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Abstract: The aim of this work is to implement an innovative parameterization and fitting procedure
for the definition of a mathematical model useful to describe a wide range of airfoils. They are parti-
tioned into three sections: central box, leading edge, and trailing edge. Each section is mathematically
represented by two opposed, uniform, non-rational B-spline curves, describing the upper and lower
airfoil segments’ perimeter. A novel approach is used to ensure both the desired continuity between
two adjacent segments (up to 2nd derivatives) and sufficient model versatility and flexibility while
managing a limited number of parameters, defining tangent and curvature vectors as scale factor
variables. These parameters allow for a variable separation approach during the geometric fitting
procedure that can be carried out considering two nested optimization processes, one based on a
genetic algorithm and the other on a numerical gradient evaluation of the objective function. The
representation method has been verified against different airfoils, comparing the geometric and
aerodynamic properties of the input and model-based generated profile. To show the mathematical
model’s capabilities and possible applications, a comparison between existing and proposed airfoil
approximation methods has been provided together with examples of “global” and “local” morphing
and CFD analyses of the resulting airfoils.

Keywords: airfoil optimization; parameterization of the airfoil; morphing; genetic algorithm

1. Introduction

Parameterization of geometry is one of the essential requirements in shape optimiza-
tion, both for inverse design and direct numerical optimization [1]. The design of a new
airfoil could require small changes to the initial geometry and/or the availability of a wider
range of new shapes. Numerous methods have been devised to numerically represent
airfoil geometry [2]. One must keep in mind that in one-dimensional space, a design search
can be accomplished by spanning the q set of possible values assumed by the variable. If
a k-dimensional space is considered, then a larger number of possible evaluations, in the
order of qk, need to be taken in account. On the other hand, such a punctual parameteriza-
tion presents disadvantages due to a large number of parameters (up to an infinite number)
and geometric oscillations induced by a high number of degrees of freedom.

In selecting a geometrical representation for aerodynamic design, the first issue is to
reduce the number of design variables as much as possible while maintaining the profile
representation smoothness and the sufficient freedom and flexibility of the mathematical
model to represent a large class of airfoil sections [3].

The existing parameterization methods can be regarded according to the geometri-
cal extent of the influence of any design variable or considering the possible geometrical
interpretation of the defined parameters. The PARSEC, Bezier, and Bezier–PARSEC param-
eterization methods have been recalled in the following.
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1.1. PARSEC Method

The PARSEC method uses eleven basic parameters to define the aerofoil shape as
shown in Figure 1. Various parameters have physical relevance for the aerodynamic flow,
and they are: leading edge radius (rLE); upper maximum thickness location (XUP, ZUP),
lower minimum thickness location (XLO, ZLO); upper and lower curvature (ZxxUP, ZxxLO);
trailing edge coordinate (ZTE) and direction (αTE); trailing edge wedge angle (βTE) and
thickness (∆ZTE);
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Figure 1. Parsec method.

In this method, a linear combination of shape functions describes the aerofoil shape.

Zk = ∑6
n=1 an,kX

n−1
2

k (1)

The an can be expressed as a function of the defined geometric parameters. The
subscript k will take values 1 and 2 for the upper and lower surface, respectively. In this
way, using these parameters, one can control the maximum curvature on the upper and
lower surfaces and their location. However, PARSEC does not provide sufficient control
over the trailing edge shape, where important flow phenomena can occur, because it fits a
smooth curve between the maximum thickness point and the trailing edge, making changes
difficult at the trailing edge zone.

1.2. Bezier Parameterization

The airfoil consists of two curves, namely the camber line and thickness distribution.
To obtain the upper and lower boundaries of the aerofoil, we add and subtract the thickness
distribution to and from the camber line distribution, respectively. A Bezier curve is
controlled with the help of its control points in a plane. It passes through initial and final
control points, but the Bezier curve does not need to pass through each intermediate control
point which defines the shape of the aerofoil.

An n-degree Bezier curve is defined by (n + 1) control points. A three-degree Bezier
curve will have four control points and a shape as shown in Figure 2, depending on the
position of control points.
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The shape functions of Bezier curves are Bernstein polynomials. The shape function is
denoted by Bn

i , where

Bn
i =

(
n
i

)
(1− t)n−iti, i = 0, 1, 2, 3; (2)
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and
(

n
i

)
= n!

i!(n−i)! is the binomial coefficient.

For a Bezier curve having n = 3:

B3
0 = (1− t)3; B3

1 = 3t(1− t)2; B3
2 = 3t2(1− t); B3

2 = t3 (3)

The Bezier curve associated with the given control points can be expressed as:

P(t) = ∑n
i=0 PiBn

i (t) (4)

As such, a Bezier parameterization of an airfoil has control points that are only indi-
rectly determined by the underlying aerodynamics.

1.3. Bezier-Parsec Parameterization

This method combines Bezier and PARSEC parameterization techniques, drawing on
the advantages of both approaches. The Bezier–PARSEC parameterization uses PARSEC
variables as parameters, which are used to define four separate Bezier curves. These
four curves represent the leading and trailing edge of the camber line and thickness
distribution. The Bezier–PARSEC parameterization uses second-order continuity to join
the leading and trailing edges. Bezier–PARSEC parameterization is denoted by BP ijkl,
where i and j represent the order of the leading and trailing edge of the thickness curve,
and k and l represent the order of the leading and trailing edges of the camber curve.
Bezier–PARSEC parameterization increases the robustness and convergence speed for
aerodynamic optimization using genetic algorithms.

1.4. BP 3333 Parameterization

All four curves of the Bezier–PARSEC Parameterization, i.e., leading and trailing edges
of the thickness curve and leading and trailing edges of the camber curve, are defined by
polynomials of the third order. Parametrically a third-degree Bezier curve is given by:

x(u) = x0(1− u)3 + 3x1u(1− u)2 + 3x2u2(1− u) + x3u3

y(u) = y0(1− u)3 + 3y1u(1− u)2 + 3y2u2(1− u) + y3u3 (5)

where u varies from 0 to 1. The BP 3333 parameterization depends on the 12 aerodynamic
parameters shown in Figure 3. There are no free Bezier points in BP 3333.
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Leading edge thickness curve

x0 = 0; x1 = 0; x2 = rt; x3 = xt;
y0 = 0; y1 = 3kt(xt − rt)

2/2 + yt; y2 = yt; y3 = yt;
(6)

Trailing edge thickness curve

x0 = xt; x1 = 2xt − rt; x2 = 1 +
[
dzte −

(
3kt(xt − rt)

2/2 + yt

)]
cot(βte); x3 = 1 ;

y0 = yt; y1 = yt; y2 = 3kt(xt − rt)/2 + yt; y3 = dzte;
(7)

Leading edge cambers curve

x0 = 0; x1 = rccot(γle); x2 = xc −
√

2(rc − yc)/3kc; x3 = xc;
y0 = 0; y1 = rc; y2 = yc; y3 = yc;

(8)

Trailing edge camber curve

x0 = xc; x1 = xc +
√

2(rc − yc)/3kc; x2 = 1 + (Zte − rc)cot(αle); x3 = 1;
y0 = yc; y1 = yc; y2 = rc; y3 = Zte;

(9)

These two techniques combine the advantages of both methods. The BP 3333 technique
rapidly converges due to the smaller number of parameters involved. However, BP 3333
does not control the trailing edge in detail due to a smaller number of parameters. The BP
3434 technique (here not reported) overcomes the drawback of BP 3333, but convergence
speed reduces due to a more significant number of variables. High-speed digital computers
can compensate for the slow convergence rate of BP 3434. Hence, BP 3434 can be effectively
applied for the optimization of an airfoil.

In this work, a novel approach is presented for the airfoil parametrization. The
approach takes into account the currently available methodologies but, at the same time,
gets closer to real design applications and aircraft geometrical/functional configuration,
relying upon a mathematical model that:

• easily allows airfoil shape morphing for leading edge/trailing edge rotation (global
morphing) and skin deformation (local morphing).

• easily enables the identification of functional areas and their contribution evaluation
to the forces involved in the physical phenomena under analysis.

• easily allows the application of geometric constraints.
• involves a limited/reduced number of parameters for airfoil representation.
• is eligible/suitable for developing aerodynamic, structural, or FSI optimization design

processes on existing wing aircraft airfoils to evaluate the opportunity for morphing
technology implementation [4].

In the proposed methodology, the airfoil mathematical representation is not based on a
classical airfoil identification that includes the superposition of camber and thickness distri-
butions and does not focus on the classical engineering parameters as in the PARSEC airfoil
parameterization method. The 2D airfoil is partitioned in three sections [5]: central box,
leading and trailing edge. Each of these three main sections is mathematically represented
by two opposed, hand-side, uniform, non-rational B-spline curve segments describing
the upper and lower segments’ perimeter. The curves continuity between two connected
segments, belonging to two different sections, is ensured up to the 2nd derivatives. The
originality of the approach used for the parameters setting consists in ensuring both the
desired curve continuity and sufficient model freedom and flexibility with a limited num-
ber of variables, thanks to the introduction of tangent and curvature vectors scale factor
parameters allowing for:

• variables separation during the geometric fitting process.
• smooth modification of the geometry of curved segments’ edges.
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Relying upon variable separation, the geometric fitting procedure can be carried out
innovatively considering two nested optimization processes, the first based on a genetic
algorithm and the second based on numerical gradient evaluation of the objective function.

The airfoil representation method has been verified against different profiles, com-
paring the points and aerodynamic properties of the input profile and its model-based
generated airfoil. A comparison between the geometrical approximation performance
of the proposed method and the existing ones has been performed considering the pa-
rameterizations results reported in [2]. Each segment’s contribution to the aerodynamic
force has been evaluated. This contribution has been decomposed in the direction of the
asymptotic velocity and of its normal, to determine the lift and drag components for both
unmorphed and morphed shapes. Finally, an example of global and local morphing CFD
optimization process results has been provided to show possible applications of the airfoil
mathematical model.

2. Descriptions of the Methodology

The procedure defining the 2D airfoils mathematical model with a reduced number of
parameters is summarized in the flowchart described in Figure 4.

1 
 

 

Figure 4. 2D airfoils mathematical model flowchart procedure.
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Each flowchart step will be described in detail in the subsections of this paragraph. The
first step considers the input of a 2D airfoil whose geometric perimeter is represented by
Cartesian coordinate pairs, detailed in Section 2.1. The second step deals with the partition
of the input airfoil into sections and again the partition of each section into segments, upper
and lower ones, presented in Section 2.2. In the third step, described in Section 2.3, each
single airfoil segment is mathematically represented by B-spline curves. The considered
curve parameters are the control points (CPs), whose number can be reduced with the
introduction of scale factor parameters (SFs). The fourth step considers how the geometric
boundary conditions have been applied at the extremity of each segment, in Section 2. The
fifth step describes the procedure to evaluate each segment parameter, valid for the entire
airfoil model representation, in Section 2.5.

The airfoil mathematical model and the aerodynamic analysis have been developed
considering the MATLAB R2022a update 3 [6], the open-source Xfoil 6.99 software [7], and
the Octave Nurbs package software [8]:

• MATLAB is the main software for implementing optimization algorithms and for
calling the CFD Xfoil 6.99 code inside the optimization loops.

• Xfoil 6.99 is the aerodynamics solver for evaluating the 2D airfoil aerodynamic properties.

The hardware used for all the performed simulations is an AMD 3.80 GHz and
16 GB RAM.

2.1. Input 2D Airfoil

The input airfoil is given by points in the 2D Cartesian coordinate system P(xi, yi),
i = 1, . . . , n, representing the airfoil perimeter. The P(xi, yi) coordinates are provided
counterclockwise, starting from the trailing edge and following the airfoil’s upper side,
then coming back to the trailing edge following the airfoil’s lower side. The input airfoil
points can be taken from different sources:

• from the University of Illinois at Urbana-Champaign Dept. of Aerospace Engineering
website, in particular from the UIUC Airfoil Data Site website section [9,10];

• from the book “Theory of wing sections” [11];
• from the library of the Xfoil 6.99 software geometric tool [12].

Three airfoils have been chosen for verifying the mathematical model capability to
represent different airfoil geometries, starting from a symmetric one: NACA 0012, NACA
23012, and NREL’s S809. In addition, three airfoil geometries have been reduced with the
proposed method to perform a comparison with existing methods: RAE2822, NACA 0406,
NACA 0160.

2.2. Airfoil Partitioning

The airplane wing usually is characterized by three functional areas: the central
box (CB), which can be considered fixed without any morphing ability due to structural
constraints; the forward, leading edge (LE), and backward extremity, trailing edge (TE),
areas with geometric modification capabilities. It has been therefore decided to partition
the airfoil into three sections with the opportunity for the user to define the partition
intervals so that the morphing portion can increase or decrease due to design choices. In
the following, the LE, CB and TE have been defined by the chord percent partition points
at [0.0 0.3 0.7 1.0], but the user could modify these values if necessary:

• LE section starting from the airfoil point P(x, y) of minimum x coordinate up to the
30% of the airfoil chord: 0 ≤ x/c ≤ 0.3.

• CB section starting from 30% up to 70% of the airfoil chord: 0.3 ≤ x/c ≤ 0.70.
• TE section starting from 70% up to 100% of the airfoil chord: 0.70 ≤ x/c ≤ 1.

During the partition phase, if partition points are not already present among the input
airfoil data, they are included, and the closest points, within a Euclidean distance tolerance
of ±1 × 10−3, are removed. Each zone is characterized by two curve segments: the upper
and the lower, for a total of six curve segments. The partition points identify the curve
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segments’ extremities. The consecutive segments are connected at their extremity points,
here referred to as joints, shown in Figure 5.
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The output of the airfoil partitioning phase consists of the partition of the input airfoil
Cartesian coordinates into 6 segments, each with two joints, belonging to 3 different sections.
Table 1 describes the geometric segment topology of the partitioned airfoil.

Table 1. Partitioned airfoil topology.

Segment n◦ Preceding
Segment

Following
Segment Joints

1 6 2 1,2
2 1 3 2,3
3 2 4 3,4
4 3 5 4,5
5 4 6 5,6
6 5 1 6,7

2.3. Mathematical Airfoil Segments Representation

For this work, a parametric representation [13] of the curve segments was selected,
and, without loss of generality, the u parameter domain can be considered normalized
to [0 1]:

C(u) = (x(u), y(u)) 0 ≤ u ≤ 1 (10)

with C(u) indicating a uniform, non-rational B-spline (UNRBS) [13].

2.3.1. UNRBS

The general definition of UNRBS curves is:

C(u) = ∑n
i=0 Ni,p(u)Pi 1 ≤ u ≤ 0 (11)

U = {u0, . . . , um} =

0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

where m = n + p + 1 (12)

where: Pi are the n control points (forming a control polygon); {Ni, p(u) } are the pth-degree
(order p + 1) B-spline basis functions in general defined on the non-periodic and nonuniform
knot vector U whose parameter values u (u0 < u1 < . . . ui < 1) are called breakpoints. The
segments, denoted by Ci(u), 1 ≤ i ≤ m, are constructed so that they join with some level of
continuity not necessarily the same at every breakpoint.

The ith B-spline basis function of p-degree (order p + 1), denoted by Ni, p(u), is
defined as

N(i,0) =

{
1 if u(i) ≤ u ≤ u(i+1)

0 otherwise
(13)
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N(i,p) =
u− u(i)

u(i+p) − u(i)
N(i,p−1)(u) +

u(i+p+1) − u

u(i+p+1) − u(i+1)
N(i+1,p−1)(u) (14)

The UNRBS is a non-rational pth-degree B-spline curve characterized by U knot vector
break points’ uniform distribution, as shown in Figure 6.
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The considered UNRBS is the cubic one, p = 3, and its mathematical representation is
defined by:

C(u) = ∑n
i=0 Ni,p(u)Pi 1 ≤ u ≤ 0 (15)

U = {u0, . . . , um} =

0, 0, 0, 0︸ ︷︷ ︸
3+1

, u4, . . . , um−4, 1, 1, 1, 1︸ ︷︷ ︸
3+1

where m = n + 4 (16)

N(i,0) =

{
1 if u(i) ≤ u ≤ u(i+1)

0 otherwise
(17)

N(i,1) =
u− u(i)

u(i+1) − u(i)
N(i,0)(u) +

u(i+2) − u
u(i+2) − u(i+1)

N(i+1,0)(u) (18)

N(i,2) =
u− u(i)

u(i+2) − u(i)
N(i,1)(u) +

u(i+3) − u
u(i+3) − u(i+1)

N(i+1,1)(u) (19)

where
u(k) − u(k−1) = ∆u = cos t k = 4 . . . m− 3 (20)

∆u = 1/(m− 1) (21)



Designs 2023, 7, 28 9 of 38

The uniform knot vector breakpoints distribution and the alternate segment parametric
curve orientation (see Section 2.3.3) provide a sort of “symmetry” to the airfoil mathematical
model representation. This mathematical configuration provides a more regular curve
behavior at the neighbor segments’ point of connection, reducing the possible collapsing
and x-coordinate inversion of the control points during the geometry morphing.

2.3.2. Curve Derivatives in Parametric and Cartesian Formulation & SF Parameter

The 1st curve derivative in parametric (tangent vector) and Cartesian formulation can
be written as follows [14]:

C′(u) =
[
C′x(u) , Cy′(u)

]
=
[
x′(u), y′(u)

]
=

[
dx
du

,
dy
du

]
; (22)

y′(x) =
dy
dx

=
dy
du

du
dx

=
y′(u)
x′(u)

=
C′y(u)

C′x(u)
(23)

Multiplying the C’(u) vector by a scale factor parameter (SF), the value of the 1st
derivative does not change:

SF C′(u) = SF
[
C′x(u) , C′y(u)

]
= SF

[
x′(u), y′(u)

]
= SF

[
dx
du

,
dy
du

]
; (24)

y′(x) =
SF C′y(u)

SF C′x(u)
= y(x). (25)

The curve’s 2nd derivative in parametric (tangent vector) formulation can be
written as:

C′′ (u) =
[
C′′x (u) , C′′y(u)

]
= [x′′ (u), y′′ (u)] =

[
d2x
du

,
d2y
du

]
; (26)

y′′ (x) =
d2y
dx

=
d

du

(
dy
du

du
dx

)
du
dx

=
d

du

(
C′y(u)

C′x(u)

)
1

C′x
=

dC′y
du

1(
C′x
)2 +

C′′y
C′′x

d
du

1
C′x

(27)

Then, considering y’(x) as function of C’(u):

y′′ (x) =
C′′y −C′′x y′(

C′x
)2 =

C′′y −C′′x C′y/C′x(
C′x
)2 (28)

Multiplying the curvature vector C”(u) by the scale factor parameter (SF) used for the
tangent vector C′(u), but this time squared, the value of the 2nd derivative does not change:

SF2 C′′ (u) = SF2[C′′x (u) , C′′y(u)
]
= SF2[x′′ (u), y′′ (u)] = SF2

[
d2x
du

,
d2y
du

]
; (29)

Considering the scaled tangent vector SF C′(u), it results:

y′′ (x) =
SF2 C′′y − SF2C′′x y′(

SF C′x
)2 =

C′′y −C′′x C′y/C′x(
C′x
)2 = y′′ (x) (30)

2.3.3. UNRBS Boundaries Control Points in Terms of C′ C” and SF

The 1st and 2nd vector derivatives at the extremities curve segment (u = 0, u = 1) can
be expressed in terms of the UNRBS parameters (control points Pi, breakpoints {ui}, p curve
degree):

C′(0) =
p

up+1
(P1 − P0); (31)
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C′(1) =
p

1− um−p−1
(Pn − Pn−1); (32)

C′(0) =
p(p− 1)

u2
p+1

P0 −
p(p− 1)

up+1

(
1

up+2
− 1

up+1

)
P1 +

p(p− 1)
up+1up+2

P2; (33)

C′′ (1) =
p(p− 1)
u2

m−p−1
Pn −

p(p− 1)
um−p−1

(
1

um−p−2
− 1

um−p−1

)
Pn−1 +

p(p− 1)
um−p−1um−p−2

Pn−2; (34)

Given or assigned the:

• extremities of the curve segment coordinates P0 = P(x0, y0) and Pn = P(xn,yn)
• tangent vectors at the extremities of the curve segment C′(0) and C′(1)
• curvature vectors at the extremities of the curve segment C”(0) and C”(1)

It is possible to evaluate the pair coordinates of the P1 = P(x1, y1) P2 = P(x2, y2) and
Pn−1 = P(xn−1, yn−1)Pn−2 = P(xn−2, yn2) control points in terms of SF parameter:

P1 = P0 +
up+1

p
SF C′(0); (35)

Pn−1 = Pn −
(
1− um−p−1

)
p

SF C′(1); (36)

P2 = − (p− 1)
up+1

P0 − (p− 1)

(
1

up+2
− 1

up+1

)
P1 +

up+1up+2

p(p− 1)
SF C′(0); (37)

Pn−2 = −p(p− 1)
um−p−1

Pn − (p− 1)

(
1

um−p−2
− 1

um−p−1

)
Pn−1 +

um−p−1um−p−2

p(p− 1)
SF C′′ (1); (38)

Introducing the SF parameter, it is possible to modify the P1, Pn−1, and the P2
and Pn−2 control points’ position by varying the velocity and acceleration of the para-
metric curve segment at its extremities but keeping the same 1st and 2nd Cartesian
derivatives values.

2.3.4. Segment Parameters

The airfoil, as seen in Section 2.2, is partitioned into three areas: LE, CB, and TE. Each
area is delimited by two curve segments, the upper and lower, for a total of six segments.
A single airfoil segment is mathematically represented by a uniform B-spline curve defined
by the Control Points (CPs):

• boundary control points (BCps).
• interior control points (InCps).

The advantage of this approach is that free-form geometrical shapes can be represented
with fewer design variables compared to the direct use of pairs coordinates.

Each CP P(xi, yi) is characterized by two parameters, its Cartesian coordinates.
Figure 7 shows an example of airfoil segment CPs distribution and the considered B-spline
u parameter orientation. Figure 8 shows the tangent curvature vectors at the segment
5 extremity points.
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Figure 8. Central Box segment 5 BCPs, InCPs & C′ (tangent), C” (curvature) vectors with black and
red colors respectively.

The BCPs are useful to define the position of the segment extremities and the related
tangent (C′) and curvature (C”) vectors. The number of BCPs can vary on each segment
extremity from 1 up to 3 depending on the geometric condition to be imposed: 1 BCP
for C0 continuity; 2 BCPs for C1 continuity; 3 BCPs for C2 continuity. The InCPs are all
the CPs located between the two boundaries of CP groups. Tables 2 and 3 summarize, in
segment-wise order, the number of parameters for C0 and C2 segment boundary condition
requirements related to the limit cases; this is done by specifying the:

• boundary conditions assigned at the extremities of each segment: C0 up to
C2 continuity.

• required number of BCPs to satisfy the boundary conditions.
• desired number of InCPs.
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Table 2. Model parameters ensuring C0 continuity (more model flexibility).

Segment n◦ BC 0 int. BC 1

Joint Continuity CPs CPs Joint Continuity CPs Tot. Seg.
Parameters

1 1 C0 0 1 2 C0 2 6
2 3 C0 2 1 2 C0 2 10
3 3 C0 2 1 4 C0 2 10
4 5 C0 2 1 4 C0 2 10
5 5 C0 2 1 6 C0 2 10
6 1 C0 0 1 6 C0 2 6

Partial sum 8 6 12

Tot CPs 26

Tot parameters 52

Table 3. Model parameters ensuring C2 continuity (less model flexibility).

Segment n◦ BC 0 int. BC 1

Joint Continuity CPs CPs Joint Continuity CPs Tot.
Parameters

1 1 C0 0 1 2 C2 0 2

2 3 C2 0 1 2 C2 0 2

3 3 C2 0 1 4 C2 0 2

4 5 C2 0 1 4 C2 0 2

5 5 C2 0 1 6 C2 0 2

6 1 C0 0 1 6 C2 0 2

Partial sum 0 6 0

Tot CPs 6

Tot parameters 12

The positions of the extremity points of the segment curves were assigned during
the partition phase, so the BCPs at the segment extremities do not have to be considered
as variables. Table 2 shows that the required number of parameters for describing the
partitioned airfoil geometry, ensuring the C0 continuity condition between the segments, is
52. In this case, the mathematical model is more flexible but unable to resolve the 1st and
2nd derivative discontinuities at the segment joints. From Table 3, it is possible to see that
the number of parameters useful for describing the partitioned airfoil geometry, ensuring
the C2 continuity condition between the segments, is 12. In this case, the mathematical
model is less flexible.

By adjusting the parameters topology of each segment, it is possible to get a more or
less complex mathematical model between the two limiting cases and represent a wide
range of 2D airfoils for a design optimization process. The next subsection describes the
parameters topology considered in this document.

2.3.5. Segments Reduced Parameters

A way to reduce the number of parameters of the mathematical model while simulta-
neously preserving its capacity to ensure the desired curve continuity and to describe a
wide range of airfoil geometry families is to introduce the scale factor parameters (SFps).

The SFps are generally two for each segment, and one SFp for each extremity. By
varying the SFps, it is possible to modify the position of the BCPs but, at the same time, to
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keep the same values for 1st and 2nd Cartesian derivatives of the segment curve, shown
in Section 2.3.2 as Equations (25) and (30), and to satisfy the desired boundary conditions
at the segments’ extremities. In the following Table 4, each segment’s parameters and
boundary conditions are summarized for the reduced case.

The number of parameters has been reduced from 52 to 22, Table 4, no longer consid-
ering the BCPs parameters but considering the SFs parameters in their place. The upper
and lower SFs boundary limits have been evaluated by imposing the max min x coordinate
range for the segment BCPs. In the end, the airfoil is represented by 2 SFps for the segments
from 2 to 5, 1 SFp for segments 1 and 6, and the desired number of InCPs (minimum 1) for
each segment ((x, y) coordinates parameters).

Table 4. Model parameters ensuring C2 continuity (less model flexibility).

Segment n◦ BC 0 int. BC 1

Joint Continuity CPs SF CPs Joint Continuity CPs SF Tot.
Parameters

1 1 C0 0 0 1 2 C2 0 1 3

2 3 C2 0 1 1 2 C2 0 1 4

3 3 C2 0 1 1 4 C2 0 1 4

4 5 C2 0 1 1 4 C2 0 1 4

5 5 C2 0 1 1 6 C2 0 1 4

6 1 C0 0 0 1 6 C2 0 1 3

Partial sum 0 4 6 0 6

Tot parameters 22

Table 5 reports the established BCPs x coordinate extremities intervals in terms of
the percentage of the segment length and the related SFs upper and lower bounds for the
NACA 0012 airfoil.

Table 5. BCPs user-defined bounds & SF evaluated upper and lower bounds.

Seg. n◦ BC 0 BC 1

Joint CP CP SF SF Joint CP CP SF SF
Xmin% Xmax% Lb Ub Xmin% Xmax% Lb Ub

1 1 - - - - 2 85 96 0.1549 0.4243

2 3 5 15 0.5819 1.6249 2 85 96 0.6282 1.8958

3 3 5 15 0.2335 0.6911 4 85 99 0.1958 1.0372

4 5 5 15 0.2747 0.8131 4 85 99 0.2303 0.9511

5 5 5 15 0.3141 0.9511 6 85 96 0.2909 0.8149

6 7 - - - - 6 85 96 0.1549 0.4243

Figure 9 shows an example of the results obtained for the left side SFps upper and
lower bounds of NACA 0012 segment 3 (upper LE segment).

Figure 10 shows the NACA 0012 segments’ CPs distribution (BCPs and InCPs), and
Table 6 the SFs values after an optimization cycle.
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Table 6. Segment-wise evaluated SFs.

BC 0—SFs BC 1—SF

Seg. n◦ Joint Lb Value Ub Joint Lb Value Ub

1 1 - - 2 0.1549 0.2574 0.4243

2 3 0.5819 1.3110 1.6249 2 0.6282 1.6527 1.8958

3 3 0.2335 0.6777 0.6911 4 0.1958 0.8279 1.0372

4 5 0.2747 0.6193 0.8131 4 0.2303 0.5360 0.9511

5 5 0.3141 0.9332 0.9511 6 0.2909 0.6846 0.8149

6 7 - - 6 0.1549 0.2152 0.4243
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2.4. Segment Geometric Boundary Conditions

In Section 2.3.2, the 1st and 2nd Cartesian derivatives of the segment curve have been
expressed as a function of the parametric C′ and C” components; see Equations (23) and (28).
To impose the desired continuity boundary condition at the segment extremities, it is
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necessary to evaluate the tangent C′ and curvature C” vectors from the available data while
taking into account the airfoil geometry partition topology, as shown in Table 1. To improve
the segment curves’ smoothness at joint points, the C′ and C” vectors at the extremities
of the curve segments were evaluated by interpolating the input segment data through a
B-spline interpolation routine and taking into account points from the neighbor segments.

A possible and currently implemented segment-wise strategy and priority sequence
for the evaluation of the parameter and the geometric boundary conditions assignment is
summarized in Table 7; even if the current choice of the parameter topology ensures the
evaluation of the variables independently from the segment-wise priority and makes the
same suitable for a parallel calculation.

Table 7. Segment-wise strategy boundary conditions implementations.

Seg. Priority Joints Continuity Boundary Data
Tangent Curvature

Numerical Evaluation

1 2
1 C0 Input Airfoil point -

2 C2 Segment 2 Segments 1 & 2
Tangent curvature vector B-spline interpolation

2 1
2 C2 Input Airfoil points Segments 1 & 2

B-spline interpolation

3 C2 Input Airfoil points Segments 2 & 3
B-spline interpolation

3 3
3 C2 Segment 2 Segments 2 & 3

Tangent curvature vector B-spline interpolation

4 C2 Input Airfoil points Segments 3 & 4
B-spline interpolation

4 4
4 C2 Segment 3 Segments 3 & 4

Tangent curvature vector B-spline interpolation

5 C2 Segment 5 Segments 4 & 5
Tangent curvature vector B-spline interpolation

5 1
5 C2 Input Airfoil points Segments 4 & 5

B-spline interpolation

6 C2 Input Airfoil points Segments 5 & 6
B-spline interpolation

6 2
6 C2 Segment 5 Segments 5 & 6

Tangent curvature vector B-spline interpolation

7 C0 Input Airfoil points -

2.5. Segment Fitting Procedure for Reduced Parameters

The fitting process aims to find the optimum parameter values for each UNRBS curve
segment, minimizing the maximum Euclidean distances between the evaluated points and
the related airfoil data points [15–17]. The reference data used to evaluate the parameters
are the input airfoil points, segments-wise partitioned. The fitting process is composed of
two phases:

• 1st phase of pre-processing the airfoil data (Figure 11): this phase is characterized by
three steps:

1. C′ and C” vectors evaluation at each segment joint.
2. segments BCPs positioning in accordance with the C′ and C” vectors.
3. SFps upper and lower bounds evaluation.
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Figure 11. Segment fitting process, step1 flowchart.

The C′ and C” vectors can be evaluated by interpolating, through a B-spline interpola-
tion routine, the input segment data airfoil points belonging to the neighbor segments, thus
improving the smoothness of the curves at joints. Then, the BCPs 2D space positioning is
evaluated according to Equations (35)–(38) of Section 2.3.3.

The segments SFps upper and lower bounds are evaluated considering the user-
defined max/min x-coordinate range for the segment BCPs—see the example in Sec-
tion 2.3.5—, as shown in Table 5. Algorithm 1 represents the pseudocode of the airfoil
pre-processing phase.

Algorithm 1 [InitialAirfoil C′,C”,SF_lb, SF_ub]=Airfoil_preprocessing ( )

1 Variable_Declaration ( ) /* Airfoil global variable . . . definition*/
2 File_Inizialization ( ) /* fine name definition */
3 Folder_Inizialization ( ) /* making working folders */

4
Airfoil_Topology ( ) /* x partitions, seg.s discretization
typology, fixed/free CPs,
x% seg. boundaries . . . definition */

5 Airfoil_Load() /* load target airfoil points, */
6 Initial_Airfoil_PartitioningSeg( ) /* target airfoil partitioning */
7 Create_Initial_B-pline_curves ( ) /* create segment b-spline curves */

8

[C’,C”]=Segments_Joints_dC_ddC ( ) /*evaluating C’ & C” vectors at
each joint from the target airfoil
points coordinates and apply
the same to the current airfoil
b-spline segments */

9
[SF_lb,SF_ub]=Segment_bounds ( ) /* given the x% seg. boundaries the
SFs upper and lowerboundaries are evaluated*/

10 end Airfoil_preprocessing

• 2nd phase segment reduced parameters evaluation (Figure 12): This step applies to all
the segments whose C’ and C” extremity vectors are already known and assigned. The
aim is to find the optimum segment UNRBS curve parameters that best fit the input
segment airfoil points with the desired continuity boundary extremity conditions. Two
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nested optimization routines perform the parameter evaluations, an external and an
internal one, considering the reduced segment parameters as variables, namely the
SFs for the external routine, varying between the upper and lower bounds assessed in
step 1, and the InCPs for the internal one. More specifically,

• the external optimization cycle is based on a MATLAB genetic optimization function
gamultiobj [18–22] dedicated to the two SFps only with two objective functions:
obj1: sum((Euclidean distance between points). obj2: max(Euclidean distance between
points). The two SFs parameters affect the position of the BCPs that define the
lower and upper bounds of the interior CPs coordinates used for the inside
optimization cycle.

• the internal optimization cycle is based on MATLAB non-linear optimization fmin-
con [23–27] function involving the interior CPs parameters with: -objective function
obj: minimizing the max (Euclidean distance between points); -upper and lower
bounds: defined by the BCPs coordinates as a function of the SFps, output of the
GA external cycle optimization.
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Algorithms 2–4 are the segment fitting process step 2 pseudocodes and the setting of
MATLAB external gamultiobj, nested fmincon algorithms.
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Alghoritm 2 [InitialAirfoil]=Airfoil_Fitting_process (InitialAirfoil, C’,C”,SF_lb, SF_ub)

1 For each curve segment

2

[InitialAirfoil]=SegOptim_InCPs_SFs_nested_GA_Fmin(InitialAirfoil)
/* evaluation of segment SFps and InCPs
coordinates by:
- external gamultiobj
- nested fmincon
MATLAB algorithms */

3 SaveAirfoil (InitialAirfoil); /* save working InitialAirfoil variables*/
4 Endfor
5 end Airfoil_Fitting_process

Alghoritm 3 Matlab gamultiobj genetic algorithm settings

1

[f1,f2]= fit_fcn (Airfoil current segment) /*fitness function for evaluation
of two objective functions:
f1: max abs(Euclidean points distances);
f2: sum abs(Euclidean points distances);
fit_fnc calls the MATLAB fmincon
algorithm*/
/

2 n_vars:= n_SFs /* number of segment curve SFs */
3 A = []; b = []; Aeq = [];beq = []; /* linear constrains */

n_seg=current segment number /* segment under fitting procedure*/

4
lbGa= SF_lb (n_seg); /*assign segment lower bound
ubGa= SF_ub(n_seg) and upper bound*/

5
[c,ceq]=nonlcon(Airfoil current segment) /*check for avoiding b-spline
segment curve x coordinates
inversion*/

6 n_generationsGA=1; population_n=50;
opt = optimoptions(@gamultiobj,’PlotFcn’,’gaplotpareto’,
‘MaxGenerations’,n_generationsGA,
‘PopulationSize’,population_n,
‘PopulationType’,’doubleVector’

7 [SFs_GA,fval_GA]=gamultiobj(fit_fcn,n_vars,A,b,Aeq,beq,lbGa,ubGa,nonlcon,opt)

8
AirfoilPoints(InitialAirfoil); /*update the segment curve geometry
properties and discretization*/

Alghoritm 4 MATLAB fmincon gradient based algorithm settings

1
[BCPs0,InCPS0]=B-spline_SegmentCurve_updating(InitialAirfoil,
C′,C”,SF_GA)

2

[y]=fit (InitialAirfoil) /* updating InCPsand B-spline cuve,
Evaluating objective function:
y=max(abs(Eucledian curve points
distance)) */

3 IntCps0 /* initial internal control points*/
4 A = []; b = []; Aeq = [];beq = [];

5
lb = flb(BCPs0); ub= flb(BCPs0) /* InCPs upper and lower bounds
evaluated as function of the defined
boundary control points BCPs0 */

6
[c,ceq]=nonlcon(Airfoil current segment) /*check for avoiding b-spline
segment curve x coordinates
inversion*/

7 opts = optimset(‘fmincon’, ‘TolFun ‘,1.e−12, FinDiffRelStep, 1.e−12);
8 [InCP_fmin,fval_fmin]=fmincon(fit, InCP 0,A,b,Aeq,beq,lb,ub,[],opts);

9
AirfoilPoints(InitialAirfoil); /*update the segment curve geometry
properties and discretization*/
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The reduced parameterization, as conceived, allows the parallelization of the single
curve segment fitting process. Each segment fitting process is independent of the other
ones. In the following subsection, an example of the results of the segment 5 (lower CB)
fitting process of the NACA 0012 airfoil is reported.

Segments 5 (CB section) Fitting Process Results

Segment 5 belongs to the CB of the airfoil. The reduced SFps and InCPs can be
evaluated by applying steps 1 and 2 of the segment fitting process:

• The first step for evaluating the extremities boundary conditions, C’ C” vectors, and
the SFps upper and lower bounds.

• The second step for evaluating 4 reduced parameters: two (2) InCPs coordinates and
two (2) SFps.

Figures 13 and 14 show the NACA 0012 external genetic algorithm optimization
iteration of the segment 5 step 2 for the SFps (1 generation with a population of 50) and the
evaluated SFps optimum values.
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Figure 15 shows the NACA 0012 step 2 inside optimization algorithm iterations and
optimum InCP parameters of segment 5, with the associated max geometrical error made
on the same segment shown in Figure 16.
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curve and input points.

3. Results

The following Sections 3.1–3.3 shows a comparison between the geometric and aero-
dynamic properties of the input airfoil and the airfoil constructed by the mathematical
model with reduced parameters: SFps and InCPs.

For each comparison, there are four typologies of figures:

• geometrical input airfoil.
• maximum Euclidean distance for each segment between the input airfoil and evaluated

airfoil points.
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• the input airfoil aerodynamic properties compared with the evaluated airfoil properties
considering two different discretizations: the input airfoil and an augmented one.

The analysis was performed on three airfoils to show the mathematical model’s
capability to describe different 2D profile families. NACA 0012, NACA 23012, and NREL’s
S809 airfoils were considered to validate the mathematical model with reduced parameters.

The geometrical maximum Euclidean distance observed in all the analyses was of
the order O (10−4) and the aerodynamic properties of the evaluated airfoils with equal
and increased discretization have all the same qualitative and quantitative behavior of the
input airfoil aerodynamic properties. Table 8 reports the segment-wise and total timing
required to evaluate the parameterized airfoil by a sequential calculation. Table 9 reports
the segment-wise max Euclidean distance error and the sum of all absolute value Euclidian
distance errors for each segment, where: max stay for maximum, abs absolute functions,
and dy vertical abscissa difference.

Table 8. New mathematical model fitting process segment-wise computation time.

Seg. N◦ NACA 0012
(hh:mm:ss)

NACA 23012
(hh:mm:ss)

NREL’s S089
(hh:mm:ss)

1 00:09:26 00:08:54 00:07:56
2 00:16:01 00:14:05 00:07:53
3 00:14:22 00:13:38 00:14:07
4 00:14:25 00:06:30 00:15:13
5 00:15:14 00:16:00 00:13:51
6 00:08:24 00:09:35 00:10:40

Tot 01:17:52 01:08:42 01:09:40

Table 9. New mathematical model fitting process geometrical approximation.

Seg. N◦ NACA0012 NACA 23012 NREL’s S809
max(abs(dy)) sum(abs(dy)) max(abs(dy)) sum(abs(dy)) max(abs(dy)) sum(abs(dy))

1 4.81 × 10−5 0.00029 4.79 × 10−5 0.00030 0.00060 0.00349
2 1.22 × 10−5 0.00007 1.94 × 10−5 0.00014 0.00033 0.00174
3 8.16 × 10−5 0.00074 9.06 × 10−5 0.00095 0.00022 0.00184
4 0.00019 0.00182 0.00062 0.00642 0.00060 0.00559
5 0.00012 0.00083 0.00011 0.00080 0.00035 0.00155
6 4.68 × 10−5 0.00030 4.79 × 10−5 0.00031 0.00060 0.00299

Tot 0.00405 0.00892 0.0172

The last Section 3.4 suggests a comparison between the results of target airfoils’ ge-
ometrical approximation performed by the methods described in [2], and the one herein
proposed. The 2D profiles used for the comparison are the same as mentioned in the
reference article [2]: RAE2822, NACA 0406, and NACA 0610.

3.1. NACA 0012

Figures 17 and 18 show the target airfoil NACA 0012 and the segment-wise ge-
ometrical error (also reported in Table 9 column NACA 0012) between the input and
parametrized profile.
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Figure 19 shows the comparison of the aerodynamic curves cl(α), cl(cd) cm(cl),
E(α) = cl(α)/cd(α) between the target NACA 0012 and parametrized airfoil.
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3.2. NACA 23012

Figures 20 and 21 show the target airfoil NACA 23012 and the segment-wise ge-
ometrical error (also reported in Table 9 column NACA 23012) between the input and
parametrized profile.
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Figure 22 shows the comparison of the aerodynamic curves cl(α), cl(cd) cm(cl),
E(α) = cl(α)/cd(α) between the target NACA 23012 and parametrized airfoil.
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3.3. NREL’s S809

Figures 23 and 24 show the target airfoil NLEL’s S809 and the segment-wise ge-
ometrical error (also reported in Table 9 column NLEL’s S809) between the input and
parametrized profile.
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Figure 25 shows the comparison of the aerodynamic curves cl(α), cl(cd) cm(cl),
E(α) = cl(α)/cd(α) between the target NREL’s 809 and parametrized airfoil.
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3.4. Comparison between Existing Methods and the Proposed One

These airfoils RAE2822, NACA 0406, and NACA 0610 have been represented by the
new mathematical model and both the fitting process segment-wise computation time and
geometrical approximation have been evaluated, Tables 10 and 11. Tables 12 and 13 show
that the proposed mathematical model performs better than the:

• B-spline interpolation method for the considered number of parameters.
• Numerical basis functions and B-spline interpolation methods for the geometrical approxi-

mation, which is more accurate by a magnitude.
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Table 10. New mathematical model fitting process segment-wise computation time.

Segment N◦ RAE2822
(hh:mm:ss)

NACA 0406
(hh:mm:ss)

NACA 0610
(hh:mm:ss)

1 00:04:09 00:12:57 00:16:40
2 00:13:46 00:04:12 00:04:02
3 00:06:58 00:12:34 00:13:57
4 00:20:14 00:03:39 00:09:03
5 00:21:53 00:19:47 00:18:38
6 00:04:40 00:13:12 00:13:04

Timing tot 01:11:40 01:06:21 01:15:24

Table 11. New mathematical model fitting process geometrical approximation.

Segment N◦ RAE2822
sum(abs(dy))

NACA 0406
sum(abs(dy))

NACA 0610
sum(abs(dy))

1 0.00210 0.00237 0.00267
2 0.00051 0.00435 0.00426
3 0.00234 0.00418 0.00102
4 0.00260 0.00322 0.00294
5 0.00136 0.00236 0.00137
6 0.00210 0.00096 0.00226

Tot 0.01101 0.01744 0.01452

Table 12. Summary of different parameter methods for airfoils.

Method Parameters
Number

Parameters
Description

Numerical Basis Functions 5 Weights for the basis airfoil functions
B-spline interpolation 34 Point coordinates

Proposed method 22 SFs and point coordinates

Table 13. Best Approximation of target airfoils for different parameterizations.

Method RAE2822 NACA 0406 NACA 0610

Numerical Basis Functions 0.2217 0.0582 0.1595
B-spline interpolation 0.1552 0.0758 0.1993

Proposed method 0.0110 0.0174 0.0145

4. Discussion

The B-spline curve segments are the basic geometric element in the airfoil representa-
tion and, at the same time, they describe the fundamental airfoil functional areas: LE upper
and lower side, segments 3 and 4; CB upper and lower side, segment 2 and 5; TE upper and
lower side, segment 1 and 6. In an optimization design process, it is possible to modify the
shape of a single segment curve and/or more than one shape segment curve at a time, in
order to modify the desired functional areas (LE, CB, TE), appropriately. As a consequence,
in a design optimization process, it is useful to know the segment-wise aerodynamic force
contribution at every iteration. The followings figures and tables show examples of:

• two examples of segment-wise evaluation of pressure and skin friction forces and their
contribution to the airfoil lift and drag.

• “global morphing CFD optimization” and the next “local morphing CFD optimization” for
exploring a further improvement of the aerodynamic properties.
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The NACA 23012, generated by the mathematical model defined in this paper, was
considered for both the segment-wise aerodynamics properties evaluation and for an
example of an aerodynamics design optimization process.

4.1. NACA 23012 Segments Wise Aerodynamics Properties Evaluation

Figure 26 shows the NACA 23012 airfoil with the stagnation, transition, and separation
points, its Chebyshev segment discretization and pressure coefficient distribution at Re
3.5 × 106, α = 4◦.
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Figure 26. NACA 23012 airfoil—segment Chebyshev discretization—Cp(x) at Re 3.5 × 106, alfa 4◦.

Figure 27 represents the normal and tangent vectors to the airfoil and their decomposi-
tion in the Vinf direction, and the one normal to it; the pressure forces, their segment-wise
distribution, and decomposition along the Vinf direction, and the normal to it. The nor-
mal and tangent vectors and the curvilinear abscissa were used for the calculation of the
pressure forces.
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Figure 28 shows the airfoil friction forces, their segment-wise distribution, and their
projection along the Vinf direction, and the normal to it.
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Figure 28. NACA 23012 skin friction forces along Vinf and
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Vinf directions—segment-wise contribution.

Quantitative Xfoil polar results are reported in Figure 29. Table 14 contains the
segments lift (cli) and friction (cfi) coefficients. In particular, the last one is split into the
components, computed along the Vinf direction and its normal. Note that the shape drag
(cdp) is deduced from the difference between cd and cdf (cdp = cd − cdf) instead of being
calculated via surface pressure integration due to the presence of numerical noise.
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Table 14. NACA 23012 Xfoil 6.99 aerodynamic results segment-wise distribution (Re = 3.5 × 106,
α = 4◦).

cl cd cdp

Xfoil output 0.5743 0.00601 0.00166

i cli cfi⊥ Vinf cfi || Vinf

Segment 1 0.0126 −0.00014 0.00068

Segment 2 0.1697 −0.00024 0.00161

Segment 3 0.3218 0.00027 0.00120

Segment 4 0.0592 −0.00013 0.00045

Segment 5 −0.0073 −0.00001 0.00023

Segment 6 0.0182 0.00001 0.00018

Tot 0.5742 −0.00024 0.00435

cl = Σ cli + Σ (cfi ⊥ Vinf) 0.5740

cdp = cd − Σ(cfi || Vinf) 0.00166

4.2. Morphed NACA 23012 Segment-Wise Aerodynamic Properties Evaluation

Figure 30 shows the NACA 23012 global morphed geometry, obtained by the LE and
TE rotation around the 0.3 and 0.7 section middle points with the stagnation, transition,
and separation points, its Chebyshev segments discretization, and its pressure coefficient
distribution always for Re 3.5 × 106, α = 4◦

Designs 2023, 7, x FOR PEER REVIEW 32 of 43 
 

 

 

Figure 29. NACA 23012 Xfoil 6.99 polar results—Re 3.5 × 106, alfa 4°. 

Table 14. NACA 23012 Xfoil 6.99 aerodynamic results segment-wise distribution (Re = 3.5e 6, 𝛼 = 

4°). 

    cl cd cdp 

Xfoil output   0.5743 0.00601 0.00166 

  i cli cfi ⊥ Vinf cfi || Vinf 

Segment  1 0.0126 −0.00014 0.00068 

Segment  2 0.1697 −0.00024 0.00161 

Segment  3 0.3218 0.00027 0.00120 

Segment  4 0.0592 −0.00013 0.00045 

Segment  5 −0.0073 −0.00001 0.00023 

Segment  6 0.0182 0.00001 0.00018 

Tot   0.5742 −0.00024 0.00435 

cl = Σ cli + Σ (cfi ⊥ Vinf)   0.5740     

cdp = cd − Σ(cfi || Vinf)   0.00166     

4.2. Morphed NACA 23012 Segment-Wise Aerodynamic Properties Evaluation 

Figure 30 shows the NACA 23012 global morphed geometry, obtained by the LE and 

TE rotation around the 0.3 and 0.7 section middle points with the stagnation, transition, 

and separation points, its Chebyshev segments discretization, and its pressure coefficient 

distribution always for Re 3.5 × 106, 𝛼 =  4° 

 

Figure 30. Morphed NACA 23012 airfoil—segment Chebyshev discretization—Cp(x) at Re 3.5 × 106, 

and 𝛼 = 4°; 4° and −15° rotations at the LE and TE, respectively 

Figure 30. Morphed NACA 23012 airfoil—segment Chebyshev discretization—Cp(x) at Re 3.5 × 106,
and α = 4◦; 4◦ and −15◦ rotations at the LE and TE, respectively.

In Figure 31, the normal and tangent vectors to the airfoil and their components along
the Vinf direction and its normal; the pressure forces, their segment-wise distribution,
and decomposition along the Vinf direction, and the normal to it are represented. The
normal and tangent vectors and the curvilinear abscissa were used for the calculation of
the pressure forces.
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Figure 31. Morphed NACA 23012 normal & tangent vectors projection along the Vinf direction, and
the normal to Vinf, segments-wise contribution of pressure forces along the Vinf and the normal to it.

Figure 32 shows the segment distribution of the friction forces, their resultants, and
their decomposition along the Vinf direction and its normal. forces.

Quantitative Xfoil aerodynamic results are reported in Figure 33. Table 15 contains
the lift (cl) and friction (cf) coefficients, computed at each segment. In particular, the
last one is split into the contributions computed along the Vinf direction and its normal.
Note that, as before, the shape drag (cdp) is deduced from the difference of cd and cdf
(cdp = cd − cdf), instead of being calculated via surface pressure integration due to the
presence of numerical noise.

Table 15. NACA 23012 Xfoil 6.99 aerodynamic results segments wise distribution—Re 3.5 × 106,
α = 4◦, LE (4◦) TE (−15◦).

. cl cd cdp

Xfoil output 1.5098 0.01724 0.01095

i cli cfi⊥ Vinf cfi || Vinf

Segment 1 0.1106 −0.00023 0.00062

Segment 2 0.4239 −0.00031 0.00209

Segment 3 0.5472 0.00060 0.00246

Segment 4 0.1638 −0.00016 0.00036

Segment 5 0.1535 −0.00001 0.00019

Segment 6 0.1109 −0.00017 0.00069

Tot 1.5099 −0.00027 0.00640

cl = Σ cli + Σ (cfi ⊥ Vinf) 1.5096

cdp = cd – Σ(cfi || Vinf) 0.01084
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4.3. NACA 0012 CFD “Global & Local” Morphing CFD Design Optimization

The airfoil mathematical model allows easy global and local section/segment morph-
ing and is suitable for use in a design optimization process.

Global section morphing is intended as section rotation, obtained by acting on seg-
ments 1, 6, and their BCPs and InCPs parameters for TE rotation; segments 3, 4, and their
BCPs and InCPs parameters.

Local section morphing is intended as segment skin deformation obtained by acting
on SFps and InCPs parameters with a “limited variation” defined by the user.

We could consider an example of design optimization of a scaled NACA 23012 which
can be considered a root section of a rectangular wing useful for a wind tunnel test. The
airfoil was scaled by a scale factor of 9 taking into account the aircraft typology and test
chamber dimension. See Figure 34 for a detailed consideration of scale factor evaluation.

1 
 

 
Figure 34. The scale factor for NACA 23012 airfoil.

Following the procedure described in Section 2.5, the parameterized airfoil of the
scaled NACA 23012 was evaluated, as shown in Figure 35.
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Figure 35. NACA 23012 input airfoil, Mathematical model and discretization.

The design optimization of the parameterized airfoil starts by considering the LE and
TE global morphing and later on the local morphing with the skin deformation.

By the MATLAB, gamultiobj genetic algorithm, and CFD Xfoil 6.99 solver, a Pareto
front of the following three objective functions was evaluated at α = 4◦, Re∞ = 2.0394 × 106

aerodynamic conditions:

Obj.1 : −Γ = −1
2

v∞ccl Obj.2 :
∣∣∣∣12 v2

∞ccd

∣∣∣∣ Obj.3 :
∣∣∣∣12 v2

∞c2cm

∣∣∣∣ (39)
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The variables considered in the optimization design process are the LE and TE rotation
angles with the following lower and upper bound: LE [−20, 30], TE [−50, 20].

The gamultiobj options setting is options = optimoptions(@gamultiobj, ‘PlotFcn’,
‘gaplotpareto’, ‘PopulationSize’, 70, ‘MaxGenerations’,10, ‘PopulationType’, ‘doubleVec-
tor’), with a population size of 70 and 10 generations.

From the Pareto front output, it is possible to choose the airfoil characterized by a
compromise between the Obj.1, Obj.2, and Obj.3 values following the design requirements.
In the Pareto front, graphical output was also placed in the NACA 23012 position (red
marker). Table 16 reports the aerodynamic and geometric properties of the initial airfoil and
the chosen one from the Pareto front characterized by higher circulation and aerodynamic
efficiency, as shown in Figure 36.

Table 16. Initial and “global” morphed NCA 23012.

α = 4◦, Re∞ = 2.0394 × 106 NACA 23012
Initial

NACA 23013
Global Morphing

Obj.1 0.583 1.192
Obj.2 0.340 0.589
Obj.3 0.940 1.652

c 0.245 m 0.242 m
ccl 3.89 × 10−2 7.95 × 10−2

ccd 6.17 × 10−4 1.07 × 10−3

c2cm 1.7 × 10−3 3.00 × 10−3

cl 0.1586 0.329
cd 2.52 × 10−3 4.42 × 10−3

cm 2.84 × 10−2 5.13 × 10−2

E = cl/cd 62.94 74.39
LE (◦) 0 8.08
TE (◦) 0 12.6
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The aerodynamic improvement is achieved against an increase in aerodynamic drag
and moment.
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After the LE and TE global morphing, the airfoil was optimized considering its
skin deformation always by the MATLAB gamultiobj genetic algorithm and CFD Xfoil
6.99 solver and for sections 1 and 3. In this case, the involved variables are the SFps ad the
InCPs of the segments 1,3,4,6.

A Pareto front of the following three objective functions was evaluated at the same
α = 4◦, Re∞ = 2.0394 × 106 aerodynamic conditions:

Obj.1 : (EGB − Ecurrent)k1 Obj.2 : |cm|k2 Obj.3 : |Γcurrent − ΓGB|k3 (40)

where: k1 = 10; k2 = k3 = 100;

EGB = aerodynamic efficiency resulting from global morphing optimization = 74.39
Ecurrent = aerodynamic efficiency of the current airfoil
ΓGB = airfoil circulation resulting from global morphing optimization = 1.192
Γcurrent = airfoil circulation of the current airfoil

The third objective function is required because, we are looking for an airfoil with
improved efficiency but with the same circulation (tolerance of 1 × 10−3).

The three objective functions do not consider the airfoil chord because it is constant.
After all, there is no LE TE rotation.

The gamultiobj options setting is options = optimoptions(@gamultiobj, ‘PlotFcn’,
‘gaplotpareto’, ‘PopulationSize’, 600, ‘MaxGenerations’,20, ‘PopulationType’, ‘doubleVec-
tor’), with a population size of 600 and 20 generations.

The segment-wise bounds of skin deformation are defined by offsetting the airfoil
segment perimeter. The internal (red curve) and external (black curve) offsets can be
adjusted by the user, as shown in Figure 37. The morphed skin is constrained inside these
geometrical offset bounds.
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Figure 37. NACA 23012 skin deformation segments bounds defined by the user.

Figure 38 represents the evaluated Pareto front skin optimization where the zero value
on the obj.1 axis represents the equality of the aerodynamic efficiency between the global
and skin-morphed airfoil. The obj.1 negative values represent airfoils with improved E.

Table 17 reports the comparison between the aerodynamic/geometric properties of
the not-deformed NACA2312 and the global and local morphed one. The one with the
highest E value and a circulation close to the global morphed with a tolerance of 1 × 10−3

has been chosen for the skin-morphed airfoil.
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Table 17. Initial and “global” morphed NCA 23012.

α = 4◦, Re∞ = 2.0394 × 106 NACA 23012
Initial

NACA 23013
Global Morphing

NACA 23013
Skin Morphing

c 0.245 m 0.242 m 0.242 m
ccl 3.89 × 10−2 7.95 × 10−2 7.98 × 10−2

ccd 6.17 × 10−4 1.07 × 10−3 1.07 × 10−3

c2cm 1.7 × 10−3 3.00 × 10−3 3.03 × 10−3

cl 0.1586 0.329 0.330
cd 2.52 × 10−3 4.42 × 10−3 4.42 × 10−3

cm 2.84 × 10−2 5.13 × 10−2 5.17 × 10−2

E = cl/cd 62.94 74.39 78.26
LE (◦) 0 8.08 8.08
TE (◦) 0 12.6 12.6
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Figure 38. NACA 23012 Pareto front skin optimization (left), airfoil local morphing (right).

From Table 17, it is possible to assess the percentage increase in efficiency:

• from NACA 23012 to global morphed airfoil: 18.19%
• from global morphed airfoil to skin morphed: 4.47%

This amounts to a total increase in aerodynamic efficiency of 22.66 %.
Figure 39 shows the geometry and pressure coefficient distribution both for the initial

undeformed NACA 23012 airfoil and for its morphed one after the global and local design
optimization process.
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Figure 39. NACA 23012 undeformed, global, and local morphing geometries and pressure coefficients.

5. Conclusions

The results of the geometric and aerodynamic comparison, between the input air-
foils and related model-based generated airfoils, show the capabilities of the new airfoil
mathematical model, characterized by reduced segment parameters (SFps and InCPs):

• to represent geometrically a wide range of 2D profile families, with the Euclidean
points error distance in the order of O (10−4).

• to generate airfoils aerodynamically equivalent to the related input 2D profile (both
qualitatively and quantitatively).

Moreover, due to the presence of the B-spline segment curve as a “basic element” for
the airfoil geometric description, it is possible:

• to implement LE and TE morphing at both local and global levels (the properties
of the airfoil mathematical model ensure that, for both the local and global morph-
ing, the desired continuity boundary conditions between the neighbor segments are
always satisfied);

• to apply geometrical constraints, i.e., considering CB as a rigid/fixed section;
• to change the relative size of each section (LE, CB, and TE) just acting on the x/c

location of the partition points;
• to evaluate the contribution of each segment/section to the aerodynamic lift and

drag forces;
• to implement CFD, structural, and FSI design optimization processes, with the oppor-

tunity to adjust the parameter topology and airfoil model complexity according to the
analyst’s needs.

Moreover, taking into consideration the design optimization process:

• Different strategies/framework can be implemented considering the opportunity to
manage the variable Sfps and InCps separately.

• The airfoil design optimization process could be implemented for defining a desired
elliptical span-wise load on a LE, TE morphing rectangular wing.
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validation G.T.; investigation G.T., A.C. and R.P.; data curation, G.T., A.C. and R.P.; writing—original
draft preparation G.T.; writing—review and editing G.T., A.C. and R.P.; supervision R.P and A.C. All
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Nomenclature

BCPs Boundary Control Points
C the segment vector-valued function of the u-independent variable
C′ the tangent vector-valued function of the u-independent variable
C” the curvature vector-valued function of the u-independent variable
CB Central Box
CFD Computational Fluid Dynamics
CPs Control Points
E = cl/cd Aerodynamic efficiency
InCPs Interior Control Points
LE Leading-Edge
NURBS Non-Uniform Rational B-Spline
SF Scale Factor
SFps Scale Factor Parameters
TE Trailing-Edge
UNRBS Uniform Non-Rational B-spline

References
1. Salunke, N.P.; Juned Ahamad, R.A.; Channiwala, S.A. Airfoil Parameterization Techniques: A Review. Am. J. Mech. Eng. 2014, 2,

99–102. [CrossRef]
2. Song, W.; Keane, A.J. A Study of Shape Parameterisation Methods for Airfoil Optimisation. In Proceedings of the 10th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, USA, 30 August–1 September 2004.
[CrossRef]

3. Lépine, J.; Guibault, F.; Trépanier, J.-Y. Optimized Nonuniform Rational B-Spline Geometrica Representation for Aerodynamic
Design of Wings. AIAA J. 2001, 39, 2033–2041. [CrossRef]

4. Hilbig, R.; Szodruch, J. The Intelligent Wing—Aerodynamic Developments for Future Transport Aircraft. In Proceedings of the
27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [CrossRef]

5. Venkataraman, P. A new procedure for airfoil definition. In Proceedings of the 13th Applied Aerodynamics Conference, San
Diego, CA, USA, 19–22 June 1995; Volume 10. [CrossRef]

6. Documentation—MATLAB & Simulink—MathWorks Italia. Available online: https://it.mathworks.com/help/ (accessed on
3 March 2022).

7. Xfoil Subsonic Airfoil Development System. Available online: https://web.mit.edu/drela/Public/web/xfoil/ (accessed on
8 June 2022).

8. Spink, M.; Claxton, D.; de Falco, C.; Vazquez, R. Nurbs 1.4.3. Collection of Routines for the Creation, and Manipulation of
Non-Uniform Rational B-Splines (NURBS), Based on the NURBS Toolbox. 2021. Available online: https://gnu-octave.github.io/
packages/nurbs/ (accessed on 11 April 2022).

9. UIUC Applied Aerodynamics Group. Available online: https://m-selig.ae.illinois.edu/ (accessed on 18 May 2022).
10. UIUC Airfoil Coordinates Database. Available online: https://m-selig.ae.illinois.edu/ads/coord_database.html (accessed on

18 May 2022).
11. Abbot, I.H.; Doenhoff, A.E.V. Theory of Wing Sections; Dover: New York, NY, USA, 1985.
12. Drela, M.; Youngren, H. xfoil_doc. 2001. Available online: http://web.mit.edu/aeroutil_v1.0/xfoil_doc.txt (accessed on

8 June 2022).
13. Piegel, L.; Tiller, W. The NURBS Books, 2nd ed.; Springer: Berlin, Germany, 1997.
14. Buosi, D. Development of a Parametric Tool for Shape Manipulation and Fluid Dynamics Optimization of a UHBR Engine

Nacelle. Bachelor’s Thesis, University of Padova, Padua, Italy, 2019.
15. Safari, A.; Lemu, H.G. Optimum NURBS curve fitting for geometry parameterization of gas turbine blades’ sections: Part

I—evolutionary optimization techniques, in ASME 2012. In Proceedings of the International Mechanical Engineering Congress,
ASME, Houston, TX, USA, 9–15 November 2012; p. 7. [CrossRef]

16. Safari, A.; Lemu, H.G. Optimum NURBS curve fitting for geometry parameterization of gas turbine blades’ sections: Part II:
Swarm intelligence techniques, in ASME 2012. In Proceedings of the International Mechanical Engineering Congress & Exposition,
Houston, TX, USA, 9–15 November 2012; p. 6. [CrossRef]

http://doi.org/10.12691/ajme-2-4-1
http://doi.org/10.2514/6.2004-4482
http://doi.org/10.2514/2.1206
http://doi.org/10.2514/6.1989-534
http://doi.org/10.2514/6.1995-1875
https://it.mathworks.com/help/
https://web.mit.edu/drela/Public/web/xfoil/
https://gnu-octave.github.io/packages/nurbs/
https://gnu-octave.github.io/packages/nurbs/
https://m-selig.ae.illinois.edu/
https://m-selig.ae.illinois.edu/ads/coord_database.html
http://web.mit.edu/aeroutil_v1.0/xfoil_doc.txt
http://doi.org/10.1115/IMECE2012-89113
http://doi.org/10.1115/IMECE2012-89120


Designs 2023, 7, 28 38 of 38

17. Safari, A.; Lemu, H.G.; Assadi, M.A.; Lemu, H.G.; Assadi, M. A novel combination of adaptive tools for turbomachinery airfoil
shape optimization using a real-coded genetic algorithm. In ASME Turbo Expo 2013, Proceedings of the Turbine Technical Conference
and Exposition, ASME, San Antonio, TX, USA, 3–7 June 2013; American Society of Mechanical Engineers: New York, NY, USA, 2013.
[CrossRef]

18. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001.
19. Branke, J.; Deb, K.; Miettinen, K.; Słowìnskì, R. Multiobjective Optimization Interactive and Evolutionary Approaches; Springer: Berlin,

Germany, 2008.
20. Oyama, A.; Obayashi, S.; Nakahashi, K. Fractional factorial design of genetic coding for aerodynamic optimization. In Proceedings

of the 14th Computational Fluid Dynamics Conference, Norfolk, VA, USA, 1–5 November 1999; Volume 11. [CrossRef]
21. Performing a Multiobjective Optimization Using the Genetic Algorithm. Available online: https://it.mathworks.com/help/

gads/gamultiobj-plot-vectorize.html (accessed on 22 March 2022).
22. Gamultiobj Find Pareto Front of Multiple Fitness Functions Using Genetic Algorithm. Available online: https://it.mathworks.

com/help/gads/gamultiobj.html (accessed on 24 March 2022).
23. Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math.

Program. 2000, 37, 149–185. [CrossRef]
24. Byrd, R.H.; Hribar, M.E.; Nocedal, J. An interior point algorithm for large-scale nonlinear programming. SIAM j. Optim. 1999, 24,

877–900. [CrossRef]
25. Coleman, T.F.; Li, Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996, 24,

418–445. [CrossRef]
26. Fmincon Find Minimum of Constrained Nonlinear Multivariable Function. Available online: https://it.mathworks.com/help/

optim/ug/fmincon.html (accessed on 22 March 2022).
27. Constrained Nonlinear Optimization Algorithms. Available online: https://it.mathworks.com/help/optim/ug/constrained-

nonlinear-optimization-algorithms.html (accessed on 22 March 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1115/GT2013-94093
http://doi.org/10.2514/6.1999-3298
https://it.mathworks.com/help/gads/gamultiobj-plot-vectorize.html
https://it.mathworks.com/help/gads/gamultiobj-plot-vectorize.html
https://it.mathworks.com/help/gads/gamultiobj.html
https://it.mathworks.com/help/gads/gamultiobj.html
http://doi.org/10.1007/PL00011391
http://doi.org/10.1137/S1052623497325107
http://doi.org/10.1137/0806023
https://it.mathworks.com/help/optim/ug/fmincon.html
https://it.mathworks.com/help/optim/ug/fmincon.html
https://it.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://it.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

	Introduction 
	PARSEC Method 
	Bezier Parameterization 
	Bezier-Parsec Parameterization 
	BP 3333 Parameterization 

	Descriptions of the Methodology 
	Input 2D Airfoil 
	Airfoil Partitioning 
	Mathematical Airfoil Segments Representation 
	UNRBS 
	Curve Derivatives in Parametric and Cartesian Formulation & SF Parameter 
	UNRBS Boundaries Control Points in Terms of C' C″ and SF 
	Segment Parameters 
	Segments Reduced Parameters 

	Segment Geometric Boundary Conditions 
	Segment Fitting Procedure for Reduced Parameters 

	Results 
	NACA 0012 
	NACA 23012 
	NREL’s S809 
	Comparison between Existing Methods and the Proposed One 

	Discussion 
	NACA 23012 Segments Wise Aerodynamics Properties Evaluation 
	Morphed NACA 23012 Segment-Wise Aerodynamic Properties Evaluation 
	NACA 0012 CFD “Global & Local” Morphing CFD Design Optimization 

	Conclusions 
	References

