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Abstract: The effect of using a piezoelectric material has been shown on postponing the flutter
phenomenon on a regular blade with rotational effects in this paper. The system response of a smart
blade with only flapwise and edgewise plunge and rotational DOFs showed that the oscillations of
the smart blade can be effectively decayed in a very short time by using efficient piezopatches in
the flapwise and edgewise plunge DOFs. Furthermore, in a smart blade with five DOFs, it has been
indicated having piezopatches in flapwise and edgewise plunge DOFs can defer the flutter speed
by 81.41%, which is a noticeable increase in the flutter speed. Finally, by adding a piezopatch to
the pitch DOF of a smart blade, it is possible to postpone the flutter speed by 155%, which is a very
considerable increase.

Keywords: smart blade; flutter; piezoelectric material

1. Introduction

In modern blades, because of high flexibility, aeroelastic analysis is crucial. To max-
imize the blade aerodynamic performance, it is very important to control aeroelastic
instability [1,2]. The flutter phenomenon is one significant aeroelastic analysis. Flutter can
affect negatively the blade performance even it can cause to redesign the blade. In modern
blades, preventing flutter is crucial due to its effect on the long-term durability of the blade
structure, energy efficiency of the system, operational safety, and performance [3–7].

For many years, smart materials as piezoelectric materials have been used in blade
structures. Piezoelectric materials can operate as actuators and/or sensors on a blade. They
can perform as dampers and actuators to control the blade aeroelastic behavior. In fact,
implementing piezoelectric materials can avoid redesigning the blade which can signifi-
cantly delay flutter [8,9]. These materials have been implemented on an adaptive blade
with active aeroelastic control [10]. They have also been used in honeycomb materials [11].
Moreover, they can be implemented as vibration damping to control a plate under forcing
function and time-dependent boundary moments [12]. In addition, piezoelectric materials
can perform as flutter controllers by using the finite element method in damaged composite
laminates [13]. Those materials can be used to study aeroelastic flutter analysis on thick
porous plates [14]. Moreover, piezoelectric actuators and sensors have been investigated
in aeroelastic optimization [15]. The blade’s aeroelastic behavior can be effectively modi-
fied by implementing piezopatch including a shunt circuit. Previously, there were some
practical limits in the existing low-frequency range in aeroelastic phenomena because of
the large size required inductance for passive aeroelastic control. However, nowadays,
having a small-size inductor combined with a piezopatch can facilitate passive aeroelastic
control [16]. Practically because of having too large internal resistance, standard inductors
are not appropriate to be combined with a piezopatch for resonant shunt applications.
By using closed magnetic circuits with high-level-permeability materials, it is possible to
design large inductance inductors which have high-quality factors.

Damping in the blade structure without causing any instability can be augmented by
using shunted piezopatches. Furthermore, shunted piezopatches are simple to apply and
need little to no power. Their hardware needs piezoelectrics with a simple electric circuit
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which includes a capacitor, an inductor, and a resistor. The shunted piezopatches consume
the energy created from the blade vibrations to control the blade aeroelastic vibration,
which can reduce the oscillations of specific frequencies and modes.

In this paper, the flutter speed of a simple aeroelastic system can be increased by using
piezoelectric materials. One system is a 2D blade with two piezoelectric patches which
had flapwise and edgewise plunge DOFs as well as rotational DOFs. Later, another system
used is a 2D blade including a piezoelectric patch with plunge, pitch, and control rotational
degrees of freedom (DOFs) subjected to unsteady aerodynamic loads. The work objective
was to present the effect of piezoelectric patches that can influence effectively a simple
smart blade system with rotational effects.

In Section 2, the smart blade equations of motion with flapwise and edgewise plunge
and rotational DOFs were described to solve those equations to calculate the flapwise and
edgewise plunge velocities, displacements, electrical currents, and electric charges as well
as rotational velocities and displacements. Then, the system fixed points and their stability
around those points were studied to present the system response. Example 1 shows the
considerable decay in the vibration of a smart blade in comparison to that in the vibration
of a regular blade.

Section 3 shows a smart blade with plunge, pitch, and control DOFs and two piezopatches
with flapwise and edgewise plunge and rotational DOFs to obtain the equations of motion
under unsteady aerodynamic loads. Solving the system of equations provides the flapwise
and edgewise plunge velocities, displacements, electrical currents, and electric charges as
well as the pitching velocity, rotation, electrical current, and electric charge. Afterwards,
by obtaining the flutter speed, we indicated how adding two piezopatches can effectively
defer the flutter.

In Section 4, a smart blade with plunge, pitch, and control DOFs and piezopatches
with plunge and pitch DOFs are presented. The results showed that the flutter speed can
even be further raised by having three piezopatches.

In addition, the smart blade concept presented in this work can be applied to in-
crease the performance of renewable energy devices such as wind turbine and marine
turbine blades [17,18].

2. Aeroelastic Analysis of the Smart Blade

Before investigating the aeroelastic smart blade, it requires investigating the aeroe-
lastic stability of the smart blade. The time response of the aeroelastic system can be
written as [19]:

x(t) = ∑n
i=1 vieλitbi, (1)

where vi is the smart blade spatial deformation, eλit is the smart blade temporal deformation,
and bi is the eigenvector. It is a good idea to study the fixed-point characteristics of three
smart blades with DOFs in flapwise and edgewise plunge motions separately.

A Smart Blade with Only Plunge and Rotational DOFs

A smart blade which has flapwise and edgewise plunge and rotational DOFs is
considered, as shown in Figure 1.
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Figure 1. A smart blade with flapwise and edgewise plunge and rotational DOFs.

By assuming a constant rotational velocity, the smart blade equations of motion with
two plunge and rotational DOFs in free vibrations can be written as below:

m
..
h1 + Ch1

.
h1 + Kh1 h1 − βh1 qh1 = 0

Lh1

..
qh1

+ Rh1

.
qh1

+ 1
Cph1

qh1 − βh1 h1 = 0

m
( ..

h2 + r
..
γ
)
+ Ch2 ĥ2 + Kh2 h2 − βh2 qh2 = 0

Lh2

..
qh2

+ Rh2

.
qh2

+ 1
Cph2

qh2 − βh2 h2 = 0

mr
..
γ − P

rΩ2
.
γ − Ch2 h2 − Kh2 h2 = 0

(2)

where the parameters can be as below:
m mass of the smart blade
Ch1

flapwise structural damping of the smart blade
Kh1

flapwise structural stiffness
h1 instantaneous flapwise displacement
βh1

flapwise plunge electromechanical coupling
qh1

flapwise plunge electric charge
Lh1

flapwise piezoelectric material plunge inductance
Rh1

flapwise piezoelectric material plunge resistance
Cph1

flapwise plunge capacitance of the piezoelectric material
r distance from the hub
γ rotational displacement of the smart blade
Ch2 edgewise structural damping of the smart blade
Kh2 edgewise structural stiffness
h2 instantaneous edgewise displacement
βh2 edgewise plunge electromechanical coupling
qh2 edgewise plunge electric charge
Lh2 edgewise piezoelectric material plunge inductance
Rh2 edgewise piezoelectric material plunge resistance
Cph2 edgewise plunge capacitance of the piezoelectric material
P hub force
Ω rotational speed of the smart blade

As explained before, the flapwise plunge electromechanical coupling may be calcu-
lated as βh1 = eh1 /Cph1 , where eh1 is the flapwise plunge coupling coefficient, and the
edgewise plunge electromechanical coupling may be calculated as βh2 = eh2 /Cph2 , where

eh2 is the edgewise plunge coupling coefficient. Considering x1 =
.
h1, x2 = h1, x3 =

.
qh1

,
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x4 = qh1 , x5 =
.
h2, x6 = h2, x7 =

.
qh2

, x8 = qh2 , x9 =
.
γ, and x10 = γ, Equation (2) may be

written as first-order differential equations:

.
x1 = −Ch1

m x1 −
Kh1
m x2 +

βh1
m x4

.
x2 = x1
.
x3 = − Rh1

Lh1
x3 − 1

Cph1
Lh1

x4 +
βh1
Lh1

x1
.
x4 = x3
.
x5 + r

.
x9 = −Ch2

m x5 −
Kh2
m x6 +

βh2
m x8.

.
x6 = x5
.
x7 = − Rh2

Lh2
x7 − 1

Cph2
Lh2

x8 +
βh2
Lh2

x6
.
x8 = x7
.
x9 = P

mr2Ω2 x5 +
Ch2
mr x5 +

Kh2
mr x6

.
x10 = x9

(3)

Defining and q =
[
mCh1 Kh1 βh1 Lh1 Rh1 Cph1

Ch2 Kh2 βh2 Lh2 Rh2 Cph2
r Ω
]T

and

x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10]T, Equation (3) can be written as:



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 r 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



.
x = f(x, q) =



−Ch1
m x1 −

Kh1
m x2 +

βh1
m x4

x1

− Rh1
Lh1

x3 − 1
Cph1

Lh1
x4 +

βh1
Lh1

x2

x3

− ch2
m x5 −

Kh2
m x6 +

βh2
m x8

x5

− Rh2
Lh2

x7 − 1
cph2

Lh2
x8 +

βh2
Lh2

x6

x7
P

mr7Ω2 x5 +
ch2
mr x5 +

Kh2
mr x6

x9



(4)

where f presents linear functions, and x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10 are the
smart blade states and represent the system’s flapwise velocity, flapwise displacement,
flapwise electrical current, flapwise electric charge response, edgewise velocity, edgewise
displacement, edgewise electrical current, edgewise electric charge response, angular
velocity, and angular displacement, respectively. The three aeroelastic smart blade system
with DOFs had 10 eigenvalues that explained the fixed point stability. The static solutions
or fixed points of the system are calculated from the following solutions:

f(x, q) = 0, (5)

or equivalently,
.
x = 0. (6)

By considering Equations (4) and (6), the following equations can be presented as:

B
.
x = A(q)x, (7)

or
.
x = B−1A(q)x, (8)
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where

B =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 r 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(9)

A =



− ch1
m −Kh1

m 0
βh1
m 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0
βh1
Lh1

− Rh1
Lh1

− 1
Cph1

Lh1
0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 − ch2
m −Kh2

m 0
βh2
m 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0
βh2
Lh2

− Rh2
Lh2

− 1
Cph2

Lh2
0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 P
mr2Ω2 +

Ch2
mr

Kh2
mr 0 0 0 0

0 0 0 0 0 0 0 0 1 0



(10)

The solution of Equation (8) can be written as Equation (1), where vi is the ith eigen-
vector of B−1A, λi is the ith eigenvalue of B−1A, and bi is the ith element of b = V−1x0,
where V is the eigenvector of B−1A and x0 is the initial condition.

Example 1. A smart blade with flapwise and edgewise plunge and rotational DOFs in the system
response.

In the first example, a smart blade with only flapwise and edgewise plunge and
rotational DOFs (Figure 1) is considered, which has the following characteristics as [8]:

m = 0.3872 Kg Ch1
= 0.3237 Ns/m

Kh1
= 13380 N/m eh1

= 80 × 10−3 C/m
Cph1

= 1680 nF Lh1
= 0.1 H

Rh1
= 4050 Ω Ch2 = 0.5 Ns/m

Kh2 = 32112 N/m eh2 = 7.55 × 10−2 C/m
Cph2 = 268 nF Lh2 = 0.1 H
Rh2 = 9050 Ω P = 1 N
r = 1 m Ω = 10 rad/s

and the initial conditions are as follows:
x1(0) = 0.1 m/s x2(0) = 0 m
x3(0) = 0 A x4(0) = 0 C
x5(0) = 0.1 m/s x6(0) = 0 m
x7(0) = 0 A x8(0) = 0 C
x9(0) = 0.1 rad/s x10(0) = 0 rad

Figure 2 depicts the system response of velocity. The solid line represents the velocity
of the smart blade, and the dashed line shows the velocity of the regular blade. As indicated
in Figure 2, the vibrations can very effectively decay by the piezoelectric patches. Both
system responses oscillate by decaying their amplitudes with time towards zero, which
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are called as damped responses. From Figure 2, it is clear that the amplitude of the smart
blade responses can decay much faster than the one of the regular blade responses. The
flapwise oscillation of the smart blade (Figure 2a) decays for almost 0.4 s; however, the
flapwise oscillation of the regular blade takes around 12 s to decay. Moreover, the edgewise
oscillation of the smart blade (Figure 2b) decays 0.2 s; however, the edgewise oscillation of
the regular blade takes around 8 s to decay.
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Figure 2. The smart blade system responses of the velocity: (a) flapwise oscillation;
(b) edgewise oscillation.

Figure 3 depicts the system response of displacement. The solid line represents the
displacement of the smart blade, and the dashed line shows the displacement of the regular
blade. As indicated in Figure 3, the vibrations can very effectively decay by the piezoelectric
patches. Both system responses oscillate by decaying their amplitudes with time towards
zero, which are called as damped responses. From Figure 3, it is clear that the amplitude of
the smart blade responses can decay much faster than the one of the regular blade responses.
The flapwise oscillation of the smart blade (Figure 3a) decays for almost 0.4 s; however, the
flapwise oscillation of the regular blade takes around 12 s to decay. Moreover, the edgewise
oscillation of the smart blade (Figure 3b) decays for 0.2 s; however, the edgewise oscillation
of the regular blade takes around 10 s to decay.
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Furthermore, the velocities and the displacements phase plane plots depict the point
(0,0) recalls the system trajectory, as shown in Figure 4. The flapwise and edgewise trajecto-
ries of the smart blade start from the initial displacements and velocities at the far top, and
it turns to the center of the phase plane, where (0,0) is the fixed point and xF = 0. In fact, the
phase plane plots indicate that the fixed points draw the smart blade trajectories.
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Likewise, the electrical current and the charge phase plane start at the electrical current
and charge initial conditions which are zeros, and they turn out counter-clockwise until
arriving at the maximum values. The trajectories then turn towards the start point (0, 0), as
shown in Figure 5.
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wise trajectory.

Figure 6 depicts the system response of the rotational velocity. The solid line represents
the rotational velocity of the smart blade, and the dashed line shows the rotational velocity
of the regular blade. As indicated in Figure 6, the vibrations can very effectively decay by
the piezoelectric patches. Both system responses oscillate by decaying their amplitudes
with time towards zero, which are called as damped responses. From Figure 6a, it is clear
that the amplitude of the smart blade responses can decay much faster than the amplitude
of the regular blade responses. The oscillation of the rotational velocity of the smart blade
decays for almost 0.15 s; however, the oscillation of the rotational velocity of the regular
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blade takes around 5 s to decay, and it increases in the equilibrium position, as indicated
in Figure 6b.
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Figure 7 depicts the system response of the rotational displacement. The solid line
represents the rotational displacement of the smart blade, and the dashed line shows the
rotational displacement of the regular blade. As indicated in Figure 7, the vibrations can
very effectively decay by the piezoelectric patches. Both system responses oscillate by
decaying their amplitudes with time towards zero, which are called as damped responses.
From Figure 7, it is clear that the amplitude of the smart blade responses decays much
faster than the amplitude of the regular blade responses. The oscillation of the rotational
displacement of the smart blade (Figure 7b) decays for almost 0.2 s; however, the oscillation
of the rotational displacement of the regular blade takes around 1 s to decay.
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However, by considering P = 0 in Equation (2), the system response of the rotational
displacement can be changed as indicated in Figure 8, in which the mean value of the
rotational displacement of the regular blade is not increased with the increase in time.
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Figure 8. The smart blade system responses of the rotational displacement with P = 0.

3. Smart Blade with Plunge, Pitch, and Control DOFs and Piezopatches with
Plunge DOFs

Figure 9 depicts a 2D smart blade with plunge, pitch, and control degrees of freedom.
In the model, there are an airfoil with two piezoelectric patches in the flapwise and edgewise
plunge DOFs. The system includes flapwise and edgewise plunge, pitch, and control
degrees of freedom (DOFs) indicated by h1, h2, α, and β, respectively. The control surface
angle around its hinge, located at distance xh from the leading edge, is represented by the
DOF β, and the stiffness of the control surface is denoted by Kβ.
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Figure 9. A smart blade with plunge, pitch, and control DOFs and a piezopatch in flapwise
plunge DOFs.

Using the Lagrange’s equations and the Kirchhoff’s law leads to the equations of
motion as: 

m
..
h1 + Sαh

..
α + Sβ

..
β + Ch1

.
h1 + Kh1 h1 − βh1 qh1 = −L

Sαh
..
h1 + Iα

..
α + Iαβ

..
β + Cα

.
α + Kαα = Mx f

Sβ

..
h1 + Iαβ

..
α + Iβ

..
β + Cβ

.
β + Kββ = Mxh

Lh1

..
qh1

+ Rh1

.
qh1

+ 1
Cph1

qh1 − βh1 h1 = 0

m
( ..

h2 + r
..
γ
)
+ Ch2

.
h2 + Kh2 h2 − βh2 qh2 = 0

Lh2

..
qh2

+ Rh2

.
qh2

+ 1
Cph2

qh2 − βh2 h2 = 0

mr
..
γ − P

rΩ2
.
γ − Ch2

.
h2 − Kh2 h2 = 0

(11)

where m, Ch1 , Kh1 , h1, βh1 , qh1 , Lh1 , Rh1 , Cph1 , Ch2 , Kh2 , h2, γ, βh2 , qh2 , Lh2 , Rh2 , Cph2 , P, r,
and Ω are defined as in Equation (2) and the rest are as follows:
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Sαh static mass moment of the blade around the pitch axis x f
Sβ static mass moment of the control surface around the hinge axis xh
Iβ control surface moment of the inertia around the hinge axis
Iαβ Product of the inertia of the blade and the control surface
L lift
Mx f pitching moment of the blade around the pitch axis x f
Mxh pitching moment of the control surface around the hinge axis xh

By having unsteady aerodynamics, the lift and moments can be given as follows [17,18]:

L(t) = ρb2
(

Uπ
.
α + π

..
h − πba

..
α − UT4

.
β − T1b

..
β
)

+2πρbU
(

Φ(0)w −
∫ t

0
∂Φ(t−t0)

∂t0
w(t0)dt0

)
,

(12)

Mx f = −ρb2
(
−aπb

..
h + πb2

(
1
8 + a2

) ..
α − (T7 + (ch − a)T1)b2

..
β
)

−ρb2
(

π
(

1
2 − a

)
Ub

.
α +

(
T1 − T8 − (ch − a)T4 +

T11
2

)
Ub

.
β
)
− ρb2(T4 + T10)U2β

+2ρUb2π
(

a + 1
2

)(
Φ(0)w −

∫ t
0

∂Φ(t−t0)
∂t0

w(t0)dt0

)
,

(13)

Mxh = −ρb2
(
−T1b

..
h + 2T13b2 ..

α − 1
π T3b2

..
β
)

−ρb2
((

−2T9 − T1 + T4

(
a − 1

2

))
Ub

.
α − 1

2π UbT4T11
.
β
)

− ρb2U2

π (T5 − T4T10)β − ρb2UT12

(
Φ(0)w −

∫ t
0

∂Φ(t−t0)
∂t0

w(t0)dt0

)
.

(14)

Substituting Equations (12)−(14) into Equation (10) provides a set of equations of
motion only in the time-dependent form and can be solved numerically such as using the
backward finite difference scheme in numerical integration [20]. However, the equations of
motion can be given as ordinary differential equations by using the exponential form of the
Wagner function’s approximation. These equations can be solved analytically rather than
numerically; therefore, they would be much more practical [21,22]. The Wagner function’s
approximation can be presented as:

Φ(t) = 1 − Ψ1e−ε1Ut/b − Ψ2e−ε2Ut/b, (15)

where Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.
The equations of motion in the full unsteady aeroelastic form can be given as follows:

(A + ρB)
..
y + (C + ρUD)

.
y +

(
E + ρU2F

)
y + ρU3W = ρUg

.
Φ(t)

.
w − W1y − UW2w = 0,

(16)

where y =
[
h1 α β qh1 h2 qh2 γ

]T represents the displacement and the charge vector,
w = [w1 · · · w6 0]T gives the aerodynamic states vector, Φ(t) presents the Wagner func-
tion, A is the inductance and structural mass matrix, B represents the aerodynamic mass
matrix, E gives the structural stiffness and resistance matrix, F is the aerodynamic stiffness
matrix, W represents the influence matrix of aerodynamic state, g gives the initial condition
excitation vector, and W1 and W2 present the aerodynamic state equation matrices.

Equations (14) can be formed in purely ordinary differential equations in the first order
by the following equation:

.
x = Qx + q

.
Φ(t), (17)

where

Q =

−M−1(C + ρUD) −M−1(E + ρU2F
)

−ρU3M−1W

I7×7 07×7 07×6

06×7 W1 UW2

, (18)
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q =

(
ρUM−1g

013×1

)
, (19)

where x = [
.
h1

.
α

.
β

.
qh1

.
h2

.
qh2

.
γ h1 α β qh1 h2 qh2 γ w1 · · · w6]

T is the
20 × 1 state vector, M = A + ρB, I7×7 is a 7 × 7 unit matrix, 07×7 is a 7 × 7 zero matrix, 07×6
is a 7 × 6 zero matrix, 06×7 is a 6 × 7 zero matrix, and 013×1 is a 13 × 1 zero vector. The
initial condition is x(0) = x0. The initial condition g

.
Φ(t), which plays an excitation role,

can decays exponentially. In this work, in order to reach steady-state solutions, the initial
condition is eliminated; hence, Equation (15) can be written as:

.
x = Qx. (20)

Example 2. A smart blade with plunge, pitch, and control DOFs and a piezopatch in flapwise and
edgewise plunge DOFs.

As the second example, a smart blade with plunge, pitch, and control DOFs (Figure 10)
is considered with the following parameters [19]:

m = 13.5 Kg eh1
= 0.145 C/m

Sαh = 0.3375 Kgm Cph1
= 268 nF

Sβ = 0.1055 Kgm Lh1
= 103 H

Ch1
= 2.1318 Ns/m Rh1

= 1274 Ω
Kh1

= 2131.8346 N/m Kh2 = 2131.8346 N/m
Iα = 0.0787 Kgm2 Ch2 = 2.1318 Ns/m
Iαβ = 0.0136 Kgm2 eh2 = 0.145 C/m
Cα = 0.1989 Nms/rad Cph2 = 2680 nF
Kα = 198.9712 Nm/rad Lh2 = 103 H
Iβ = 0.0044 Kgm2 Rh2 = 1274 Ω
Cβ = 0.0173 Ns/m P = 1 N
Kβ = 17.3489 N/m r = 1 m
Ω = 10 rad/s
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Figure 10. Damping ratio versus airspeed: (a) regular blade; (b) smart blade.

Running the simulation gives the flutter speed of 74.2973 m/s which presents an
81.41% increase in the regular blade flutter speed with the same characteristics without
piezoelectric patches. Figure 10 shows the regular and smart blade variations of the
damping ratio with respect to the velocity or airspeed of airflow. It is clear that having
piezoelectric patches on the blade can effectively increase the flutter speed.

Figure 11 shows the eigenvalues real part versus the velocity of freestream. Again,
Figure 11b indicates the flutter speed of the smart blade can be effectively increased in
comparison to that of the regular blade one.
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Figure 12 depicts the imaginary part of eigenvalues versus the freestream velocity.
Figure 12b indicates the flutter speed of the smart blade can be effectively increased in
comparison to that of the regular blade one.
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Equation (8) can be used to form the matrix Q, and its eigenvalues and eigenvec-
tors can be obtained for two different airspeeds, U = 10 m/s, and the flutter speed,
U = 74.2973 m/s. The structural states dynamics of the smart blade can be represented
in eight complex eigenvalues. The complex eigenvalues of the regular blade are conju-
gate as the complex eigenvalues of the smart blade. Six real eigenvalues belong to the
aerodynamics states dynamics. Moreover, the piezoelectric states dynamics include four
real eigenvalues. The first three elements of each eigenvector give the structural velocities,
and the flapwise piezoelectric electrical current is given by the fourth element. structural
displacements can be obtained from the next three elements, and the flapwise piezoelectric
electric charge is given by the eighth element. The edgewise velocity can be obtained from
the ninth element, the edgewise displacement can be represented by the tenth element, the
edgewise piezoelectric electric charge is given by the eleventh element, and finally, the last
next element correspond to aerodynamic state displacements.

For the three structural modes, the smart blade eigenvalues at U = 10 m/s are
as follows:

λ1 = −1.3460 ± 42.7410i, λ2 = −5.4356 ± 64.2072i, λ3 = −6.2904 ± 110.9803i,
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and its corresponding eigenvectors which represent the smart blade structural mode shapes
are shown as follows:

ϕ1 =


−0.0034
0.3795
0.9249
−0.0005

, ϕ2 =


0.0000
0.0000
0.0000
0.0000

, ϕ3 =


0.0014
0.2027
−0.9792
0.0003

,

where, in each mode shape, the flapwise plunge displacement is presented by the first
element, the pitch angle can be indicated by the second element, the control surface angle
is presented by the third element, and the edgewise plunge displacement is given by the
last element. Generally, since the degrees of freedom of aeroelastic systems are coupled
to each other, they cannot occur independently. Mostly, in modes one and two, there are
control surface and pitch displacements. The smart blade mode one has a significant pitch
angle in comparison to the regular blade. Figure 13 depicts the deformation of the three
modes of the smart blade. In addition, the value of the pitch in mode one is high; however,
the value of the pitch in mode two is zero.
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Furthermore, the eigenvalues of the smart blade at an airspeed U = 74.2973 m/s can
be as follows:

λ1 = −21.2035 ± 13.2734i, λ2 = −5.4356 ± 64.2072i, λ3 = 0.0000 ± 97.5068i,
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and its corresponding mode shapes are shown as follows:

ϕ1 =


0.0494
0.8685
−0.3664
0.0072

, ϕ2 =


0.0000
0.0000
0.0000
0.0000

, ϕ3 =


0.0059
−0.1523
0.9878
0.0011

.

The real parts of λ1 is much more negative in comparison to eigenvalues at an airspeed
U = 10 m/s, and the value of λ3 real part is almost zero. Moreover, at U = 74.2973 m/s,
the value of the pitch in mode one is significant, as shown in Figure 14.
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In the next section, a smart blade including three DOFs and two piezopatches in the
plunge and pitch DOFs is used to compare its aeroelastic behavior with a regular blade,
and investigate how the flutter phenomenon can be postponed more by implementing the
third piezopatch on a smart blade.

4. A Smart Blade with Plunge, Pitch, and Control DOFs and Piezopatches in Plunge
and Pitch DOFs

In this section, there is a smart blade with plunge, pitch, and control DOFs in which
there are three piezopatches, two in the flapwise and edgewise plunge DOFs, and the third
one in pitch DOFs, as shown in Figure 15. The same characteristics of the three smart blade
are considered in this system.
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The smart blade equations of motion can be written by considering the Kirchhoff’s
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(
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..
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rΩ2
.
γ − Ch2

.
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, (21)

where m, Sαh, Sβ, Ch1 , Kh1 , h1, βh1 , qh1 , Lh1 , Rh1 , Cph1 , Ch2 , Kh2 , h2, r, γ, βh2 , qh2 , Lh2 , Rh2 , Cph2 ,
L, Iα, Iαβ, Cα, Kα, Mx f , Iβ, Cβ, Kβ, Mxh, x f , xp, P, and Ω are defined as in Equation (11), Lα is
the piezoelectric material pitch inductance, Rα is the piezoelectric material pitch resistance,
Cpα is the piezoelectric material pitch capacitance, βα is the electromechanical coupling of
the pitch, and qα is the electric charge of the pitch. The electromechanical coupling of the
pitch, βα, depends on the coupling coefficient of the pitch, eα, and the capacitance of pitch,
Cpα, and it can be obtained by βα = eα/Cpα.

The aeroelastic equations of motion in the full unsteady form can be written as follows:

(A + ρB)
..
y + (C + ρUD)

.
y +

(
E + ρU2F

)
y + ρU3Ww = ρUg

.
Φ(t)

.
w − W1y − UW2w = 0,

(22)

where y =
[
h1 α β qh1 h2 qh2 qα γ

]T is the displacement and charge vector.
In order to represent Equation (22) in purely ordinary differential equations in the

first-order form, one can use the following equation:

.
x = Qx + q

.
Φ(t), (23)
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where

Q =

−M−1(C + ρUD) −M−1(E + ρU2F
)

−ρU3M−1W

I8×8 08×8 08×6

06×8 W1 UW2

, (24)

q =

(
ρUM−1g

014×1

)
, (25)

where x =
[ .

h1
.
α

.
β

.
qh1

.
qα

.
h2

.
qh2

.
γ h1 α β qh1 qα h2 qh2 γ w1 · · · w6

]T
is a

21 × 1 state vector, M = A + ρB, I8×8 is a 8 × 8 unit matrix, 08×8 is a 8 × 8 zero matrix, 08×6
is a 8 × 6 zero matrix, 06×8 is a 6 × 8 zero matrix, and 014×1 is a 14 × 1 zero vector. The
initial condition is x(0) = x0. The initial condition g

.
Φ(t), which plays an excitation role,

can decay exponentially. In this work, in order to reach steady-state solutions, the initial
condition is eliminated; hence, Equation (20) can be written as:

.
x = Qx. (26)

Example 3. A smart blade with plunge, pitch, and control DOF and piezopatches in plunge and
pitch DOFs.

In this example, one more piezopatch is implemented in the pitch DOFs of the example-
two smart blade to control vibrations. As shown in Figure 11, a smart blade is considered
which has plunge, pitch, and control DOFs. Furthermore, there are three piezopatches, two
in plunge DOFs and one in pitch DOFs. The smart blade has the same characteristics for the
smart blade of example two. It assumes that eh1 = 0.145 C/m, Cph1 = 2680 nF, Lh1 = 200 H,
Rh1 = 2974 Ω, eh2 = 0.0145 C/m, Cph2 = 2680 nF, Lh2 = 200 H, and Rh2 = 1274 Ω, the
parameters of the pitch piezopatch as the coupling coefficient of the pitch eα = 0.00145 C/m,
the piezoelectric material pitch capacitance Cpα = 268 nF, the piezoelectric material of
the pitch inductance Lα = 200 H, and the piezoelectric material of the pitch resistance
Rα = 574 Ω [19].

The results of simulation showed that having one more piezopatch in the pitch DOFs
can suppress the pitch mode flutter phenomenon, as shown in Figure 16. Therefore, there
is possibility to remove flutter in the pitch DOFs by possessing three piezopatches, two in
the plunge DOFs and one in the pitch DOFs. However, the flutter phenomenon appears
with a higher speed in the flapwise plunge DOFs.
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Figure 16 indicates flutter happens at 104.4198 m/s in the control DOFs in the smart
blade with three piezopatches. The new flutter speed value shows that it is increased by
155% in the smart blade in comparison to the one of a regular blade which has the same
characteristics without a piezopatch. In addition, the new flutter speed is increased by
40.54% in the smart blade in comparison to the one of a smart blade, which possesses
the same characteristics and only two piezopatches in the flapwise and edgewise plunge
DOFs. Obviously, implementing three piezopatches can suppress the pitch mode flutter
phenomenon; however, it appears in the flapwise plunge mode with a higher speed, as
depicted in Figure 16b.

Moreover, Figure 17 shows the eigenvalue real parts versus the freestream velocity.
Figure 17b depicts clearly flutter is removed in the pitch mode but it happens in the flapwise
plunge mode with a higher speed. It is also clear that the flutter speed of the smart blade
with three piezopatches is increased in comparison to the flutter speed of the smart blade
with only two piezopatches.
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Figure 17. Eigenvalues real part versus airspeed: (a) smart blade with plunge piezopatches; (b) smart
blade with plunge and pitch piezopatches.

Furthermore, Figure 18 indicates the eigenvalues imaginary parts versus the freestream
velocity. According to Figure 18b, it is clear that flutter happens in the flapwise plunge
mode and the smart blade flutter speed is effectively increased in comparison to the regular
blade one.
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Equation (26) can be used to form the matrix Q. Then, its eigenvalues and eigen-
vectors can be obtained for two different airspeeds, U = 10 m/s, and the flutter speed,
U = 104.4198 m/s. The smart blade structural states dynamics can be represented by eight
complex eigenvalues. Similar to the regular blade eigenvalues, these complex eigenvalues
are conjugate. Six real eigenvalues are for the aerodynamics states dynamics. Moreover,
six real eigenvalues represent the piezoelectric states dynamics. The first four eigenvector
elements provide structural velocities, the next four elements give structural displacements,
the next six elements provide aerodynamic state displacements, and finally, the last six
elements correspond to piezoelectric electric charges.

At U = 10 m/s, the eigenvalues of the smart blade for the three structural modes can
be as follows:

λ1 = −22.0865 ± 1.4051i, λ2 = −0.1630 ± 17.1215i, λ3 = −2.8733 ± 42.6701i,

and their corresponding eigenvectors can represent the smart blade structural mode
shapes as:

ϕ1 =


−0.3729
0.3119
0.8688
−0.0498

, ϕ2 =


0.0000
0.0000
0.0000
0.0000

, ϕ3 =


−0.0039
0.3795
0.9248
−0.0054

,

Where, in each mode shape, the first element provides the flapwise plunge displacement,
the second element presents the pitch angle, the third element indicates the control surface
angle, and the last element provides the edgewise plunge displacement. The degrees of
freedom of aeroelastic systems are generally coupled to each other and cannot appear
independently. Mainly, flapwise plunge displacements and pitch and control surface angles
happen in mode one; however, pitch and control surface angles happen in mode three.
Mode one contains significant positive control surface angles; however, mode three includes
significant negative pitch angles. Figure 19 shows the deformation of the smart blade in the
three modes. Clearly, the deformations of the smart blade are similar in pitch and control
with opposite signs in modes one and three.
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Figure 19. Mode shapes of the smart blade in unsteady plunge, pitch, and control at U = 10 m/s:
(a) ωn = 3.5 Hz; (b) ωn = 2.7 Hz; (c) ωn = 6.8 Hz.

Furthermore, at an airspeed U = 104.4198 m/s, the smart blade eigenvalues can be
shown as follows:

λ1 = −0.1630 ± 17.1215i, λ2 = −3.1718 ± 43.1546i, λ3 = 0.0000 ± 60.0816i;

and their corresponding mode shapes are shown as follows:

ϕ1 =


0.0000
0.0000
0.0000
0.0000

, ϕ2 =


0.0000
0.0000
0.0000
0.0000

, ϕ3 =


0.0839
−0.2131
0.9732
−0.0100

,

The real parts of λ1 and λ3 are much closer in comparison to eigenvalues at an
airspeed U = 10 m/s, and the real part of λ1 and λ3 are almost zero. In addition, at
U = 104.4198 m/s, all mode shape components of ϕ1 and ϕ2 become almost zero, and
there is a significant control angle in mode three, as depicted in Figure 20.
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5. Conclusions

In this paper, it has been shown how by using piezoelectric patches and considering
the blade rotational effect, the flutter can be delayed on a smart blade. Section 2 represents a
smart blade system response with only plunge and rotational DOFs. Clearly, the oscillations
of the smart blade can be effectively decayed in a very short time by implementing efficient
flapwise and edgewise piezopatches. Almost in 0.4 s, the vibration of the smart blade
flapwise velocity with only plunge and rotational DOFs can be decayed. However, the
vibration of the regular blade flapwise velocity without a piezoelectric patch needs around
12 s to decay. Furthermore, the vibration of the smart blade edgewise velocity with only
plunge and rotational DOFs can be decayed in 0.2 s; however, the vibration of the regular
blade edgewise velocity without a piezoelectric patch needs around 8 s to decay. In
addition, in 0.4 s, the vibration of the smart blade flapwise displacement with only plunge
and rotational DOFs can be decayed; however, the vibration of the regular blade flapwise
displacement without a piezoelectric patch needs around 12 s to decay. Moreover, the
vibration of the smart blade edgewise displacement with only plunge and rotational DOFs
can be decayed in 0.2 s; however, the vibration of the regular blade edgewise displacement
without a piezoelectric patch needs around 10 s to decay. In the rotational oscillation, the
vibration of the smart blade rotational velocity with only plunge and rotational DOFs can
be decayed in 0.15 s; however, the vibration of the regular blade rotational velocity without
a piezoelectric patch needs around 5 s to decay. Furthermore, the vibration of the smart
blade rotational displacement with only plunge and rotational DOFs can be decayed in 0.2 s;
however, the vibration of the regular blade rotational displacement without a piezoelectric
patch needs around 1 s to decay. As explained in Section 3, by using two piezopatches in
the flapwise and edgewise plunge DOFs of a regular blade with three DOFs, the flutter
speed can be postponed by 81.41%, which shows that the flutter speed is increased to
a considerable value. Moreover, the results showed that how the flutter can shift from
the flapwise plunge mode in a regular blade to the pitch mode in a smart blade. Later, it
presents the effect of implementing one more piezopatch to a smart blade in the pitch DOF
on the postponement of the flutter. The flutter speed in a smart blade can be postponed by
155%, which is a very considerable value.
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