
Citation: Zhong, X.; Zhang, Z.;

Zhang, R.; Zhang, C. End-to-End

Deep Reinforcement Learning

Control for HVAC Systems in Office

Buildings. Designs 2022, 6, 52.

https://doi.org/10.3390/

designs6030052

Academic Editors:

Zbigniew Leonowicz, Arsalan Najafi

and Michał Jasiński
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Abstract: The heating, ventilation, and air conditioning (HVAC) system is a major energy consumer in
office buildings, and its operation is critical for indoor thermal comfort. While previous studies have
indicated that reinforcement learning control can improve HVAC energy efficiency, they did not pro-
vide enough information about end-to-end control (i.e., from raw observations to ready-to-implement
control signals) for centralized HVAC systems in multizone buildings due to the limitations of re-
inforcement learning methods or the test buildings being single zones with independent HVAC
systems. This study developed a model-free end-to-end dynamic HVAC control method based on a
recently proposed deep reinforcement learning framework to control the centralized HVAC system
of a multizone office building. By using the deep neural network, the proposed control method
could directly take measurable parameters, including weather and indoor environment conditions,
as inputs and control indoor temperature setpoints at a supervisory level. In some test cases, the
proposed control method could successfully learn a dynamic control policy to reduce HVAC energy
consumption by 12.8% compared with the baseline case using conventional control methods, without
compromising thermal comfort. However, an over-fitting problem was noted, indicating that future
work should first focus on the generalization of deep reinforcement learning.

Keywords: HVAC control; deep reinforcement learning; thermal comfort; energy efficiency; A3C

1. Introduction

The proper control of heating, ventilation, and air conditioning (HVAC) systems is
a crucial element for reducing the amount of energy used by buildings and improving
occupants’ thermal comfort [1,2]. The control of HVAC systems can usually be divided
into the supervisory level and local level [3]. Supervisory-level control sets the setpoints or
operation commands, whilst local-level control controls the HVAC actuators in response to
supervisory-level control signals. This study focuses on supervisory-level control because
of its generality. Different HVAC systems may have dramatically different local control
structures due to differences in the system design, but they may share a similar supervisory
control interface [3–5].

The most commonly found HVAC supervisory control strategy is static rule-based
control, in which there is a set of if-then-else rules to determine supervisory-level setpoints
or operation commands [6]. However, such simple control strategies may not achieve
high HVAC energy efficiency and improved indoor thermal comfort because of the slow
thermal response of buildings, dynamic weather conditions, and dynamic building internal
loads [7]. Additionally, most static rule-based control strategies consider only indoor air
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temperature as the metric for thermal comfort, but thermal comfort is actually affected by a
number of factors, including air temperature, radiant temperature, humidity, etc. [8].

1.1. Model Predictive Control

Model predictive control (MPC) has become popular over the past few years due
to its potential for significant HVAC energy savings. MPC uses a building model to
predict the future building performance, in which case the optimal control decisions for the
current time step can be made. There have been a number of studies using MPC to control
HVAC systems, such as controlling the supply air temperature setpoint for air handling
units (AHUs) [9], controlling the on/off status of the HVAC system [10], controlling the
ventilation airflow rates [11], and controlling zone air temperature setpoints [12], and most
of them show significant energy savings.

While promising, MPC is still hard to implement in the real world because of the diffi-
culties of HVAC modeling. The classic MPC requires low-dimensional and differentiable
models; for example, the linear quadratic regulator needs a linear dynamics and quadratic
cost function [13]. This is difficult for HVAC systems, especially for the supervisory control
of centralized HVAC systems, not only because it has nonlinear dynamics but also because
it involves a number of control logics that make it non-continuous. For example, the control
logic for a single-speed direct-expansion (DX) coil may be “turn on the DX-coil if there
is indoor air temperature setpoint not-met in more than five rooms”. Such logic is hard
to represent with a continuous mathematical model because of the if-then-else condition.
Therefore, in most previous MPC studies, either the building had an independent air condi-
tioner for each room rather than a centralized system (such as [14–16]), or the MPC was
used to directly control the local actuators rather than to set supervisory-level commands
(such as [17–19]). Neither way generalizes well for typical multizone office buildings, which
usually have centralized HVAC systems and non-uniform HVAC design.

To address the modeling difficulties of MPC for HVAC systems, white-box building
model (physical-based model) based predictive control was proposed in [9,14,20]. This method
may significantly reduce the modeling difficulties of MPC, because the white-box building
model generalizes well for different buildings, and there are a number of software tools
available for modeling. However, white-box building models, such as EnergyPlus models,
are usually high-dimensional and non-differentiable. Heuristic search must be implemented
for MPC. Given the fact that the white-box building model can be slow in computation, the
scalability and feasibility of this type of MPC in the real world are questionable.

1.2. Model-Free Reinforcement Learning HVAC Control

Since model-based optimal control, such as MPC, is hard to use for HVAC systems,
model-free reinforcement learning control becomes a possible alternative. To the authors’
knowledge, reinforcement learning control for HVAC systems has not yet been well studied.
Either the reinforcement learning methods used are too simple to reveal their full potential,
or the test buildings are too unrealistic. For example, Liu and Henze [21] applied very
simple discrete tabular-setting Q-learning to a small multizone test building facility to control
its global thermostat setpoint and thermal energy storage discharge rate for cost savings.
Regardless of the limited real-life experiment showing 8.3% cost savings compared with
rule-based control, the authors admitted that the “curse of dimensionality” of such a simple
reinforcement learning method limited its scalability. In the following research by the same
authors [22], a more advanced artificial neural network (ANN) was used to replace simple
tabular-setting Q-learning; however, the results indicate that the use of ANN did not show
clear advantages, probably due to the limited computation resources at that time.

The deep neural network (DNN) has become enormously popular lately in the machine
learning community due to its strong representation capacity, automatic feature extraction,
and automatic regularization [23–25]. Deep reinforcement learning methods take advantage
of DNN to facilitate end-to-end control, which aims to use raw sensory data without
complex feature engineering to generate optimal control signals that can be directly used
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to control a system. For example, Mnih et al. [26] proposed a deep Q-network that could
directly take raw pixels from Atari game frames as inputs and play the game at a human
level. More details about deep reinforcement learning can be found in Section 2.

Deep reinforcement learning methods have been widely studied not only by machine
learning and robotics communities but also by the HVAC control community. Table 1 summa-
rizes the HVAC control studies performed in recent years using deep reinforcement learning.
Researchers have demonstrated via simulations and practical experiments that deep reinforce-
ment learning can improve the energy efficiency for various types of HVAC systems. However,
there are sparse data describing the implementation of end-to-end control for multizone build-
ings. On the one hand, the test buildings in several studies, including [27–31], were single
zones with independent air conditioners. On the other hand, conventional deep reinforcement
learning methods cannot effectively solve multizone control problems. Yuan et al. [32] showed
that the direct application of deep Q-learning to a multizone control problem would make the
training period too long. Ding et al. [33] proposed a multi-branching reinforcement learning
method to solve this problem, but the method required a fairly complicated deep neural
network architecture and therefore could not be scaled up for large multizone buildings.
Based on deep reinforcement learning, Zhang et al. [4] proposed a control framework for
a multizone office building with radiant heating systems. In this study, however, “reward
engineering” (i.e., a complicated reward function of reinforcement learning) needed to be
designed to help ensure that the reinforcement learning agent could learn efficiently, in which
case end-to-end control could not be achieved.

Table 1. An overview of studies focusing on deep reinforcement learning methods for HVAC systems.

Reference Reinforcement Learning Method Test Building HVAC System

[27] Linear state-value function approximation Two buildings, each having a single zone Independent air conditioners
[28] Continuous-action Q-learning Multiple apartments, each having a single zone Independent air conditioners
[29] Continuous-action Q-learning A hall with multiple single rooms Independent air conditioners
[30] Model-assisted fitted Q-learning A lab room An independent HVAC unit
[31] Model-assisted fitted Q-learning A single chamber A heat pump system
[32] Deep Q-learning A multizone office building A variable air volume system
[33] Multi-branching reinforcement learning A multizone office building A variable air volume system
[4] Policy gradient A multizone office building Radiant heating systems

1.3. Objectives

As discussed above, conventional rule-based supervisory HVAC control often results
in unnecessary energy consumption and thermal discomfort. Better supervisory control
methods should be found, but model-based optimal control, such as MPC, may not be
practical for multizone office buildings. While previous studies have indicated that re-
inforcement learning control can be promising in terms of energy savings and thermal
comfort, data from these studies did not provide enough information about the imple-
mentation of end-to-end control (i.e., from raw observations to the ready-to-implement
control signals) for centralized HVAC systems in multizone buildings, mainly due to the
limitations of reinforcement learning methods or the test buildings being single zones with
independent HVAC systems. In this study, a supervisory-level HVAC control method was
developed using the deep reinforcement learning framework in order to achieve end-to-
end control for a typical multizone office building with a centralized HVAC system. The
performance of the proposed control method, including both learning performance and
building performance, were critically evaluated. The limitations of the proposed method
are discussed, and the direction of future work is proposed.

2. Background of Reinforcement Learning
2.1. Markov Decision Process

According to [34], a standard reinforcement learning problem is that a learning agent
interacts with the environment in a number of discrete steps to learn how to maximize
the reward returned from the environment (Figure 1). Agent–environment interactions
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in one step can be expressed as a tuple (St, At, St+1, Rt+1), where St represents the state
of the environment at time t, At is the action chosen by the agent to interact with the
environment at time t, St+1 is the resulting environmental state after the agent takes action,
and Rt+1 is the reward received by the agent from the environment. Ultimately, the goal of
reinforcement learning control is to learn an optimal policy π : St → At that maximizes
the accumulated future reward ∑T∞

t Rt.
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The above-mentioned standard reinforcement learning problem is a Markov decision
process (MDP) if it obeys the Markov property; that is, the environment’s state of the next
time step (St+1) only depends on the environment’s state at this time step (St) and the
action at this time step (At) and is not related to the state action history before this time
step t. Most reinforcement learning algorithms implicitly assume that the environment is
an MDP. However, empirically, many non-MDP problems can still be well solved by those
reinforcement learning algorithms.

In reinforcement learning, there are three important concepts, including the state-value
function, action-value function, and advantage function (as shown in Equations (1)–(3),
where γ is the reward discount factor) [35]. Intuitively, the state-value function represents
how much reward can be expected if the agent is at state s following policy π; the action-
value function represents how much reward can be expected if the agent is at state s taking
action a and then following policy π; and the advantage function, showing the difference
between the action-value function and state-value function, basically indicates how good
an action is with respect to the state.

vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s

]
(1)

qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1|St = s, At = a

]
(2)

aπ(s, a) = qπ(s, a)− vπ(s) (3)

where Ea∼π(s)[aπ(s, a)] = 0. For the optimal policy π∗, there is

vπ∗(s) = max
a

qπ∗(s, a) = max
a

E[Rt+1 + γvπ∗(St+1)|St = s , At = a] (4)

2.2. Policy Gradient

Reinforcement learning problems are usually solved by learning an action-value
function qπ(s, a), and the resulting policy is π′(s) = argmax

a
qπ(s, a) if the greedy policy

is used. In addition, there is another approach to reinforcement learning (known as the
policy gradient) that learns the optimal policy directly without learning the action-value
function. Compared with the greedy policy, the advantages of the policy gradient include
better convergence properties, greater effectiveness in high-dimensional or continuous
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action spaces, and a better ability to learn stochastic policies [36]. The policy gradient was
therefore used in this study.

The goal of the policy gradient is to learn the parameter θ in πθ(s, a) = Pr(a|s, θ ) that
maximizes average reward per time step J(θ), as shown in Equation (5):

J(θ) = ∑
s

dπθ
(s)∑

a
Ra

s πθ(s, a) (5)

where dπθ
(s) is the stationary distribution for state s of the Markov chain starting from

s0 and following policy πθ , and Ra
s is the reward of the agent at state s taking action a.

Gradient descent was used to maximize Equation (5). The gradient of J(θ) with respect to θ
is shown in Equation (6):

∇θ J(θ) = ∑
s

dπθ
(s)∑

a
Ra

s πθ(s, a)∇θ πθ(s,a)
πθ(s,a)

= ∑
s

dπθ
(s)∑

a
Ra

s πθ(s, a)∇θ log πθ(s, a)
(6)

According to the policy gradient theorem, Equation (6) can be rewritten as:

∇θ J(θ) = Eπθ
[∇θ log πθ(s, a)qπθ

(s, a)] (7)

However, qπθ
(s, a) usually has a large variance, which may harm the convergence of

the policy gradient method. To solve this problem, a baseline function B(s) can be sub-
tracted from qπθ

(s, a) in Equation (7). Because B(s) is not a function of a, Eπθ
[∇θ log πθ(s, a)B(s)]

equals zero. Therefore, subtracting a baseline function from qπθ
(s, a) does not change the

expected value of Equation (7) but reduces its variance. A good choice of B(s) is vπθ
(s).

Then, the new policy gradient function is:

∇θ J(θ) = Eπθ
[∇θ log πθ(s, a)(qπθ

(s, a)− vπθ
(s))]

= Eπθ
[∇θ log πθ(s, a)aπθ

(s, a)]
(8)

The policy gradient in the form of Equation (8) is called advantage actor critic (A2C),
which is the main reinforcement learning method used in this study.

2.3. Deep Reinforcement Learning

The size of the state space of the reinforcement learning problem can easily be very large
for real-life problems. Simple tabular settings, i.e., using a lookup table to store the state values
and action values for every state and every action, cannot work for a large discrete state space
or a continuous state space. Instead, the value functions and policy can be estimated using
the function approximation, i.e., vπ(s, θ), qπ(s, a, θ), and π(s, a, θ), where state values, action
values, and policy are a function with respect to θ. If a deep neural network is used as the
function approximation, then it is called deep reinforcement learning.

The advantages of a deep neural network are its representation capacity, automatic feature
extraction, and good generalization properties. Therefore, complicated feature engineering
and results post-processing are no longer needed, making end-to-end control possible.

3. Methodology

Model-free deep reinforcement learning was used in this study, where the reinforce-
ment learning agent interacted with the simulated building model offline to learn a good
control policy and then controlled the real building online [21]. Since the building model
was used as a simulator offline, slow computation and a non-differentiable model were no
longer problems. EnergyPlus (Version 8.6 developed by the National Renewable Energy
Laboratory, Golden, CO, USA) was used as the building simulation engine [37].

As shown in Figure 2, a multizone building simulator was used for offline model-free
reinforcement learning (training), but only one zone was used as the training simulator.
After learning, a control policy was obtained, and this control policy was used to control all



Designs 2022, 6, 52 6 of 21

zones in the testing simulator. Note that the testing simulator had perturbations to ensure
the fairness of testing. The details of the simulators and perturbations can be found in
Section 4.1.
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3.1. State, Action, and Reward Design

For reinforcement learning, state, action, and reward design are critical for learning
convergence (as described in Section 2.1). To take advantage of the deep reinforcement
learning method, only raw observable or controllable parameters for our state, action, and
reward design were used, with no extra data manipulation.

3.1.1. State

The state included the current time step’s weather conditions, the environmental
conditions of the controlled zone, and the HVAC power demand, which are summarized
in Table 2.

Table 2. A description of the states selected for reinforcement learning.

State Remarks

Weather conditions
Site outdoor air dry-bulb temperature Unit: ◦C
Site outdoor air relative humidity Unit: %
Site wind speed Unit: degree from north
Site diffuse solar radiation rate Unit: W/m2

Site direct solar radiation rate Unit: W/m2

Zone environmental conditions
Zone thermostat heating setpoint temperature Unit: ◦C
Zone thermostat cooling setpoint temperature Unit: ◦C
Zone air temperature Unit: ◦C
Zone air relative humidity Unit: %

Occupancy-related zone average predicted
percentage of dissatisfied using Fanger model

Unit: %, hereafter called OPPD. If the zone
occupancy status is 0, OPPD is 0; otherwise,

OPPD is the Fanger model predicted
percentage of dissatisfied

Zone occupancy status 1 or 0

HVAC power demand

Total HVAC power demand
Unit: W, hereafter called EHVAC. EHVAC is the

total electric power demand for the whole
HVAC system.
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Each item in the state should be normalized to between 0 and 1 for the optimization
purpose of the deep neural network. Min–max normalization was used (as shown in Equation
(9)), with the parameter’s physical limits or the parameter’s expected bounds as the min–max
values. For example, the min–max values for relative humidity (%) were 0 and 100, and the
min–max values for zone air temperature (◦C) were 15 and 30. The temperature range was
selected based on data in the literature [9,38], which shows that the typical range of setpoint
temperatures for office buildings in Pennsylvania, USA, is 15 ◦C to 30 ◦C.

xnorm =
x− xmin

xmax − xmin
(9)

3.1.2. Action

The control action of the agent was discrete and was designed as the adjustment to
the last time step’s air temperature heating and cooling setpoints in the controlled zone.
There are four basic action types, including:

1. [0.0, 0.0] means no change to the last time step’s zone air temperature heating and
cooling setpoints.

2. [+deltaValue, +deltaValue] means add deltaValue to both the zone air temperature
heating and cooling setpoints of the last time step. This basically means that the zone
needs more heating. Note that deltaValue should be greater than zero.

3. [−deltaValue, −deltaValue] means subtract deltaValue from both the zone air tempera-
ture heating and cooling setpoints of the last time step. This basically means that the
zone needs more cooling. Note that deltaValue should be greater than zero.

4. [−deltaValue, +deltaValue] means subtract deltaValue from the zone air temperature
heating setpoint of the last time step and add deltaValue to the zone air temperature
cooling setpoint of the last time step. This basically means that the zone needs no air
conditioning. Note that deltaValue should be greater than zero.

The value of deltaValue is a tunable parameter, and the action space can consist of the
basic action types with different deltaValue simultaneously. In Section 4, different action
spaces were tested based on the four basic action types. Note that the maximum setpoint
value and the minimum setpoint value were enforced to be 30 ◦C and 15 ◦C, respectively.

3.1.3. Reward

The objective of the control method is to minimize the HVAC energy consumption
and thermal discomfort. Therefore, a convex combination of the OPPD and EHVAC was
used as the reward (both OPPD and EHVAC here are min–max-normalized scalars):

− (λ ∗ a + (1− λ) ∗ EHVAC), where a =

{
OPPD OPPD ≤ Lmtppd

1.0 OPPD > Lmtppd
(10)

λ is a tunable parameter representing the relative importance of HVAC energy ef-
ficiency and indoor thermal comfort, and λ ∈ [0, 1]. Lmtppd is also a tunable parameter
to penalize a large OPPD. Specifically, Lmtppd is a hyperparameter to control the penalty
level for thermal discomfort. For example, if Lmtppd is 0.15, this means that the penalty for
thermal discomfort will be amplified to the maximum if OPPD is larger than 0.15. Different
values of λ and Lmtppd were tested, as described in Section 4.4.1, to evaluate the effects of
λ and Lmtppd on control performance.

3.2. Asynchronous Advantage Actor Critic (A3C)

Policy gradient, as discussed in Section 2.2, was the main reinforcement learning
training method used in this study. Specifically, a state-of-the-art deep reinforcement
learning variation of A2C, asynchronous advantage actor critic (A3C) [39], was used. In the
A3C method, rather than having only one agent to interact with the environment, a number
of agents interact with copies of the same environment independently but update the same
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global action-value or policy function network asynchronously. Still asynchronously, the
agents update their own action-value or policy function network to be the same as the
global one in a certain frequency. The purpose of this method is to ensure that the tuples
(St, At, St+1, Rt+1) used to train the global network are roughly independent. Compared
with the non-asynchronous methods, A3C significantly reduces the memory usage and
training time cost. Details of the algorithm can be seen in Algorithm S3 of [40].

To solve the reinforcement learning problem using the advantage actor critic method,
we should have two deep neural networks: one is πθ(s, a) to approximate the policy,
and the other is vθv(s) to approximate the state-value function. Therefore, according to
Equations (4) and (8), θ can be learned by gradient descent, which is:

θ ← θ + αEπθ
[∇θ log πθ(s, a)(qπθ

(s, a)− vθv(s))] = θ + αEπθ

[
∇θ log πθ(s, a)

(
R′ + γvθv

(
s′
)
− vθv(s)

)]
(11)

θv can also be learned using stochastic gradient descent with the mean squared loss
function, which is:

θv ← θv − αEπθ

[
∂(vtrue − vθv(s))

2/∂θv

]
= θv − αEπθ

[
∂
(

R′ + γvθv

(
s′
)
− vθv(s)

)2/∂θv

]
(12)

In Equations (11) and (12), α is the step size for gradient descent, R′ is the actual
reward at state s taking action a, and s′ is the next state from state s taking action a.

4. Experiments and Results
4.1. Training and Testing Building Models

Experiments were carried out based on EnergyPlus (version 8.6, developed by the
National Renewable Energy Laboratory, Golden, CO, USA) simulations. The target building
in this study was selected based on the EnergyPlus v8.6 “5ZoneAutoDxVAV” example file,
and Pennsylvania, USA, was selected as the location of the building due to better access to
data about the environmental conditions of this site. The building was a single-level five-zone
office building, the plan and dimensions of which can be seen in Figure 3. The types of
building fabrics, along with their thermal properties, can be seen in Table 3. The building had
four exterior zones and one interior zone. All zones were regularly occupied by office workers.
Each zone had a 0.61 m high return plenum. Windows were installed on all four facades, and
the south-facing facade was shaded by overhangs. The lighting load, office equipment load,
and occupant density were 16.15 W/m2, 10.76 W/m2, and 1/9.29 m2, respectively.
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Table 3. The type of building fabrics, along with their thermal properties.

Type U-Value
(W/m2K)

Solar Heat Gain
Coefficient

External walls Mosaic tiles (0.005 m) + heavy concrete (0.203 m) + mass wall
insulation (0.049 m) + gypsum plaster (0.013 m) 1.1

Roof Concrete tiles (0.025 m) + asphalt (0.020 m) + cement (0.050 m) +
concrete (0.150 m) + insulation (0.100 m) + gypsum plaster (0.010 m) 0.42

Ground floor Floor tiles (0.005 m) + gypsum plaster (0.0127 m) + concrete (0.150 m) 4.25
Windows Clear glass (0.003 m) + air (0.013 m) + clear glass (0.003 m) 1.25 0.76

The HVAC system of the building model was a centralized variable air volume (VAV)
system with terminal reheat. The cooling source in the AHU was a two-speed DX coil, and
the heating source in the AHU was an electric heating coil. The terminal reheat was also an
electric heating coil.

To ensure fair evaluation of the control method, two building models with several
differences were developed, called the training model and the testing model. The deep
reinforcement learning agent was trained using the training model. The two models shared
the same geometry, envelope thermal properties, and HVAC systems. Differences between
these two models are summarized in Table 4. To test the building model, the weather file
was changed to a place that was about 200 km away, the occupant and equipment schedules
were changed to be stochastic using the occupancy simulator [41], the HVAC equipment
was more over-sized, and the AHU supply air temperature setpoint control strategy was
changed to be simpler.

Table 4. Differences between the training model and the testing model.

Model Weather File Occupant and
Equipment Schedule HVAC Sizing AHU Control

Training Allegheny County,
PA (TMY3) Deterministic Oversized by 20% from

EnergyPlus auto-sizing

Dynamically change the AHU
supply air temperature setpoint
from 12 ◦C to 18 ◦C based on the

warmest zone

Testing State College,
PA (TMY3) Stochastic Oversized by 44% from

EnergyPlus auto-sizing

Set the AHU supply air
temperature setpoint to 12 ◦C or
18 ◦C based on the outdoor air

temperature

The EnergyPlus simulator was wrapped by the OpenAI Gym [42] for the convenience
of the reinforcement learning implementation. The ExternalInterface function of EnergyPlus
was used for data communication between the building model and the reinforcement
learning agent during the run time.

For both training and testing, the run period of the EnergyPlus models was from Jan
1st to Mar 31st, which was the period for the whole winter season for Pennsylvania, USA.
The simulation time step was 5 min. Therefore, for the discrete control of reinforcement
learning control, the control time step was also 5 min.

4.2. A3C Model Setup
4.2.1. Policy and State-Value Function Network Architecture

As discussed in Section 3.2, the A3C method needs two function approximation neural
networks, one for the policy and the other for the state-value function. Figure 4 shows
the architecture of the networks. Rather than two separate networks, a shared multilayer
feed-forward neural network was used. The output from the shared network was fed into
a Softmax layer and a linear layer in parallel, where the Softmax layer outputs the policy
and the linear layer outputs the state value. Note that the output of the Softmax layer was
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a vector with the length the same as the total number of discrete actions, and each entry in
the vector corresponded to the probability of taking the action.
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4.2.2. Hyperparameters

The shared network of Figure 4 has four hidden layers, each of which has 512 hidden
units with rectifier nonlinearity. RMSProp [43] was used for optimization, and a single
optimizer was shared across all agents in A3C. The learning rate was fixed to 0.0001, and the
RMSProp decay factor was 0.99. To avoid too large a gradient in gradient descent, which
would harm the convergence, all gradients were clipped so that their L2 norm was less than
or equal to 5.0. The total number of interactions between the A3C agents and the environment
was 20 million. The entropy of policy π was added to the policy gradient to regularize the
optimization so that the agent would not overly commit to a deterministic policy in the
training [44]. The weight for this regularization term was 0.01, as suggested by [40].

A building usually has slow dynamics, and the state observation of the current time
step is not sufficient for the agent to make a good action choice. Recent n state observations
can be stacked to be the effective state observation of the agent [26]. For example, rather
than just observing the current zone indoor air temperature, the agent observes the zone
indoor air temperatures of current and past n − 1 time steps to make a decision. As
suggested by [26], n was set to 24 in this study.

4.3. Baseline Control Strategies

The conventional fixed-schedule control strategy for indoor air heating and cooling
temperature setpoints was used as the baseline. The values of the heating and cooling
setpoints are usually determined by the facility manager based on experience. In this study,
two sets of heating/cooling setpoints were selected, one representing the “colder” control
case and the other representing the “warmer” control case.

1. B-21.1: the indoor air heating and cooling setpoints were 21.1 ◦C and 23.9 ◦C from
7:00 to 21:00 (training model) or from 7:00 to 18:00 (testing model) on weekdays and
15.0 ◦C and 30.0 ◦C at all other times;

2. B-23.9: the indoor air heating and cooling setpoints were 23.9 ◦C and 25.0 ◦C from
7:00 to 21:00 (training model) or from 7:00 to 18:00 (testing model) on weekdays and
15.0 ◦C and 30.0 ◦C at all other times.

It should be noted that the building model had default indoor air heating/cooling
temperature setpoints, which were 21.1 ◦C/23.9 ◦C from 7:00 to 18:00 on weekdays and
7:00 to 13:00 on weekends and 12.8 ◦C/40.0 ◦C at all other times. The baseline control
schedules B-21.1 and B-23.9 were only implemented when comparing them with deep
reinforcement learning control. For other times, such as during the training period, the
default control schedule was used. This is because the baseline schedules were manipulated
to match the known building occupancy schedule, which might not be known in reality.
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Such manipulation was to ensure fair comparison because the proposed reinforcement
learning control method had an occupancy-related control feature.

4.4. Training

The reinforcement learning agent was trained using the training building model. An
8-core 3.5 GHz computer was used to carry out the training process. The period of the
training process was 5 h. In the training, it controlled the indoor air temperature heating and
cooling setpoints of Zn1 (see Figure 3) only and tried to minimize the thermal discomfort
of Zn1 and the HVAC energy consumption of the whole building. Therefore, as discussed
in Section 3.1.1, the agent’s state observations were the weather conditions, environmental
conditions of Zn1, and the whole building HVAC power demand. The reason for only
controlling one zone during the training instead of controlling all five zones is to reduce
the action space dimensions. The speed of convergence of deep reinforcement learning
with a discrete action space relies on the action space dimension. In this study, the action
space dimension increased exponentially with the increased number of controlled zones.
Considering that all five zones were served by the same HVAC system and had similar
thermal properties and functions, we chose to train the agent on one zone only and then
applied the trained agent to all five zones to control the whole building.

4.4.1. Parameter Tuning

λ and Lmtppd in the reward function (see Section 3.1.3) and different combinations of
deltaValue in the action space (see Section 3.1.2) were tuned. Two different values of λ (0.4
and 0.6) were studied; three different values of Lmtppd (0.15, 0.30, and 1.0) were studied;
and two different deltaValues (1.0 and 0.5) were studied. This resulted in three action spaces:

1. act1 = Zip{(0.0, 1.0, −1.0, −1.0), (0.0, 1.0, −1.0, 1.0)};
2. act2 = Zip{(0.0, 1.0, −1.0, −1.0, 0.5, −0.5, −0.5), (0.0, 1.0, −1.0, 1.0, 0.5, −0.5, 0.5)};
3. act3 = Zip{(0.0, 1.0, −0.5, −0.5), (0.0, 0.5, −0.5, 0.5)}.

Therefore, in total, 18 cases with different hyperparameters were trained. Each value
in parentheses represents an action choice for the heating setpoint and the cooling setpoint,
respectively, and the zipped tuples of both parentheses are the final action space. For example,
in act1, actions include (1) no change in either the heating or cooling setpoint; (2) increase both
heating and cooling setpoints by 1 ◦C; (3) decrease both heating and cooling setpoints by 1 ◦C;
and (4) decrease the heating setpoint by 1 ◦C and increase the cooling setpoint by 1 ◦C. The
performance of each training case was evaluated by the mean and the standard deviation of
the Zn1 OPPD of occupied time steps (hereafter called OPPD Mean and OPPD Std) and the
total HVAC energy consumption of the run period from 1 January to 31 March (hereafter called
EHVAC). The hyperparameters of training cases are listed in Table 5.

4.4.2. Optimization Convergence

Reinforcement learning can be viewed as an optimization problem that looks for a
control policy that maximizes the cumulative reward. Figure 5 shows the history of the
cumulative reward for one simulation period (1 January to 31 March) for all cases in the
training. Each subplot in the figure shows the reward history of cases with the same λ and
Lmtppd. Note that different subplots in the figure have different scales of the y-axis because
different training cases do not share the same reward function. For the convergence study,
the relative value of the reward is more important than the absolute value of the reward.
It can be found that all training cases had a fairly fast convergence speed, which usually
converged between 5 million and 10 million training steps. In addition, a smaller value of
Lmtppd had better convergence performance. This may be because a smaller Lmtppd, which
leads to a more stringent requirement on thermal comfort, gives the agent a clearer signal
about how good or how bad a state and an action are. Even though, in principle, a larger
action space may take more time to converge, it is not clear in this study. It is interesting
to find that the cases with λ = 0.6 (larger penalty on discomfort) had better convergence
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performance than the cases with λ = 0.4 (smaller penalty on discomfort). The reason for
this difference is still not clear.

Table 5. The training results.

Hyperparameters Zn1 OPPD Building
Case λ Lmtppd Acts Mean (%) Std (%) EHVAC (kWh)

1 0.60 0.15 act1 6.70 2.97 5566
2 0.60 0.30 act1 8.45 6.25 5256
3 0.60 1.00 act1 9.74 6.11 5388
4 0.60 0.15 act2 6.94 2.89 5499
5 0.60 0.30 act2 7.38 4.23 5797
6 0.60 1.00 act2 7.08 4.77 5626
7 0.60 0.15 act3 9.30 6.27 5671
8 0.60 0.30 act3 7.34 4.05 7144
9 0.60 1.00 act3 8.84 4.80 5560

10 0.40 0.15 act1 7.60 3.07 5385
11 0.40 0.30 act1 10.11 6.05 5333
12 0.40 1.00 act1 10.27 7.84 5201
13 0.40 0.15 act2 7.25 3.76 5976
14 0.40 0.30 act2 8.02 4.38 5493
15 0.40 1.00 act2 8.07 4.26 5640
16 0.40 0.15 act3 6.64 3.09 5831
17 0.40 0.30 act3 9.34 5.96 5352
18 0.40 1.00 act3 9.84 6.81 5523
B-

21.1 N/A N/A N/A 10.75 7.80 5003

B23.9 N/A N/A N/A 7.92 4.06 5436
Note: for all cases in this table, only Zn1 was controlled by the reinforcement learning agent or baseline control
strategy; all four of the other zones were controlled using the model default control strategy.

Designs 2022, 6, x FOR PEER REVIEW 13 of 22 
 

 

4.4.2. Optimization Convergence 
Reinforcement learning can be viewed as an optimization problem that looks for a 

control policy that maximizes the cumulative reward. Figure 5 shows the history of the 
cumulative reward for one simulation period (1 January to 31 March) for all cases in the 
training. Each subplot in the figure shows the reward history of cases with the same 𝜆𝜆 
and 𝐿𝐿𝐿𝐿𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝. Note that different subplots in the figure have different scales of the y-axis 
because different training cases do not share the same reward function. For the 
convergence study, the relative value of the reward is more important than the absolute 
value of the reward. It can be found that all training cases had a fairly fast convergence 
speed, which usually converged between 5 million and 10 million training steps. In 
addition, a smaller value of 𝐿𝐿𝐿𝐿𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 had better convergence performance. This may be 
because a smaller 𝐿𝐿𝐿𝐿𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 , which leads to a more stringent requirement on thermal 
comfort, gives the agent a clearer signal about how good or how bad a state and an action 
are. Even though, in principle, a larger action space may take more time to converge, it is 
not clear in this study. It is interesting to find that the cases with 𝜆𝜆 = 0.6 (larger penalty 
on discomfort) had better convergence performance than the cases with 𝜆𝜆 = 0.4 (smaller 
penalty on discomfort). The reason for this difference is still not clear. 

 
Figure 5. The history of one simulation period’s cumulative reward for all cases in the training. 

4.4.3. Performance Comparison 
Table 5 shows the HVAC energy consumption and thermal comfort performance of 

all training cases and baseline cases. It shows that almost all training cases had less than 
10% mean OPPD, and the standard deviation is fairly small. It is also found that smaller 
𝐿𝐿𝐿𝐿𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 is favorable because it can increase the thermal comfort performance in most cases 
and does not necessarily increase the HVAC energy consumption. For different 𝜆𝜆 values, 
it is not expected that a smaller 𝜆𝜆  sometimes results in increased HVAC energy 
consumption. It may be because, in this study, optimizing the building’s total HVAC 
energy consumption is difficult since the agent can only control one out of the five zones. 
Different action spaces were also studied, but there were no clear findings about the 
relationship between the action space and HVAC energy and thermal comfort 
performance. 

Figure 5. The history of one simulation period’s cumulative reward for all cases in the training.



Designs 2022, 6, 52 13 of 21

4.4.3. Performance Comparison

Table 5 shows the HVAC energy consumption and thermal comfort performance of
all training cases and baseline cases. It shows that almost all training cases had less than
10% mean OPPD, and the standard deviation is fairly small. It is also found that smaller
Lmtppd is favorable because it can increase the thermal comfort performance in most cases
and does not necessarily increase the HVAC energy consumption. For different λ values, it
is not expected that a smaller λ sometimes results in increased HVAC energy consumption.
It may be because, in this study, optimizing the building’s total HVAC energy consumption
is difficult since the agent can only control one out of the five zones. Different action spaces
were also studied, but there were no clear findings about the relationship between the
action space and HVAC energy and thermal comfort performance.

Compared with the B-21.1 case, all reinforcement learning cases had better thermal
comfort performance but higher HVAC energy consumption. This is as expected because
the B-21.1 case had a low indoor air heating temperature setpoint. For the B-23.9 case, the
comparison is more complex because some reinforcement learning cases had better thermal
comfort performance and worse HVAC energy efficiency or vice versa. Among the 18 training
cases, case 10 was selected as the best one compared with the B-23.9 case. Case 10 had slightly
better thermal comfort performance in both the mean and standard deviation of OPPD, and it
also had slightly lower HVAC energy consumption. Therefore, training case 10 was selected
for the subsequent study.

To visually inspect the learned control policy of the agent, Figure 6 shows the control
behavior snapshot of the case 10 agent on three days in winter. It can be found that the
agent had learned to change the setpoints according to the occupancy. Additionally, the
agent had learned to preheat the space before occupants arrived in the morning. In addition,
the agent could decrease the heating setpoint when the zone internal heating gain (e.g.,
solar heating gain) was sufficient to keep the space warm at noon and in the afternoon of
the day. However, the agent did not start to decrease the heating setpoint until the zone
became unoccupied. The agent had to take nearly an hour to decrease the heating setpoint
to the minimum value, which wasted HVAC energy. The OPPD of training case 10 in
Figure 6 was kept lower than 10% most of the time. However, it is interesting to find that
the OPPD reached above 15% in the afternoon of 01/09. The primary reason is the too
high mean radiant temperature of the zone caused by strong afternoon solar radiation. The
agent did decrease the cooling setpoint in response to this situation, but cooling was still
not enough to offset the effect of the high mean radiant temperature. This shows that the
agent is not well trained to deal with this type of situation. Compared with the B-23.9 case,
the reinforcement learning agent tended to overheat the space in the morning and then let
the indoor air temperature float, rather than keep the heating setpoint constant. The reason
is probably that the agent wants to heat the space quickly in the morning in order to create
a warm environment before occupancy. There are lots of small fluctuations in heating and
cooling setpoints in the reinforcement learning case because the reinforcement learning
agent gives a stochastic policy rather than a deterministic one. The stochastic policy is used
because it helps the agent to explore unknown states. It is easy to change the stochastic
policy to the deterministic one if needed.
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4.5. Testing

The trained reinforcement learning agent of training case 10 was tested in three
scenarios, including single-zone testing in the testing building model, multizone testing
in the training building model, and multizone testing in the testing building model. The
trained agent’s performance in the testing was also evaluated by OPPD Mean, OPPD Std,
and EHVAC.

4.5.1. Single-Zone Testing in the Testing Building Model

The trained agent in training case 10 was tested using the testing building model to
control Zn1 of the building model, which was the same zone that the agent was trained on.
All other zones still had setpoints with the fixed schedule. Table 6 shows the performance
comparison between the reinforcement learning agent and baseline cases. It can be found that
the reinforcement learning agent had a performance between the two baseline cases: its ther-
mal comfort performance was worse than that of B-23.9, and its HVAC energy consumption
was higher than that of B-21.1. The control behavior snapshot of the reinforcement learning
agent and B-23.9 is shown in Figure 7. It can be found that the agent in this testing scenario
still had a reasonable control policy but did not perform as well as in the training case. Firstly,
the heating setpoint was sometimes too low during the occupied time even though the zone
air temperature was not warm enough, e.g., at around noon on 01/09. Secondly, the cooling
setpoint was sometimes too low during the unoccupied time, which triggered the cooling of
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the zone, e.g., on 01/07 from 8:00 to 16:00. An interesting finding is that there was a spark
on OPPD in the B-23.9 case between 01/08 18:00 and 01/08 19:00 because the schedule set
the heating setpoint to 15 ◦C while the zone was still occupied. This did not occur in the
reinforcement learning case because it takes the occupancy as an input.

Table 6. The results of single-zone testing in the testing building model.

Case Zn1 Mean OPPD (%) Zn1 Std OPPD (%) Building EHVAC (kWh)

Trained agent 10 10.57 7.65 5803
B-21.1 13.25 9.52 5550
B-23.9 8.58 7.03 5942

Note: For all above cases, the control strategy of all zones except for Zn1 was the default control strategy of the
building model.
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4.5.2. Multizone Testing in the Training Building Model

The trained reinforcement learning agent (case 10) was tested in the training building
model to control all zones rather than just one. As shown in Table 7, case 10-0 achieved good
thermal comfort for all zones but consumed much more energy than the baseline cases. The
high HVAC energy consumption was primarily caused by the fact that the agent sometimes
increased the heating setpoint during unoccupied times. This strange behavior of the
trained agent is partially because the agent over-fitted to the HVAC energy consumption
pattern in the training. Two additional tests were conducted to further analyze the agent’s
performance. One test used the trained agent along with a night setback rule: heating and
cooling setpoints were set to 15 ◦C and 30 ◦C between 21:00 and 06:00 (case 10-1 in Table 6).
The other test applied a mask to the state observation EHVAC: EHVAC was always zero
in the testing (case 10-2 in Table 7). The results show that case 10-1 consumed 12.8% less
HVAC energy than B-23.9 and achieved good thermal comfort performance, although not
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as good as B-23.9. Case 10-2 overcame the “unnecessary heating” problem of case 10-0,
but it did not achieve as good a thermal comfort performance as case 10-1 because one
state observation was masked. However, as expected, case 10-2 consumed even less HVAC
energy consumption than case 10-1 at the price of worse thermal comfort.

Table 7. The results of multizone testing in the training building model.

Zn1 OPPD Zn2 OPPD Zn3 OPPD Zn4 OPPD Zn5 OPPD Building

Case Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

EHVAC
(kWh) Note

10-0 8.13 5.96 8.90 6.56 7.75 5.62 7.70 5.91 9.45 6.05 6983 As-is trained agent case 10
10-1 8.31 7.35 9.32 7.62 8.02 7.10 7.95 7.24 9.83 6.85 5328 Trained agent case 10 + night setback rule

10-2 10.46 11.11 9.86 9.08 9.67 10.47 9.97 11.09 10.37 8.12 4938 Trained agent case 10 + mask on state
input EHVAC

B-21.1 10.79 7.86 10.33 7.44 9.89 7.73 10.25 7.88 7.29 4.16 4809 N/A
B-23.9 8.09 4.34 8.74 5.52 6.37 1.90 6.78 2.37 7.51 2.56 6109 N/A

4.5.3. Multizone Testing in the Testing Building Model

The trained reinforcement learning agent (case 10) was tested in the testing building
model to control all zones. This is the most stringent test because both the building model
and the control mode are different from the training. As shown in Table 8, the agent did
not perform well in terms of either thermal comfort or HVAC energy efficiency. Firstly,
the agent had worse thermal comfort performance than both B-21.1 and B-23.9; secondly,
the agent consumed more energy than B-21.1. This means that using B-21.1 is better than
using the trained agent in terms of both energy efficiency and thermal comfort. To find
the reasons behind the agent’s poor performance, the control behavior snapshot of Zn1 on
three days in winter is plotted in Figure 8. It is clear that, for the reinforcement learning
control case, high OPPD occurred in the morning because occupants arrived earlier and the
agent started to increase the heating setpoint. We calculated the value count for the time
that OPPD was higher than 20% for Zn1. It shows that about 70% of the larger-than-20%
OPPD samples occurred between 06:00 and 10:00 (not included). This is partially because
the trained agent over-fitted to the occupancy schedule of the training building model. In
the training building model, occupants arrived at exactly 08:00 every workday, but in the
testing building model, a stochastic occupancy schedule was used, in which there is some
possibility that occupants arrive before 08:00. One observation in favor of the agent is that
the B-23.9 case may have had high OPPD in the evening because the heating setpoint was
set back to 15 ◦C while the zone was still occupied. The agent performed better regarding
this problem because it takes occupancy as one of the inputs. For the whole building, the
reinforcement learning case had 17% fewer larger-than-20% OPPD samples than B-23.9 for
the time between 18:00 and 21:00 (not included) during the simulation period.

Table 8. The results of multizone testing in the testing building model.

Zn1 OPPD Zn2 OPPD Zn3 OPPD Zn4 OPPD Zn5 OPPD Building

Case Mean
(%) Std (%) Mean

(%) Std (%) Mean
(%) Std (%) Mean

(%) Std (%) Mean
(%) Std (%) EHVAC

(kWh)

10 13.84 14.31 12.12 11.87 12.66 13.53 13.45 13.55 9.40 10.37 5884
B-21.1 13.24 9.52 11.67 8.52 12.18 9.45 13.24 9.38 7.98 6.84 5752
B23.9 8.54 7.00 8.99 7.17 7.10 6.54 7.76 6.79 7.57 4.88 6965
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4.6. Discussion

Optimization and generalization are two main problems in machine learning. Opti-
mization is about how well the machine learning method can learn from the training data
to minimize some loss functions. Generalization is about how well the trained machine
learning model (or agent) performs with unseen data (or environments).

It was found in this study that the deep reinforcement learning control method had
good convergence performance in the training, which usually converged long before the
maximum learning step was reached. This finding is consistent with existing studies on
deep reinforcement learning [4,45]. It was also found that all training cases could achieve
good thermal comfort performance, and one training case was better than the B-23.9
baseline case in terms of both thermal comfort and HVAC energy efficiency. This shows
that the proposed deep reinforcement learning control method could be well optimized.

Generalization performance is more difficult to evaluate for building control. Ideally,
the trained agent’s performance in controlling a real building is a good evaluation method.
However, in this study, no real buildings were available. Therefore, the agent was evaluated
in three testing scenarios. In the first testing scenario, the trained agent was used to control
the same zone as in the training but with different weather conditions, operation schedules,
etc. In this case, the agent could still perform reasonably, although not as well as in the
training case. The agent might over-fit to the weather conditions of the training building
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model if it could not provide enough heating to the zone. In the second testing scenario,
the trained agent was used to control different zones from the training, but the building
model was exactly the same as in the training. This case clearly shows that the trained
agent over-fitted to the HVAC energy profile in the training. When forcing a night setback
rule for the agent, it achieved good thermal comfort performance in all zones and saved
12.8% HVAC energy consumption compared with the B-23.9 baseline case. Thirdly, the
agent was used to control different zones from those in the training, and the building model
was also different. In this case, the agent did not perform well. The trained agent might
have over-fitted to the occupancy schedule of the training building model. Therefore, it can
be concluded that the trained agent experienced the over-fitting problem. This problem
was also reported in [46–48].

It must be admitted that there is a lack of a systematic method to diagnose the over-
fitting problem of deep reinforcement learning control. All testing scenarios in this section
can only conclude that the trained agent has an over-fitting problem, and there is no strong
conclusion about where it over-fits. To the authors’ knowledge, there is still no good theory
behind the generalization of deep learning [49].

5. Conclusions and Future Work

Reinforcement learning control for HVAC systems has been thought to be promising
in terms of achieving energy savings and maintaining indoor thermal comfort. However,
previous studies did not provide enough information about end-to-end control for central-
ized HVAC systems in multizone buildings, mainly due to the limitations of reinforcement
learning methods or the test buildings being single zones with independent HVAC systems.
This study developed a supervisory HVAC control method using the advanced end-to-end
deep reinforcement learning framework. Additionally, the control method was applied
to a multizone building with a centralized HVAC system, which is not commonly seen in
the existing literature. The control method directly took the measurable environmental
parameters, including weather conditions and indoor environmental conditions, to control
the indoor air heating and cooling setpoints of the HVAC system. A3C was used to train
the deep reinforcement learning agent in a single-level five-zone office building model.
During the training, the reinforcement learning agent only controlled one out of the five
zones, with the goal of minimizing the controlled zone’s thermal discomfort and the HVAC
energy power demand of the whole building.

It was shown that the proposed deep reinforcement learning control method had
good optimization convergence properties. In the training, it learned a reasonable control
policy for the indoor air heating and cooling setpoints in response to occupancy, weather
conditions, and internal heat gains. After hyperparameter tuning, a good training case
was found, which achieved better thermal comfort and HVAC energy efficiency compared
with the baseline case. It was also found that the penalty on large OPPD was beneficial to
convergence.

By applying the trained agent to control all five zones of the training building model,
12.8% HVAC energy savings in comparison to one baseline case was achieved with good
thermal comfort performance; however, a setpoint night setback rule must be enforced for
the agent because of its over-fitting problem. The agent failed to achieve good performance
in terms of both thermal comfort and HVAC energy efficiency if it was applied to control
all five zones of the testing building model, also due to the over-fitting problem.

Future work should first focus on generalization techniques of deep learning. Dropout
or batch normalization should be first considered to reduce over-fitting. The choice of
the weather and occupancy schedule for training should be performed carefully to ensure
that they are representative. Feature augmentation methods can be considered. Multi-task
reinforcement learning is also a good candidate method to enhance deep reinforcement
learning generalization performance. Secondly, multi-agent reinforcement learning or other
methods that can be trained directly to provide a control policy for multiple zones should
be studied. The current method in this study was trained for controlling one zone only,
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which may not be suitable for multizone control. Last but not least, the study was only
tested using simulation models, rather than real buildings. The authors are now working
on implementing the proposed control method in a real small office building.
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