
..
q(t) + C

.
q(t) + Kq(t) = F(t) (33)



Designs 2023, 7, 32 15 of 39

where M is the mass matrix, C is the damping matrix, K is the stiffness matric, F is the
force vector and q is the nodal displacement vector. In order for the displacement to be
approximated as a superposition, the eigenmodes of the structure are chosen as the basis
functions. These are found by a modal analysis of the undamped structure and satisfy
the condition:

−ω2MNx(t) + KNx(t) = 0 (34)

where ω is a diagonal matrix of the natural frequencies and N is the matrix of mass-
normalised eigenmodes. We can then rewrite Equation (33) as:

MN
..
x(t) + KN

.
x(t) = F(t) (35)
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This gives the ability to sum the modal displacements to find the approximate response
of the system using the lower frequency modes from mode 1 to mode H.

q(t) ≈∑H
i=1 Nixi(t) (36)

Using this principal, we can multiply Equation (36) by NT to find the modal equation
of motion.

NT MN
..
x(t) + NT BN

.
x(t) + NTKNx(t) = NT F(t) (37)

For simplicity, we can denote these matrices as:

M = NT MN
K = NTKN

B = 2Z
√

KM
(38)

where Z is the proportionate structural damping of each mode. Hence, we can reproduce
Equation (37) as:

MHH
..
xH(t) + BHH

.
xH(t) + KHHxH(t) = FH(t) (39)

To improve the accuracy of the structural response over the course of the flight of the
rocket, we can model the effects on the change in mass and centre of gravity of the system
due to fuel burn in the motor. As the system eigenmodes are only valid for the point in
time where MHH is valid, the derivation of a set of modes H∗ that are valid at any arbitrary
instant must be made.
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This results in the equation below, which captures the free vibration of the system at a
point in time where the mass is a function of time.

MH∗H∗(t)
..
xH∗(t) + BH∗H∗

.
xH∗(t) + KH∗H∗xH∗(t) = 0 (40)

The change in the natural frequency with fuel burn is calculated by performing a
modal analysis at different fuel burn times. As the mass and centre of mass of the rocket
would change value and location, respectively, so would its frequency response.

Thus, across the rocket’s fuel burn, the ith eigenmodes can then be combined to form a
discrete value by:

Nik =
[

N0
i , N1

i , . . . , Nk
i

]
(41)

The singular value decomposition (SVD) is then given:

Nik = U·∑ ·VT (42)

Using the set of basis functions H∗, we can find the time-varying system matrices

M(t) = NT
AH∗M(t)NAH∗K = NT

AH∗KNAH∗ (43)

where the stiffness is assumed to be time-invariant. Then, we can reproduce Equation (34)
in its time-varying form: [

−ωk2
MkVk + KVk

]
·ζ(t) = 0 (44)

where ω is the matrix of instantaneous frequencies. By using the below equation, we can
find the normal mode shape at each point in time throughout the course of the fuel burn.

Nk
AH = NAH∗ ·Vk (45)

2.7. Mapping Aerodynamic Forces onto CSD Nodes

The MPR method maps the pressures on the cell faces onto the CSD nodes. The key
requirement of this part of the methodology is to ensure that all CFD forces are conserved
when they are applied to the CSD nodes. This is achieved by first finding the load at a fluid
element centroid in the X, Y and Z directions by multiplying the pressure at the element
centre by the area of the element in that direction. This gives:

[
Ff

]
=

Rx
Ry
Rz

= Pi

Ax
Ay
Az

 (46)

These forces and the moments applied to an element are equivalent to the force applied
to the structural grid multiplied by the force equilibrium matrix found using CSD of a
structural representation. This gives us:

Ff , j = Si, jFs, i (47)

where Ff is the force on a fluid mesh element, and Fs is the force on a structural mesh node.
Using a nearest neighbour, we search around each fluid element centre i with an X, Y

and Z coordinate represented by L f , i for a set of neighbouring points on the structural grid
represented by Ls, i. This allows us to increase the equilibrium matrix Si, j to include all the
neighbouring grid points Ni. We can therefore rewrite Equation (47) above as:

Ff ,j = SjF
j
s (48)
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This equation is used to apply an arbitrary load on the CSD grid onto the CFD grid, but
it can be transformed to find a method of applying the fluid forces back onto the structural
grid. This equation is given below.

Fj
s =

[
Sj
]T
[[

Sj
][

Sj
]T
]−1

Fj
f (49)

We can simplify this by rewriting it with a transformation matrix T where:

Tj =
[
Sj
]T
[[

Sj
][

Sj
]T
]−1

(50)

This gives:
Fj

s = TjFj (51)

Using these two equations, we are now able to transform the forces from the fluid
mesh onto the structural mesh, and back again. This allows us to calculate the deformation
of the structure under the fluid loading and then transform this displacement from the
structural mesh onto the fluid mesh.

2.8. Calculation of Aeroelastic Effects on the Trajectory

The final step in the MPR method is recalculating the forces and moments of the
deformed shape. In order to calculate the effects of aeroelastic deformation on the lift and
drag of the rocket, the deformation of the rocket will be calculated under the conditions
(Mach, angle-of-attack, sideslip) found using the rigid body trajectory simulation. These
values can then be used to calculate the deformed shape and the aerodynamic coefficients
of the deformed rocket, which will then be fed back into the trajectory to create a 1-way
fluid–structural interaction.

2.9. Model Verification Methods

The models and methods outlined thus far do not account for small errors in either
engineering tolerances in the physical rocket or in the collection of the CSD and CFD data.
Hence, it is necessary to provide a range of probabilistic outcomes that take these errors
into account in order to have confidence in the outputs of the simulation.

As discussed in the Introduction Section, the MCS method will be adopted to generate
probabilistic results from nominally deterministic functions [13]. The method of application
for each is produced below using the methods proposed by Eerland [42]. This method
applies small uncertainties to the force coefficients using multiplication and to the initial
launch angles using addition (Table 3).

Table 3. Monte Carlo probability distributions application methods.

Variable Application Method

Drag coefficient Multiplication

Centre of pressure Multiplication

Normal coefficient Multiplication

Parachute drag coefficient Multiplication

Thrust curve Multiplication

Declination launch angle Addition

Azimuth angle Addition

Aerodynamic coefficient distributions: the distribution used for the aerodynamic
coefficients uses a simplified method for calculating the approximate error distribution.
These results are found by comparing the deviation of the converged outputs of the CFD
analyses. Using this comparison, we are able to find a value for the lift and drag coefficients
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that reflects the uncertainty of the results of the CFD analysis, solved using the equations
presented in previous sections.

Centre of Gravity displacement distribution: the uncertainty in the location of the
centre of gravity is also considered as part of the MCS. The distribution of the centre of
gravity positions interacts with the distribution of the centre of pressure thereby affecting
the moment coefficient of the rocket and thus has a major effect on the dynamics of the
rocket. Reasons for the uncertainty in the location of the centre of gravity may include
manufacturing tolerances and uncertainty in the fuel burn of the motor.

Thrust distribution: As the thrust is given by a commercial off-the-shelf motor, the
distribution is assumed to ensure the rocket meets the USA Rocket Motor Certification.

Launch angle distribution: the launch angles are applied using addition as it is
assumed that the error in the angle is independent of the magnitude of the launch angle.
That is, a launch angle of 45◦ will have the same error as a launch angle of 70◦ or 80◦. This
is the method used by [41] who found that an assumed standard deviation of 1◦ in the
pitch and yaw provides accurate results.

3. Application Case Study

This section presents a case study performed to verify the proposed method for high-
fidelity trajectory simulation. The sounding rocket utilised in this case study is the Ad Astra
II rocket (Figure 8).
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The model consists of three main airframe components: a nosecone, body tube, three
fins and a boattail. The internal structure of the rocket additionally includes a motor mount
tube and centring rings. These are presented within Table 4.

Table 4. Rocket Dimensions.

Total length (m) 2.941

• Nose length (m) 0.695

• Body tube length (m) 2.115

• Boattail length (m) 0.131

Diameter (m) 0.131

Airframe thickness (m) 0.00191

Centring ring thickness (m) 0.00467

Fin thickness (m) 0.0051

Exposed fin root chord (m) 0.445

Reference fin root chord (m) 0.6044

Fin tip chord (m) 0.075

Exposed fin surface area (m2) 0.152

Reference fin surface area (m2) 0.0739

3.1. Aerodynamic Mesh Convergence Analysis

To ensure that the mesh used was sufficient to capture the dynamics of the fluid
around the body, a mesh convergence study was conducted. The aim of this study is to
find the least number of mesh elements that accurately resolves the flow field so that the
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speed of calculations is increased. For this study, three mesh sizes were tested at a Mach
number of 2.2, an angle of attack of 2.4 degrees and at sea level. The results of this study
are presented below.

From the results in Table 5, we can see that there is little difference between the three
meshes, with only a 3.6% difference in the drag coefficient between the coarsest and the
finest meshes. We also notice that the medium mesh captures the flow field almost exactly
as well as the fine mesh. Hence, we select a mesh size of 370 k elements for the analysis.
Figure 9 shows a cross-section of the FLUENT mesh. The notable features are the fineness
of the mesh close to the surface of the rocket body, in particular at the tip of the nosecone.
Figure 10, on the other hand, presents a close-up cross-section of the mesh at the nosecone.
Here, we can also see the 15 inflation layers on the surface of the rocket that capture the
flow conditions close to the wall.

Table 5. Mesh sensitivity study.

Mesh Number of Elements Lift Coefficient Drag Coefficient

Fine 430 k 1.066 0.57

Medium 370 k 1.066 0.571

Coarse 248 k 1.02 0.55Designs 2023, 7, x FOR PEER REVIEW 21 of 42 
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3.2. Change in Moment Coefficient due to CG Displacement

The moment about the centre of gravity as the latter’s location moves towards the
nose due to fuel burn is depicted in Figure 11. This graph shows the change in the moment
coefficient as the centre of gravity moves from 2.0965 m from the nose to 1.9288 m from
the nose.
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3.3. Aerodynamic Coefficient Analysis

To determine the aerodynamic derivatives, a database of aerodynamic coefficients
must be created that covers the entirety of the flight envelope. Based on preliminary
trajectory simulations, the CFD analyses were performed at Mach numbers of 0.3, 0.5, 0.7,
0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.5, 1.5, 2.2 and 2.6. These Mach numbers were
tested at angles of attack of 0 degrees, 1.2 degrees and 2.4 degrees, and at a sideslip angle
of 2 degrees. The concentration of cases in the transonic region was deliberately chosen
as the transonic region is the most nonlinear region. Figures 12 and 13 display the lift and
drag coefficients for the angle of attack of 2.4 degrees.

We can see that the resolution of the test cases is able to accurately capture the Mach
effects on the lift and drag coefficients. Visually, we can identify the presence of shockwaves
by plotting the contours of the Mach number on a plane that gives a cross-section of the
rocket (Figure 14).

The lift, drag and moment coefficients generated across the different Mach numbers,
angle of attack and sideslip angles are plotted in Figures 15–20. These plots visualise the
datasets applicable within the trajectory simulation of the model for each major coefficient as
a function of incidence angle and Mach number and outline the bounds where interpolation
is possible.
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3.4. Parachute Model

Using the design criteria and the mission profile, a disk-gap-band parachute was
selected for use in this rocket. This is due to the fact that it can act as a supersonic drogue
chute and also as a main chute. The drag coefficient was assumed to be equal to 0.55,
as this is the midpoint of the range of 0.52–0.58 given by Maydew [36]. As this is a
slotted parachute, the value of β in Equation (30) is equal to 1, which results in a linear
inflation function.

3.5. Thrust Model

The propulsion method used within this case study is the Commercially off-the-Shelf
(CotS) Cesaroni O3400 “Imax” solid fuel motor. Its thrust curve can be seen in Figure 21 with
data sourced from [49]. Complete information regarding the specific properties of motor
grain geometry was not available; however, the boost duration and burn profile suggest a
progressive burning internal star configuration [50]. These factors will be elaborated on
within the following sections for their effects on the mass of the rocket in determining its
aeroelastic behaviour.
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3.6. Monte Carlo Distributions

The Monte Carlo distributions were found using the method outlined in previous
sections. A summary of the resulting probabilities is given in Table 6.

Table 6. Monte Carlo Coefficient Distributions.

Variable Probability Distribution Application

Drag coefficient N (1, σ2), σ = 0.004 Multiplication

Lift coefficient N (1, σ2), σ = 0.0315 Multiplication

Centre of gravity N (1, σ2), σ = 0.00612 Multiplication

Parachute drag coefficient N (1, σ2), σ = 0.1 Multiplication

Thrust curve N (1, σ2), σ = 0.0011 Multiplication

Declination launch angle N (0, σ2), σ = 1 Addition

Azimuth angle N (0, σ2), σ = 1 Addition

3.7. Trajectory Simulation Results

The trajectory was obtained via implementation within the Simulink model. The
results of this simulation are expressed as the translational and rotational position, velocity
and acceleration in the Earth-Centred-Inertial, Earth-Centred-Earth-Fixed, north–east–
down and body frames. We also express the angle of attack and slide slip angles. The
outputs are shown in Figure 22. For this simulation, the launch angle is 85 degrees to
the horizontal. Here, we present the results of a trajectory simulation performed without
the parachute.

These results show that the rocket follows a roughly parabolic flight plan, as is to
be expected for this type of rocket. It reaches a maximum velocity of 566 m/s, which is
a Mach number of 1.66. This means that the Mach number remains inside the range of
values found with the CFD analysis presented previously, which found the aerodynamic
coefficients up to a Mach number of 2.6.



Designs 2023, 7, 32 25 of 39Designs 2023, 7, x FOR PEER REVIEW 27 of 42 
 

 

 
Figure 22. Inertial axis results. 

These results show that the rocket follows a roughly parabolic flight plan, as is to be 
expected for this type of rocket. It reaches a maximum velocity of 566 m/s, which is a Mach 
number of 1.66. This means that the Mach number remains inside the range of values 
found with the CFD analysis presented previously, which found the aerodynamic coeffi-
cients up to a Mach number of 2.6. 

Next, the results for the body axis are presented in Figure 23. Here, we see the effects 
of the turbulence modelling are apparent in the oscillations in the body’s angular rates 
and accelerations. The maximum angle of attack and sideslip angles were both 0.0625 ra-

Figure 22. Inertial axis results.

Next, the results for the body axis are presented in Figure 23. Here, we see the
effects of the turbulence modelling are apparent in the oscillations in the body’s angular
rates and accelerations. The maximum angle of attack and sideslip angles were both
0.0625 radians, which is 3.6 degrees. This angle is outside the maximum value testing in
the aerodynamic analysis; however, it is still not a high angle, so a linear extrapolation to
this angle remains valid.
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3.8. Aeroelastic Analysis

The material of the rocket itself is made up of S-Glass composite and aluminium
6061-T6. The aluminium is utilised within the boattail of the rocket, and the rest of the
structure is made of composites. The material properties are outlined in Table 7.

Table 7. Rocket Material Properties.

S-Glass Composite [49] Aluminium 6061-T6 [51]

Density (kgm−3) 2480 2700
Young’s Modulus (MPa) 85,500 68,900

Poisson’s Ratio 0.22 0.33
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While an appropriately structured solid element model would provide the highest
level of fidelity for the model, the nature of the geometry and expected loading conditions
allow for simplifications. The thickness of the airframe skin, centring rings and fins
are constant throughout each part. Additionally, with these thicknesses being 1.91 mm,
4.67 mm and 5.1 mm, respectively, they are significantly less than the total length of the
rocket. These aspects allow for their adequate representation as shell elements. The main
benefit of this is to allow for significantly less computational intensity throughout FSI
iterations while maintaining high accuracy with regards to a model using solid elements, as
documented in [26]. General linear SHELL181 elements have been utilised for meshing the
complete rocket structure. With the axisymmetric structure, quadrilateral elements were
implemented throughout most of the model. The regions that differed were the nose cone,
where the blunt tip typically resulted in many high aspect ratio elements. The solution was
to maintain a quadrilateral dominated mesh, where triangular elements would be meshed
toward the tip. Element sizing was controlled globally; however, with the smaller nature of
the centring rings, their element sizing was controlled locally. The different surfaces within
the model are connected with tie constrains to allow for the transfer of loads throughout
the structure.

Beyond the structural elements, the rocket masses needed to be modelled as these
would significantly affect the modal response. The components considered here are the
drogue and main chutes, avionics bay and the scientific payload. Being non-structural, these
will be represented as point masses located along the rocket’s centreline and constrained
to appropriate surfaces with MPC Beam constraints. As these components have physical
dimensions, the mass moment of inertia was additionally calculated as cylindrical prisms,
which have also been implemented within the model. These are listed in Table 8. Table 8
and the component centroid location relative to the nose cone are provided in Table 9. The
mass placements within the CSD model are shown in Figure 24. Regarding the solid fuel
motor mass, as this varies throughout flight time, the changes in mass and inertia need
to be correctly represented. In keeping with the star fuel grain geometry, the centroid
of the rocket motor does not change over the course of flight. However, the change in
fuel grain radius needs to be accounted for within the motor’s changing mass moment of
inertia. As such, the motor is represented within the rocket as a hollow cylinder. Inertia
calculations are detailed in Table 10, while the motor’s grain geometry characteristics are
given in Table 11. The motor change in mass is represented in Figure 25.

Table 8. Component centroid location relative to the nose cone.

Component Location (m)
Drogue Chute 0.235

Main Chute 0.694
Avionics 1.19
Payload 1.59
Motor 2.4275

Table 9. Component mass and mass moment of inertia values.

Component Mass (kg) Length (m) Radius (m) I_x (kgm2) I_y (kgm2) I_z (kgm2)
Drogue Chute 0.045 0.08 0.0225 1.13906 × 10−5 2.40029 × 10−5 2.40029 × 10−5

Main Chute 0.879 0.21 0.12 0.0063288 0.003275892 0.003275892
Avionics 1.4 0.4 0.124 0.0107632 0.018749414 0.018749414
Payload 4.4 0.65 0.109 29.7025 176.0418431 176.0418431
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Table 10. Motor mass and mass moment of inertia values.

Index Time (s) Mass (kg) Inner Fuel Grain
Radius (m) Ix (kgm2) Iy (kgm2) Iz (kgm2)

0 0 11.2720 0.0176 0.0104 17.3526 17.3526
1 0.04 11.2296 0.0177 0.0104 17.2874 17.2874
2 0.052 11.2026 0.0178 0.0104 17.2459 17.2459
3 0.101 11.0852 0.0180 0.0103 17.0654 17.0654
4 0.19 10.8721 0.0180 0.0101 16.7373 16.7373
5 0.38 10.4237 0.0191 0.0099 16.0483 16.0483
6 0.965 9.0391 0.0215 0.0090 13.9193 13.9193
7 2.176 6.0734 0.0267 0.0068 9.3568 9.3568
8 3.658 4.3040 0.0298 0.0052 6.6331 6.6331
9 4.17 2.4829 0.0329 0.0033 3.8280 3.8280

10 4.493 1.5119 0.0346 0.0021 2.3314 2.3314
11 4.881 1.0435 0.0354 0.0015 1.6093 1.6093
12 5.483 0.6092 0.0362 0.0009 0.9396 0.9396
13 6.137 0.2080 0.0369 0.0003 0.3208 0.3208
14 6.322 0.0123 0.0372 0.0000 0.0190 0.0190

Table 11. Solid motor fuel grain geometry.

Motor Type Star
Web Fraction 0.45
Outer Radius 0.0392125

Initial Inner Radius 0.0176456
Total Grain Length (6GXL) 1.238504
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3.8.1. Mesh Sensitivity Analysis

Similar to the CFD modelling, a mesh sensitivity study was undertaken to ensure the
validity of the results. Three different mesh fidelities were used to determine the validity
of the CSD modelling. This was controlled through the setting of the global mesh size.
Specific mesh information for the mesh cases studied are elaborated within Table 12. The
nominal result of the study can be referred to in Table 13, with Table 14 showing the results
normalised to the coarsest mesh.

Table 12. Mesh information.

Coarse Medium Fine
Element Size (mm) 30 14.82 10

Elements 2284 9833 20713
Average Aspect Ratio 1.378 1.2282 1.216

CP Time (s) 5 30 4686
Actual Time (s) 41 106 4823

Relative CP Time 1 2.585366 117.6341

Table 13. Nominal mesh sensitivity results (Fully Fuelled Rocket).

Real Modes (Hz) Coarse Medium Fine
1 11.8330 11.952 12.913
2 14.5080 14.946 15.596
3 41.1250 41.452 41.917
4 43.3300 43.605 44.169
5 54.2420 55.274 56.549

Table 14. Normalised sensitivity values relative to coarse mesh (Fully Fuelled Rocket).

Mode (Hz) Coarse Medium Fine
1 - 1.010 1.091
2 - 1.030 1.075
3 - 1.007 1.025
4 - 1.008 1.019
5 - 1.006 1.019
6 - 1.019 1.043

Average Difference - 0.013 0.045

The results across the different mesh fidelities show similar values in the frequencies
of the first five modes of the rocket. As modes 1 and 2 represent orthogonal shapes for the
1st-order bending mode and 3 and 4 are likewise for the 2nd-order bending modes, the
frequencies for each are paired throughout all the studies conducted. The trend in pure
radial mode response is also quite similar across the different resolutions. What can be seen,
however, is that all cases are quite similar to each other, with the finest mesh only varying
by 4.5% from the coarse mesh. The quality of the medium and finest mesh, however, is
greatly increased over the coarse mesh, with the average aspect ratio being approximately
1.2, whereas the coarse mesh is 1.3. The marginal difference in quality between these two
meshes, however, can be contrasted by the significantly longer runtime. The fine mesh
requires 45.5 times the run time of the medium mesh for a marginally different result.
With these differences considered, the modal analysis will use a modified medium mesh,
wherein local refinement such as mesh biasing within the nose cone allows for the further
elimination of high aspect ratio elements. Figure 26 visualises the final mesh used within
the rocket.
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Figure 26. Rocket Mesh.

3.8.2. Modal Analysis

As the rocket is not externally constrained throughout the flight, the analysis was
accomplished in absence of boundary conditions. This results in the first six exhibiting
0 Hz in frequency, representing the first six rigid body modes. This results in modes 7 and 8
being the 1st-order bending modes of the rocket X–Y and X–Z planes; modes 9 and 10 being
the 2nd-order bending modes of the rocket; and mode 11 being the pure radial mode [52].
These first five real modes are of interest within this study and thus will be described
as modes 1–5. Figures 27–31 visualised these modes. As the change in mass affects the
visualisation of the mode shapes very little, only the first five modes are showcased here
for the fully fuelled case.
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Figure 31. Pure Radial Mode Shape (X–Z Plane).

In consideration of the change in the motor mass throughout the flight, Figure 32 shows
the change in the overall rocket mass over time and Figure 33 shows the time-frequency
response of the rocket as the fuel is burnt.

It can be seen that with decreasing mass, the frequency response of the rocket shifts
upwards. As the inertia of the rocket likewise decreases, the frequency further shifts,
resulting in larger differences between the different modal frequencies toward the end of
the fuel burn. The rocket moment inertia along the x-axis does not change significantly
throughout the flight, and thus the 5th mode does not shift significantly over time. In short,
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these results indicate a suitable representation of the rocket to be used within the aeroelastic
modelling of the rocket.
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3.8.3. Time-Varying Fuel Model Derivation

In reference to Figures 34 and 35, we can see that the frequency of each mode incre-
mentally changes with the changes in mass and the location of the centre of mass. The
corresponding change in the mode shape is quantified using a modal correlation factor R,
which is found by:

R(Ni) = N0
i ·N

k
i (52)

where 0 denotes the initial, full-mass condition and k denotes a discrete timestep. R returns
a value of 1 if the eigenmodes are parallel and 0 if they are orthogonal. We can plot the
correlation factor for each mode as a function of time to discover how large the mode shape
changes are.

Modes 1 to 3 have very little variation with changing fuel mass; however, modes 4
and 5 vary significantly. These modes are high-order bending forward of the centre of
gravity, so it is evident that these modes are highly dependent on the location of the centre
of gravity.
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In the application of the method outlined in Equations (34)–(45) for this case study,
we can find the variation between the instantaneous SVD method and the eigenmodes
over time.

From this figure, we can conclude that the SVD method sufficiently characterises
the change in the mode shape and frequency, with a minimum modal correlation of
approximately 0.97 and a maximum frequency error of approximately 2.6%.

3.8.4. Modal Extraction

The aeroelastic deformation of the rocket was calculated under several different
representative loading conditions. Figure 36 displays an example of the deformation of the
rocket with a scale factor of 50. This figure clearly shows the mode shape of the rocket as
well as the fact that the point of maximum displacement is at the nosecone.

The deflection of the nosecone (DOF 788 in the structural model) can be displayed un-
der various loading conditions. First, the deflection of the nosecone without any pressures
applied can be found (Figure 37). This is representative of the deformation solely due to
the natural frequency and mode shapes of the rocket.

The deflection of the nosecone tip at Mach 0.5 with the applied pre-stress pressures can
then be found, as shown in Figure 38. This figure displays the deflection of the nosecone
over the time of the fuel burn, and convergence of the deflection is clearly seen. We also
note a great increase in the magnitude of the deflection from approximately 6 × 10−7 m to
4.75 × 10−4 m.
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The aeroelastic derivatives can then be applied to the deflection, as shown in Figure 39.
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Figure 39. Nosecone deflection at Mach 0.5 with aeroelastic derivatives.

Figure 40 shows the interaction of the aerodynamic and structural forces. The fre-
quency of the deflection is noticeably different to that given previously. The maximum
deflection of the nosecone is only slightly reduced (from 4.75 × 10−4 m to 4.0 × 10−4 m)
when compared to the case without the aeroelastic derivatives applied. Finally, we can plot
the deflection of the nosecone over the range of Mach numbers from 0.3 to 2.2 under linear
acceleration (Figure 40).
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Figure 40. Deflection of the nosecone with respect to the Mach number with annotated regions and
specific regimes.

As evident in the figure, there is a noticeable change in the deflection of the rocket
as it moves from the subsonic regime into the transonic regime, and from the transonic
regime into the supersonic regime. The subsonic regime is characterised by a regular
sinusoidal change in the displacement of the nosecone tip. In this region, the deflection
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in the DOF is very low, with a maximum displacement of approximately 0.4 × 10−4 m, or
0.4 mm. Entering the transonic region, the displacement in the DOF changes drastically,
increasing from Mach 0.8–0.95 to 0.55 × 10−4 m before dropping sharply to −1.25 × 10−4

m at the sonic boundary. This change is mirrored after the sonic boundary, rising back to
0.55 × 10−4 m as the rocket exits the transonic regime. The deflection of the nosecone as the
rocket moves further into the supersonic regime shows a large negative deflection before
beginning to return to a more sinusoidal deflection cycle, similar to the subsonic regime.

Here, we note that the absolute magnitude of the deflection remains very small
when compared to the length of the rocket. In this case study, a maximum deflection of
approximately −1.75 × 10−4 m has been found, which is extremely small when compared
to both the length (2.941 m) and diameter (0.131 m) of the rocket. This means that it is
very unlikely that there will be large changes in the aerodynamic characteristics of the
structure for the mission design selected, given the low angles of attack and sideslip angles
developed. However, these effects may become more apparent for a similar rocket design
that is able to be controlled (e.g., a surface-to-air missile) as the control inputs could result
in much larger aerodynamic forces and thus larger deflections.

4. Conclusions

This article has presented a tailored methodology for the derivation of high-fidelity dy-
namics models for sounding rockets, incorporating the aeroelastic response of the platform
in the relevant flight regimes, as well as realistic perturbations and parachute deployment
effects. The adopted time-varying method provides a means to calculate the rocket de-
formation characteristics throughout the flight due to flow-structure interactions and as a
function of both environmental conditions and fuel burn. This supports the development
of a fully-aeroelastic flight simulation, significantly increasing the accuracy of the trajectory
prediction for design and verification purposes. The proposed method is generalisable
to the design of many aerospace vehicles and, thus, holds good potential for future de-
velopments, tailoring and extensions. More specifically, the proposed methodology lays
foundations for the development of both offline and online digital twins, which can be
used to predict/reconstruct the accurate flight trajectory and the effects of the aerodynamic
loading on the aeroelastic response of the rocket. In a real-time implementation, the digital
twin can also compensate for temporary faults of the rocket’s navigation sensors and
support the development of model-predictive control logics for highly-automated flight
guidance systems.

Further research is necessary to address aspects that were left outside the scope of this
project, such as using real weather data and modelling the effects of motor vibration on
the vehicle dynamics. Furthermore, a transient aeroelastic solver could improve the ability
to capture additional structural response effects, which may be generated by unstable
shockwaves or by very large angles of attack. Additionally, adaptive meshing methods will
be used in the future to improve the computational performance of the aeroelastic analysis
tools. In terms of atmospheric modelling, while our proposed approach (i.e., 1-cosine
discrete gust and von Karman continuous turbulence models) is theoretically superior
to other published methodologies, there remain some inherent limitations limiting its
applicability to all possible weather conditions.

The future experimental validation of the developed high-fidelity model will include
a detailed comparison between the model predictions and real flight test data. Following
such experimental phase, the first real-time implementation of the proposed high-fidelity
multi-physics model will be in the form of a virtual (i.e., fully digital) navigation sensor,
compensating for the errors and shortcomings of onboard (i.e., physical) navigation sensors
and systems. Additionally, the possibility of using physics-based Artificial Intelligence
(AI) for the development and real-time integration of digital twins in various aerospace
vehicles will be investigated. These efforts will focus on both high-integrity navigation
sensors and trusted autonomous flight guidance systems for various platforms, including
rockets, drones and reusable space vehicles for point-to-point suborbital transport.
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