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Abstract: The recent expansion of power-distribution networks has motivated many researchers to
study how to minimize the costs of such projects. Although transmission towers present one of the
main items in the network that greatly affect the project budget, there are no clear criteria or recom-
mendations to select the optimum bracing system that minimizes the tower weight. This research
presents recommendations to select the optimum configurations for latticed power-transmission
towers, segment by segment, for certain loads, as well as the aspect ratio. The research started by
generating a database with different segment configurations and their weights, and then three of
the most famous AI techniques (GP, ANN and EPR) were used to generate models to calculate the
weights of the segments. Studying these models led to the conclusion that K-shape bracing is better
that X-shape bracing for segments with aspect ratios (H/B) less than 1.0. The generated models and
conclusions were verified by using existing tower designs.

Keywords: transmission tower; GP; ANN; EPR; bracing system; design optimization

1. Introduction

Latticed power-transmission towers are one of the main items in any power-distribution
network. They cost about 35–45% of the total cost of the overhead transmission line
(F. Kiessling et al., 2003) [1]. This fact has motivated many researchers to minimize and
optimize the costs of this important item. Both Shea, K. and Smith, I.F.C, 2006 [2] and
Huiyong Guo and Zhengliang Li, 2011 [3] carried out studies to improve tower designs
using topology optimization, while I. Couceiro et al., 2016 [4] used the simulated annealing
algorithm to optimize lattice steel transmission towers. Huiyong Guo and Zhengliang
Li, 2009 [5], Abdullah and Taysi, 2012 [6], Sanah Rose Sony and Airin M. G., 2016 [7],
J. Premalatha et al., 2017 [8] and Bharat Koner et al., 2018 [9] applied the genetic algorithm
to optimize the design of lattice steel transmission towers. Siamak Talatahari et al., 2012 [10],
R. Nagavinothini and C. Subramanian, 2015 [11] and Li et al., 2015 [12] tried to achieve the
optimum design of transmission towers by using the firefly algorithm, PSO algorithm and
ant-colony-optimization algorithm, respectively. Ebid et al., 2021 [13] and El-Aghoury et al.,
2022 [14] presented optimization models to design steel members using GRG and ANN
techniques, respectively. Gencturk et al., 2012 [15] used the “Taboo Algorithm” to optimize
the design of lattice wind-turbine towers, while Hosseini et al., 2021 [16] implemented
the “Adaptive Neuro Fuzzy Inference System with Biogeography Based Optimization”
technique (ANFIS-BBO) to optimize the size, shape and design of transmission tower
panels. Nguyen et al., 2022 [17] used the “Differential Evolution and Machine Learning
Classification” (DE-MLC) technique to minimize the weights of steel lattice transmission
towers. Finally, Ebid, 2022 [18] presents a GP model to estimate the total weight of a
steel lattice transmission tower based on actual database collected from several tender
documents in the middle east zone.
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Artificial intelligence (AI) has been used in engineering since the 1980s, and its applica-
tions have become very acceptable today. Genetic programming (GP) is one of the famous
AI techniques; it was invented by Cramer (1985) [19] and developed by Koza (1992) [20].
Today, GP is an umbrella for many subtechniques, all of which were developed on the basis
of the same concepts as GP, such as evolutionary polynomial regression (EPR), the gene
expression programming technique (GEP), Cartesian genetic programming (CGP), linear
genetic programming (LGP), meta-genetic programming (MGP) and multigene genetic
programming (MGGP), in addition to the classic GP.

The main concept of GP is to apply the genetic-algorithm (GA) technique to mathemat-
ical formulas. The GA technique is one of the earliest AI techniques. It mimics Darwin’s
evolution theory by generating a number of random solutions for the considered problem,
testing the fitness of each solution, selecting the most fitting solutions and erasing the rest;
then, the surviving solutions are mixed to create the next generation of solutions using one
of the crossover techniques, and the cycle goes on until the desired fitting level is achieved.
In GP, the mathematical formulas have to be coded in binary-tree form and then converted
into the genetic algorithm in order to apply GA operators on them. Figure 1 explains the
concepts of binary tree and genetic form.
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2. Objective

Although many researchers have addressed this topic before, none of them have
introduced a certain procedure, or even guidelines, to choose geometrical configurations
that lead to minimum tower weights.

The main concept of this research is based on the fact that latticed power-transmission
towers usually consist of a number of segments, which are erected one over top of the
other, starting from the biggest at the bottom and ending with the smallest at the top.
Each segment is a 3D vertical cantilever truss structure, fixed at the bottom in the lower
segment (or in the foundation), and loaded at the top from the upper segment (or from
cross arms). Accordingly, optimizing the weight of each individual segment leads to
optimizing the weight of the whole tower. Based on the previous concept, the aim of this
research is to present an AI model to estimate the optimum weights of individual tower
segments. Based on the developed models, guidelines are recommended to select the
optimum segment configurations to minimize the weight. Applying these guidelines to the
design of individual segments is a way to optimize the weight of the whole tower.

3. Methodology

The research plan was divided into two phases: the first phase carried out a parametric
study of more than 500 individual segments with different geometrical configurations
and loading conditions, which were designed according to ASCE manuals and reports on
engineering practice (No. 52 “Guide for design of steel transmission towers”). In the second
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phase, the genetic-programming technique was applied on the results of the parametric
study to generate the best-fitting mathematical formula that correlated the individual
segment geometrical configurations and loading conditions with its optimum weight. The
following paragraphs describe the research plan in detail. Then, the generated formula
was studied to extract general guidelines and recommendations to achieve the minimum
weights of the tower segments.

3.1. Phase I: The Parametric Study

This parametric study aimed to generate the required database for the next phase. The
study started out by determining the parameters that affect the segment weight, which
could be classified into geometrical and loading parameters. The geometrical parameters
were the segment height (H), bottom width (B), leg-slope angle (α), diagonal shape (single
diagonal, X-diagonals and K-diagonals), and the arrangement of the subdividers. In order
to quantify these parameters and avoid the use of angles, the leg-slope angle (α) was
replaced by the length (x), where tan(α) = x/H. The diagonal shape was presented by
two parameters: the number of diagonals per face (nd), and the diagonal-slope angle
(θ); again, the diagonal-slope angle (θ) was replaced by the shape factor (sh), where
tan(θ) = (H.sh)/(B-x).

Finally, the arrangement of the subdividers was presented by the bulking coefficient
(K). The loading parameters were the vertical load (V), lateral load (Q) and the vertical
distance between the applying point of the lateral load and the segment base (L). Figure 2
shows both the geometrical and loading parameters.
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The next step was to determine the value range of each parameter, as shown in Table 1;
then, 504 combinations of these values were generated. Each combination presents a
segment with a different geometrical configuration and loading condition.
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Table 1. Value ranges of the parametric study.

Parameter Symbol Unit Values

Segment height (H) (m) 4.0
Bottom width (B) (m) 2.0, 4.0, 8.0

(x) distance (x) (m) 0.35, 0.70, 1.05
(L) distance (L) (m) 16.0, 24.0, 32.0
Vertical load (V) (ton) 6.0
Lateral load (Q) (ton) 6.0, 18.0, 30.0

Buckling coefficient (K) - 1.4, 1.0, 0.33, 0.2
Shape factor (sh) - 1.0, 2.0

In order to design and calculate the weight of the generated segments, the following
assumptions were considered:

• The plan of the tower is square;
• All legs have the same cross section;
• All diagonals have the same cross section;
• All cross-frame members have the same cross section;
• All subdivide members have the same cross section;
• Cross sections of all members are single angles;
• Only equal angles with size to thickness (a/t) equal to 10 are used;
• Minimum allowed cross sections are L40 × 40 × 4 for subdividers, and L50 × 50 × 5

for other members;
• All members have a minimum yield stress of 3.6 t/cm2 (36,000 t/m2);
• Since the leg slope ranged between 5◦ and 15◦, all member lengths are calculated as in

the vertical plane;
• The subdividers divide both legs and diagonals into equal lengths;
• The lateral load is considered in one direction;
• In the case of X-diagonals and K-diagonals, both diagonal members are active, and no

post-buckling behavior is allowed;
• The maximum allowable values for the buckling factor (λ = KL/r) are 150, 200 and

250 for legs, diagonals and subdividers, respectively.

3.2. Phase II: Artificial Intelligence (AI) Models

The aim of this phase was to correlate the calculated segment weight with its corre-
sponding geometrical and loading parameters using different AI techniques, which were,
namely, genetic programming (GP), artificial neural network (ANN) and evolutionary poly-
nomial regression (EPR). The first step to apply these techniques is to prepare a database in
a proper format by converting the absolute values of the parameters into dimensionless
ones; hence, all the lengths were divided by the segment height (H), the vertical load was
related to the lateral load and, finally, the absolute value of the lateral load was replaced
by the dimensionless parameter (Q/B2Fy), where (Fy) is the yield stress of the used steel.
Accordingly, the considered eight dimensionless parameters are: B/H, x/H, L/H, Q/V,
K, nd, sh and Q/B2Fy. Similarly, the absolute calculated segment weight was presented
by a dimensionless value (1000 Vs/Vt), where Vs is the summation of all steel members’
volumes, and Vt is the maximum total volume of the segment (B2H). The 504 database
records were divided into two groups: a training group of 354 records, and a validation
group of 150 records. The statistical proprieties of the database items and their correlations
are summarized in Tables 2 and 3, while Figure 3 graphically presents the input and output
datasets (using histograms), which provide a quick visual idea as to the the range, distribu-
tion, mean and median of each parameter, in addition to the traditional tabulated format
presented in Table 2. After predicting the 1000 Vs/Vt values using the AI techniques, the
segment weight could be calculated as follows:

Ws (kg) =
(

1000 Vs
Vt

)(
γs B2H

)
(1)
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where (γs) is the steel density (8.0 t/m3).

Table 2. Pearson correlation matrix.

B/H x/H L/H Q/V K nd sh Q/B2fy 1000 Vs/Vt

B/H 1.00
x/H 0.19 1.00
L/H 0.00 0.00 1.00
Q/V 0.00 0.00 0.00 1.00

K 0.00 0.00 0.00 0.00 1.00
nd 0.00 0.00 0.00 0.00 −0.69 1.00
sh 0.00 0.00 0.00 0.00 −0.24 0.35 1.00

Q/B2fy −0.67 −0.21 0.00 0.42 0.00 0.00 0.00 1.00
1000

Vs/Vt −0.66 −0.23 0.08 0.23 0.27 −0.20 −0.01 0.89 1.00

Table 3. Statistical proprieties of database parameters.

B/H x/H L/H Q/V K nd sh Q/B2fy 1000 Vs/Vt

Training set

Min. 0.50 0.09 4.00 1.00 0.20 1.00 1.00 0.03 0.32
Max. 2.00 0.26 8.00 5.00 1.40 2.00 2.00 2.08 28.15
Avg. 1.25 0.17 5.97 2.97 0.78 1.80 1.19 0.46 4.82
SD 0.61 0.07 1.63 1.63 0.45 0.40 0.39 0.59 6.00

VAR 0.49 0.40 0.27 0.55 0.58 0.22 0.33 1.28 1.24

Validation set

Min. 0.50 0.09 4.00 1.00 0.20 2.00 2.00 0.03 0.35
Max. 2.00 0.26 8.00 5.00 1.00 2.00 2.00 2.08 28.70
Avg. 1.26 0.17 6.08 3.08 0.30 2.00 2.00 0.46 3.62
SD 0.61 0.07 1.65 1.65 0.16 0.00 0.00 0.59 4.96

VAR 0.49 0.40 0.27 0.53 0.53 0.00 0.00 1.28 1.37
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The following section discusses the results of each model. The accuracies of the
developed models were evaluated by comparing the SSE between the predicted and
calculated 1000 Vs/Vt values. The results of all developed models are summarized at the
end of Section 4.

4. Research Results
4.1. Model 1 Using GP

The developed GP model started with one level of complexity and settled at five levels
of complexity. The population size, survivor size and number of generations were 100,000,
30,000 and 200, respectively. Equation (2) presents the output formulas for 1000 Vs/Vt,
while Figure 5a shows its fitness. The average error % of this equation is 16.6 %, while the
R2 value is 0.976. The estimated segment weight could be calculated using Equation (1):

1000 Vs
Vt

=
Q

B2Fy
L
H

+ K
H
B

[
1 +

(
H
B

)sh
]
− x

H
− ln(nd) +

(
Q K
B2Fy

) B
H

Q
B2Fy

(2)

4.2. Model 2 Using ANN

A back-propagation ANN with two hidden layers and an (Hyper Tan) activation
function was used to predict the same 1000 Vs/Vt values. The used network layout and its
connation weights are illustrated in Figure 4 and Table 4. The average error % of this model
is 6.8%, and the corresponding (R2) value is 0.997. The relation between the calculated and
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predicted values is shown in Figure 5b. The estimated segment weight could be calculated
using Equation (1).
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Table 4. Connection weights for the developed ANN.

Hidden Layer 1 Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) 1000 VsVt

Input Layer

(Bias) 0.215 0.660 −0.177 0.353 0.779 0.206
B/H −0.090 1.165 −0.082 −0.435 0.238 −0.495
x/H 0.075 0.013 −0.090 −0.092 −0.171 −0.044
L/H −0.016 −0.033 0.415 −0.432 −0.340 −0.082
Q/V 0.274 0.008 0.158 0.256 −0.068 0.345

K 0.662 0.186 0.271 −0.015 0.222 −1.012
nd −0.295 −0.018 0.289 0.266 0.369 0.098
sh −0.509 −0.220 −0.023 −0.320 −0.471 −0.281

Q/B2fy 0.116 −0.205 −0.230 0.401 −0.373 −0.615

Hidden Layer 1

(Bias) −0.374
H(1:1) 0.381
H(1:2) −1.016
H(1:3) 0.327
H(1:4) 0.524
H(1:5) −0.362
H(1:6) −0.732
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4.3. Model 3 Using EPR

Finally, the developed EPR model was limited to the quadrilateral level; for eight
inputs, there are 495 possible terms (330 + 120 + 36 + 8 + 1 = 495), as follows:

i=8

∑
i=1

j=8

∑
j=1

k=8

∑
k=1

l=8

∑
l=1

Xi.Xj.Xk.Xl +
i=8

∑
i=1

j=8

∑
j=1

k=8

∑
k=1

Xi.Xj.Xk +
i=8

∑
i=1

j=8

∑
j=1

Xi.Xj +
i=8

∑
i=1

Xi + C

The GA technique was applied on these 495 terms to select the six most effective
terms to predict the 1000 Vs/Vt values. The output is illustrated in Equation (3), and its
fitness is shown in Figure 5c. The average error % and R2 value were 25.8% and 0.959 for
the total datasets, respectively. The estimated segment weight could be calculated using
Equation (1).

1000 Vs
Vt

=
Q

B2. fy

[
1.95 H.K

B
+

0.224 H
B. K

+
0.789 H.nd

B
+

14.95 V.K
Q

]
+

0.55 B. K
H. nd

+ 0.213 (3)

Finally, Table 5 summarizes the accuracies of developed models.
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Table 5. Accuracies of developed models.

Technique Developed
Equation (MSE) (MSE) Error % R2

GP Equation (2) 0.917 424 16.6 0.976
ANN Figure 4 0.303 46 6.8 0.997
EPR Equation (3) 1.154 671 25.8 0.959

5. Dissection

A study of the three developed models showed that the ANN model is not only the
most accurate one (93.2%), but also the most complicated. Due to its complexity, it cannot
be manually used; however, it is recommended as software. The summation of the absolute
weights of each neuron in the input layer is a good indicator of the importance of its
parameter. Accordingly, the most effective parameters were Q/B2Fy, B/H and K, while the
other parameters had minor effects on the weight of the segment.

Conversely, the EPR model had the lowest level of accuracy (74.2%), as indicated by
the scattered points in Figure 5c. Although it presents a simple closed-form equation, it is
not recommended due to its level of accuracy.

Finally, the GP model introduces a simple formula with reasonable accuracy (83.4%),
as shown in Equation (2). This equation could be simplified to Equation (4) by using the
following substitutions:

• Segment volume (Vt = B2H);
• Overturning moment at segment base (M = Q.L);
• Segment aspect ratio (A = H/B);
• Yield stress of steel (Fy = 3.6 t/cm2 = 36,000 t/m2):

1000 Vs = 0.28 M + Vt
[
K A

(
1 + Ash

)
− ln(nd)−

x
H

]
+ Vt

(
Q K

3.6 B2

) Q
3.6 H B

(4)

The segment weight could be calculated as shown in Equation (1); hence:

Ws (kg) = 2.25 M + 8 Vt
[
K A

(
1 + Ash

)
− ln(nd)−

x
H

]
+ 8 Vt

(
Q K

3.6 B2

) Q
3.6 H B

(5)

where Q is in tons, M is in m.t and all lengths are in meters.
Studying Equation (5) indicates the following:

• The term
(

1 + Ash
)

in Equation (5) is minimized when A < 1.0 and sh = 2, and when
A > 1.0 and sh = 1. This indicates that K-bracing is favorable when the aspect ratio (A)
is less than 1.0, while X-bracing is favorable for an A greater than 1.0;

• In order to keep the diagonal angle in the optimum zone (from 30◦ to 60◦), the segment
aspect ratio (A) should be between 0.5 and 2.0;

• The term −ln(nd) in Equation (5) indicates that using a two-member bracing system
is always more economical than using a one-member bracing system;

• The buckling factor (K) appeared in two positive terms: K A
(

1 + Ash
)

and
(

Q K
3.6 B2

) Q
3.6 H B .

This means that decreasing the K factor decreases the segment weight. However,
decreasing the K value to below 10 a/H, which corresponds to (λ = 50), will not
significantly affect the segment weight. Conversely, using a K value higher than
20 a/H, which corresponds to (λ = 100), eliminates the advantage of using high-
strength steel due to the Euler buckling;

• The term
(

Q K
3.6 B2

) Q
3.6 H B tends to zero for large segments, which indicates that it

presents the effect of not using subdividers in small segments (using large K values)
when increasing their weights;
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• Finally, the term − x
H in Equation (5) indicates that increasing the base width of the

segments reduces their weights, but this is limited within the optimum range of the
aspect ratio (A) (which lays between 0.5 and 2.0). The practical leg slope in most
prefabricated latticed power-transmission towers ranges between 5◦ and 15◦.

6. Verification

In order to assure the validity of Equation (3) and the ANN model, two preoptimized
prefabricated models of latticed towers (B2 and Z2) were used. Z2 is a 360 m-spanning
220 KV double-circuit double-conductor suspended tower, while B2 is a 360 m-spanning
220 KV double-circuit triple-conductor suspended tower. Each one of them consists of
various numbers of segments with different heights, aspect ratios and diagonal shapes.
Line diagrams of both towers are presented in Figure 6.
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It can be noted from Table 6 that the lateral load (Q) increased for lower segments due
to the wind load on the tower body, and consequently, the length (L) was calculated by
dividing the overturning moment (M) by the lateral load (Q).

Table 6. Summary of the verification results.

Seg. H B x Q L K nd sh Ws act Ws Equation (5) Ws ANN

ID (m) (m) (m) (t) (m) (-) (-) (-) (kg) (kg) (kg)

Tower Type (Z2)

1 2.75 2.46 0.33 18.2 9.55 0.25 2.00 1.00 380 384 391
2 2.40 3.04 0.29 18.4 11.83 0.25 2.00 1.00 400 380 388
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Table 6. Cont.

Seg. H B x Q L K nd sh Ws act Ws Equation (5) Ws ANN

ID (m) (m) (m) (t) (m) (-) (-) (-) (kg) (kg) (kg)

3 2.40 3.61 0.29 18.6 14.06 0.25 2.00 1.00 500 475 535
4 5.70 4.98 0.68 19.3 19.04 0.16 2.00 1.00 930 902 930
5 3.30 5.77 0.40 19.8 21.80 0.33 2.00 1.00 950 1017 931
6 7.80 7.64 0.94 21.3 27.52 0.14 2.00 1.00 1750 1785 1855
7 4.00 8.60 0.48 22.1 30.30 0.25 2.00 2.00 1344 1304 1277
8 4.00 9.56 0.48 23.1 32.88 0.25 2.00 2.00 1461 1373 1359
9 5.00 10.76 0.60 24.4 35.79 0.20 2.00 2.00 2022 2062 2123

Total 9737 8533 9789

Tower Type (B2)

1 2.60 2.72 0.36 26.2 9.94 0.25 2.00 1.00 532 559 548
2 3.00 3.55 0.42 26.4 12.81 0.25 2.00 1.00 639 698 620
3 3.00 4.38 0.42 26.8 15.62 0.25 2.00 1.00 683 802 703
4 7.00 6.32 0.97 27.9 21.72 0.20 2.00 1.00 1758 1797 1758
5 8.60 8.70 1.19 29.7 28.42 0.14 2.00 1.00 2355 2262 2308
6 6.00 10.37 0.84 31.3 32.71 0.20 2.00 2.00 2091 1673 2091
7 9.00 12.86 1.25 34.2 38.19 0.16 2.00 2.00 2985 3084 3134

Total 11,043 10,875 11,162

The weight of each segment and the total weights of the towers were compared with
the calculated values from Equation (5) and the ANN model, as summarized in Table 6.
The results showed almost the same level of prediction accuracy as the generated database.

7. Conclusions

This research presents three models using three AI techniques: GP, ANN and EPR,
to predict the optimum weight of a tower segment based on its geometrical configurations
and loading conditions. The research results can be concluded in the following points:

• The developed ANN model is the most accurate model, with an average error of 6.8%;
however, it is too complicated to be applied manually and it cannot be used to extract
design guidelines;

• The EPR model has the lowest level of accuracy, with an average error of 25.8%, and
accordingly it is not recommended;

• The reasonable accuracy of the GP formula (error: 16.6%), in addition to its ability to
be applied manually, makes it the best choice for further analysis to extract design
guidelines to minimize the segment weight, as follows:

o K-bracing is favorable when the aspect ratio (A) is less than 1.0, while X-bracing
is favorable for an A more than 1.0;

o The segment aspect ratio (A) should be between 0.5 and 2.0;
o A double-member bracing system is always more economical than a single-

member bracing system;
o The distance between the subdividers should be between 10 and 20 times the

leg-angle size;
o The practical leg slope is between 5◦ and 15◦, which corresponds to an x/H

value between 0.10 and 0.25. However, the selected value should comply with
the optimum range of the aspect ratio (A), which is between 0.5 and 2.0;

• The accuracies of both the GP and ANN models were verified using two types of
preoptimized tower segments;

• As with any other regression technique, the developed models are valid within the
considered range of the parameter values; beyond this range, the prediction accuracy
should be verified;
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• Further studies may be carried out to optimize the design of guided and communica-
tion towers using the same technique.
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