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Abstract: In this work, it has been shown the effect of a piezoelectric material on postponing the
flutter phenomenon and even removing it completely on a regular wing. First, the system response of
a smart wing with only plunge DOF and pitch DOF are presented. Using an efficient piezopatch can
effectively decay the oscillations of the smart wing in a very short time. In addition, implementing
one piezopatch in the plunge DOF of a regular wing with three DOF can postpone the flutter speed
by 81.41%, which is a considerable increase in the flutter speed. We then present the effect of adding
one more piezopatch to a smart wing in the pitch DOF to further postpone the flutter phenomenon.
The flutter speed in a smart wing can be postponed by 115.96%, which is a very considerable value.
Finally, adding one more piezopatch on a smart wing in the control DOF can completely remove the
flutter phenomenon from the wing, which represents a great achievement in the dynamic aeroelectic
behavior of a wing.

Keywords: piezoelectric material; flutter; smart wing

1. Introduction

Aeroelastic analysis of a modern wing with high flexibility is crucial. The ability
to control the aeroelastic instability due to high flexibility is very important to achieve
the desired aerodynamic performance in a wing design [1,2]. One important aeroelastic
analysis is flutter resulting from the merging of two or more vibration modes during flight.
The flutter phenomenon can reduce the flight envelope or require a redesign of the wing.
Appearing flutter can compromise the long-term durability of the wing structure and
the flight performance, operational safety, and energy efficiency of the aircraft. Hence,
preventing flutter is crucial for the modern airplane [3–7].

Smart materials have been used in wing structures for many years. Although there are
different smart materials, piezoelectric materials have received the most attention. Consid-
ering the direct and inverse effects of piezoelectric materials, they can perform as sensors
and/or actuators on a wing. In fact, they can be used as actuators and dampers to manage
the aeroelastic behaviour of the wing. One effective way to avoid redesign the wing is to
use piezoelectric materials to significantly delay the flutter [8]. Piezoelectric actuators have
been used in active aeroelastic control of an adaptive wing [9]. They have also been imple-
mented in honeycomb material for a flapping wing [10]. In addition, optimal piezoelectric
material has been used to control a plate subjected to time-dependent boundary moments
and forcing function by vibration damping [11]. Moreover, piezoelectric patches have
been studied on passive flutter control of damaged composite laminates by employing the
finite element method [12]. Recently, piezoelectric layers have been used on thick porous
plates to study the aeroelastic flutter [13]. Furthermore, aeroelastic optimization has been
investigated for materials with piezoelectric actuators and sensors [14]. Adding a shunt
circuit to a piezoelectric material can create a piezopatch to effectively modify the wing’s
aeroelastic behaviour. Previously, there were practical limits in the low frequency range like
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the one typically existing in aeroelastic phenomena due to the large required inductance in
passive aeroelastic control. However, it is now possible to have a small inductor integrated
into a piezopatch dedicated to aeroelastic control [15]. Since standard inductors usually
have too much internal resistance for resonant shunt application, they are not a practical
component to integrate into a piezopatch. Implementing closed magnetic circuits with
high-permeability materials allows the design of large-inductance inductors with high
quality factors.

The use of shunted piezopatch permits damping augmentation in the wing structure
without causing any instability. In addition, they need little to no power and are simple to
apply. Their necessary hardware includes the piezoelectrics and a simple electric circuit
including a capacitor, inductor, and resistor. The shunted piezopatch can control aeroelastic
vibration of the wing by consuming the energy created from wing vibrations. In fact, it can
reduce the vibrations of specific modes and frequencies.

In this paper, the effect of piezoelectric material on increasing the flutter speed is
investigated in detail by considering a simple aeroelastic system. The system is a 2D
wing with a piezoelectric patch which has plunge, pitch, and control rotation degrees of
freedom (DOF) as well as unsteady aerodynamic forces. The objective of this work is
to represent the role of piezoelectric patches, which can substantially influence a simple
aeropizoelastic system.

In Section 2, the equations of motion of a smart wing with only plunge DOF are
represented, and we explain how to solve those equations to obtain the plunge velocity,
displacement, electrical current, and electric charge. Then, the fixed points of the system
and its stability around those points are investigated to show the system response. Example
1 indicates the effective decay in the oscillation of a smart wing in comparison to a regular
wing. In addition, a smart wing with only pitch DOF is presented to obtain its equations of
motion in free vibrations. By solving the system of equations, the angular velocity, pitch
angle, electrical current, and electric charge can be obtained. The stability of the system
is then investigated around the fixed point. Example 2 indicates the system response of a
smart wing with only pitch DOF and how effectively the oscillation can be decayed in a
smart wing in comparison to that of a regular wing.

In Section 3, a two-dimensional smart wing with the plunge, pitch, and control DOF
and a piezopatch in the plunge DOF is represented to obtain the equations of motion under
unsteady aerodynamic loads. Solving the system of equations produces the plunge velocity,
displacement, electrical current, and electric charge as well as the pitching velocity, rotation,
electrical current, and electric charge. Later, by finding the flutter speed, we show how
adding one piezopatch can effectively postpone the flutter.

Section 4 represents a smart wing with the plunge, pitch, and control DOF and
piezopatches in the plunge and pitch DOF. We show that the flutter speed can be further
increased by having two piezopatches. Finally, in Section 5, a smart wing with three DOF
and three piezopatches in the plunge, pitch, and control DOF is presented to indicate how
it can remove the flutter.

2. Aeroelastic Analysis of Smart Wing

Before studying an aeroelastic smart wing, it is necessary to study the stability of
aeroelastic smart wings. The time response of the aeroelastic system is given by [16]

x(t) =
n

∑
i=1

vieλitbi (1)

where vi is the smart wing spatial deformation, eλit is the smart wing temporal deformation,
and bi is the eigenvector. It is a good idea to investigate the character of the fixed point of
single DOF smart wing in the plunge and pitch motions separately.



Designs 2022, 6, 29 3 of 25

2.1. A Smart Wing with Only Plunge DOF

Consider a smart wing which has just the plunge DOF, as shown in Figure 1.
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Figure 1. A smart wing with plunge DOF.

The equations of motion for a smart wing with plunge DOF in free vibrations are
as follows {

m
..
h + Ch

.
h + Khh − βhqh = 0

Lh
..
qh + Rh

.
qh +

1
Cph

qh − βhh = 0
(2)

where m is the mass of the smart wing, Ch is the structural damping of the smart wing,
Kh is the structural stiffness, h(t) is the smart wing’s instantaneous displacement, βh is
the plunge electromechanical coupling, Cph is the plunge capacitance of piezoelectric
material, Lh is the plunge inductance of piezoelectric material, Rh is the plunge resistance
of piezoelectric material, and qh is the plunge electric charge. As mentioned before, the
plunge electromechanical coupling can be obtained as βh = eh/Cph, where eh is the plunge

coupling coefficient. Considering x1 =
.
h, x2 =

.
qh, x3 = h, and x4 = qh, Equation (2) can be

written as first-order differential equations
.
x1 = −Ch

m x1 − Kh
m x3 +

βh
m x4

.
x2 = − Rh

Lh
x2 − 1

Cph Lh
x4 +

βh
Lh

x3
.
x3 = x1.
x4 = x2

(3)

Defining q =
[

m Ch Kh βh Lh Cph Rh
]T and x =

[
x1 x2 x3 x4

]T ,
Equation (3) can be written as

.
x = f(x, q) =


−Ch

m x1 − Kh
m x3 +

βh
m x4

− Rh
Lh

x2 − 1
Cph Lh

x4 +
βh
Lh

x3

x1
x2

 (4)

where f represents linear functions, and x1, x2, x3, and x4 are the smart wing states and
denote the system’s velocity, displacement, electrical current, and electric charge responses,
respectively. The single DOF aeroelastic smart wing system has four eigenvalues that
describe the stability of the fixed point. The fixed points, or static solutions, of the system
are obtained from the solutions of

f(x, q) = 0 (5)

or, equivalently,
.
x = 0 (6)
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By considering Equation (4), Equation (6) can be written as

.
x = A(q)x (7)

where

A =


−Ch

m 0 −Kh
m

βh
m

0 βh
Lh

− Rh
Lh

− 1
Cph Lh

1 0 0 0
0 1 0 0

 (8)

The solution of Equation (7) can be obtained [2]

x(t) =
n

∑
i=1

vieλitbi (9)

where vi is the ith eigenvector of A, λi is the ith eigenvalue of A, and bi is the ith element of
b = V−1x0, where V is the eigenvector of A and x0 is the initial condition.

Example 1. A smart wing with plunge DOF in system response.

As the first example, a smart wing with only plunge DOF (Figure 1) has been con-
sidered. It has the following characteristics: m = 0.3872 Kg, Ch = 0.3237 Ns/m, Kh =
13, 380 N/m, eh = 7.55 × 10−3 C/m, Cph = 268 nF, Lh = 106 H, Rh = 4050 Ω, and the
initial conditions x1(0) = 0 m/s, x2(0) = 0 A, x3(0) = 0.1 m, and x4(0) = 0 C. The system
response is plotted in Figure 2. The solid line indicates the displacement of the smart wing
and the dashed line depicts the displacement of the regular wing. As shown in Figure 2,
the piezoelectric patch very effectively decays the vibrations. Both system responses are
oscillatory, but their amplitudes decay with time towards zero. This is known as a damped
response. However, the amplitude of the smart wing response decays much faster than the
one of the regular wing response. The smart wing oscillation decays in almost 0.6 s, while
the one of the regular wing takes around 12 s to decay.
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Figure 2. Smart wing system response.

Furthermore, the phase plane plot for the velocity and displacement indicates that the
point (0, 0) evokes the system trajectory, as shown in Figure 3. The smart wing trajectory
starts from the initial displacement and velocity at the far right and turns to the centre of
the phase plane where (0, 0) is the fixed point, xF = 0. In fact, the phase plane plot shows
that the fixed point attracts the smart wing trajectory.
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Figure 3. Phase plane for the velocity and displacement.

Likewise, the phase plane for the electrical current and charge begins at the initial
conditions for the electric charge and current, which are zeros, and it twists out counter-
clockwise until reaching the maximum values. The trajectory then turns towards the start
point (0, 0), as depicted in Figure 4.
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Figure 4. Phase plane for the electrical current and charge.

2.2. A Smart Wing with Only Pitch DOF

As the second investigation for the fixed point, we considered a smart wing with only
pitch DOF, as depicted in Figure 5.
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Figure 5. A smart wing with pitch DOF.

The smart wing equations of motion in free vibrations are given as follows:{
Iα

..
α + Cα

.
α + Kαα − βαqα = 0

Lα
..
qα + Rα

.
qα +

1
Cpα

qα − βα

(
x f − xp

)
α = 0

(10)

where Iα is the mass moment of inertia,
..
α is the pitching acceleration, Cα is the pitching

structural damping,
.
α is the pitching velocity, Kα is the pitching structural stiffness, α is the

pitching angle, βα is the pitch electromechanical coupling, qα is the pitch electric charge,
Lα is the pitch inductance of piezoelectric material,

..
qα is the rate of the pitch electrical

current, Rα is the pitch resistance of piezoelectric material,
.
qα is the pitch electrical current,

Cpα is the pitch capacitance of piezoelectric material, x f is the elastic axis, and xp is the
piezoelectric axis, as depicted in Figure 5. Equation (10) can be written as first-order
differential equations by assuming x1 =

.
α, x2 =

.
qα, x3 = α, and x4 = qα

.
x1 = −Cα

Iα
x1 − Kα

Iα
x3 +

βα
Iα

x4
.
x2 = − Rα

Lα
x2 − 1

Cpα Lα
x4 +

βα
Lα

(
x f − xp

)
x3

.
x3 = x1.
x4 = x2

(11)

Equation (11) can be rewritten by considering q = [Iα Cα Kα βα Lα Cpα Rα]T and

x =
[

x1 x2 x3 x4
]T , as follows:

.
x = f(x, q) =


−Cα

Iα
x1 − Kα

Iα
x3 +

βα
Iα

x4

− Rα
Lα

x2 − 1
Cpα Lα

x4 +
βα
Lα

(
x f − xp

)
x3

x1
x2

 (12)

where f are linear functions and x1, x2, x3, and x4. are the smart wing states and denote
the system’s pitching velocity, pitching angle, pitch electrical current, and pitch electric
charge responses, respectively. There are four eigenvalues for the single DOF aeroelastic
system that indicate the stability of the fixed point. One can obtain the fixed point, or static
solution, of the system by solving

f(x, q) = 0 (13)

or, equivalently,
.
x = 0 (14)

Using Equation (12), it is possible to write Equation (14) as

.
x = A(q)x (15)
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where

A =


−Cα

Iα
0 −Kα

Iα

βα
Iα

0 βα
Lα

(
x f − xp

)
− Rα

Lα
− 1

Cpα Lα

1 0 0 0
0 1 0 0

 (16)

The solution of Equation (15) can be given as [9]

x(t) =
n

∑
i=1

vieλitbi (17)

where vi is the ith eigenvector of A, λi is the ith eigenvalue of A, and bi is the ith element of
b = V−1x0, where V is eigenvector of A and x0 is the initial condition.

Example 2. A smart wing with pitch DOF in system response.

In the second example, a smart wing with only pitch DOF has been given, as shown
in Figure 6. The smart wing characteristics are m = 0.3872 Kg, Cα = 0.1 Nms/rad,
Kα = 10380 N/m, eα = 9.55 × 10−2 C/m, Cpα = 68 nF, Lα = 1 H, Rα = 5050 Ω, xp = 0.3c,
x f = 0.4c, and c = 0.25 m. In addition, the initial conditions are given as x1(0) = 0 rad/s,
x2(0) = 0 A, x3(0) = 0.1 rad, and x4(0) = 0 C. The mass moment of inertia of the
smart wing by assuming the uniform thickness and mass distribution can be calculated as
Iα = m/3

(
c2 − 3cx f + 3x2

f

)
. The system response of the smart wing is depicted in Figure 6.

The solid line represents the pitching angle of the smart wing and the dashed line shows
the pitching angle of the corresponding regular wing. It is clear that piezoelectric patch
decays effectively the pitching vibrations, as shown in Figure 6. The oscillation of the smart
wing decays almost 0.0198 s however, the vibration of the corresponding regular wing
takes 0.3 s to decay.
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Figure 6. Smart wing system response.

In addition, the phase plane plot for the pitching velocity and angle has been shown
in Figure 7, where the point (0, 0) evokes the system trajectory. The initial pitching angle
and velocity is the start point of the smart wing trajectory at the far right and the trajectory
is turning to the fixed point, xF = 0, where the center of the phase plane is (0, 0).
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Figure 7. Phase plane for the pitching velocity and angle.

The initial conditions for the electric charge and current, which are zeros, is the start
point for the phase plane for the electrical current and charge. The trajectory twists out
counterclockwise until reaching its maximum values; after that it turns towards the start
point (0, 0), as indicated in Figure 8.
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Figure 8. Phase plane for the electrical current and charge.

The effects of different xp values on the system response have been shown in Figure 9.
Low values of xp mean the piezoelectric patch located very close to the leading edge can
decay the pitching oscillation quicker than the high-values one.

In Section 3, we illustrate how a smart wing with three DOF, plunge (including a
piezopatch), pitch, and control, called a piezo-plunge-wing, can behave in comparison
to a regular wing in aeroelastic analysis, and how adding one piezopatch can effectively
postpone the flutter phenomenon on a smart wing.
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Figure 9. Smart wing system response with different xp values. (a) system response with xp = 0.2c,
(b) system response with xp = 0.1c, (c) system response with xp = x f .

3. Two-Dimensional Unsteady Plunge–Pitch–Control Smart Wing

A linear 2D smart wing which has plunge, pitch, and control degrees of freedom
is shown in Figure 10. The model contains an airfoil with a piezoelectric patch in the
plunge DOF, called piezo-plunge-wing. The system has the plunge, pitch, and control DOF
indicated by h, α, and β, respectively. The DOF β represents the angle of the control surface
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around its hinge, located at distance xh from the leading edge, and Kβ denotes the stiffness
of the control surface.
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Figure 10. A smart wing with plunge, pitch, and control DOF and a piezopatch in plunge DOF.

The equations of motion can be obtained by using the Lagrange’s equations and the
Kirchhoff’s law as [16,17]

m
..
h + Sαh

..
α + Sβ

..
β + Ch

.
h + Khh − βhqh = −L

Sαh
..
h + Iα

..
α + Iαβ

..
β + Cα

.
α + Kαα = Mx f

Sβ

..
h + Iαβ

..
α + Iβ

..
β + Cβ

.
β + Kββ = Mxh

Lh
..
qh + Rh

.
qh +

1
Cph

qh − βhh = 0

(18)

where m is the mass per unit length of the wing, Sαh is the static mass moment of the wing
around the pitch axis x f , Iα is the mass moment of inertia around the pitch axis x f , Sβ is
the static mass moment of the control surface around the hinge axis xh, Iβ is the control
surface moment of inertia around the hinge axis, Iαβ is the product of inertia of the wing
and control surface, L is the lift, Mx f is the pitching moment of the wing around the pitch
axis x f , Mxh is the pitching moment of the control surface around the hinge axis xh, βh
is the plunge electromechanical coupling, Cph is the plunge capacitance of piezoelectric
material, Lh is the plunge inductance of piezoelectric material, Rh is the plunge resistance of
piezoelectric material, and qh is the plunge electric charge. The electromechanical coupling,
βh, depends on the plunge coupling coefficient, eh, and the plunge capacitance, Cph, and
it can be calculated by βh = eh/Cph. Considering unsteady aerodynamics, the lift and
moments can be written as follows [18,19]

L(t) = ρb2
(

Uπ
.
α + π

..
h − πba

..
α − UT4

.
β − T1b

..
β
)

+2πρbU
(

Φ(0)w −
∫ t

0
∂Φ(t−t0)

∂t0
w(t0)dt0

) (19)

Mx f = −ρb2
(
−aπb

..
h + πb2

(
1
8 + a2

) ..
α − (T7 + (ch − a)T1)b2

..
β
)

−ρb2
(

π
(

1
2 − a

)
Ub

.
α +

(
T1 − T8 − (ch − a)T4 +

T11
2

)
Ub

.
β
)

−ρb2(T4 + T10)U2β

+2ρUb2π
(

a + 1
2

)(
Φ(0)w −

∫ t
0

∂Φ(t−t0)
∂t0

w(t0)dt0

) (20)

Mxh = −ρb2
(
−T1b

..
h + 2T13b2 ..

α − 1
π T3b2

..
β
)

−ρb2
((

−2T9 − T1 + T4

(
a − 1

2

))
Ub

.
α − 1

2π UbT4T11
.
β
)

− ρb2U2

π (T5 − T4T10)β − ρb2UT12

(
Φ(0)w −

∫ t
0

∂Φ(t−t0)
∂t0

w(t0)dt0

) (21)
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Substituting Equations (19) to (21) into Equation (18) gives a set of equations of motion
which is only time dependent and can be solved numerically by using the backward finite
difference scheme for numerical integration [19]. However, implementing the exponential
form of the Wagner function’s approximation, the equations of motion can be rewritten as
ordinary differential equations which can be solved analytically rather than numerically,
which is much more practical [20,21]. The Wagner function’s approximation is as follows

Φ(t) = 1 − Ψ1e−ε1Ut/b − Ψ2e−ε2Ut/b (22)

where Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.
The full unsteady aeroelastic equations of motion can be written as

(A + ρB)
..
y + (C + ρUD)

.
y +

(
E + ρU2F

)
y + ρU3Ww = ρUg

.
Φ(t)

.
w − W1y − UW2w = 0

(23)

where y =
[

h α β qh
]T is the displacement and charge vector, w = [w1 · · · w6 0]T

is the aerodynamic states vector, Φ(t) is Wagner’s function, A is the structural mass and
inductance matrix, B is the aerodynamic mass matrix, E is the structural stiffness and resis-
tance matrix, F is the aerodynamic stiffness matrix, W is the aerodynamic state influence
matrix, g is the initial condition excitation vector, and W1 and W2 are the aerodynamic
state equation matrices.

Equation (23) can be written in purely first order ordinary differential equations
form by

.
x = Qx + q

.
Φ(t) (24)

where

Q =

 −M−1(C + ρUD) −M−1(E + ρU2F
)

−ρU3M−1W
I4×4 04×4 04×6
06×4 W1 UW2

 (25)

q =

(
ρUM−1g

010×1

)
(26)

where x =
[ .

h
.
α

.
β

.
qh h α β qh w1 · · · w6

]T
is the 14 × 1 state vector, M =

A + ρB, I4×4 is a 4 × 4 unit matrix, 04×4 is a 4 × 4 matrix of zeros, 04×6 is a 4 × 6 matrix
of zeros, 06×4 is a 6 × 4 matrix of zeros, and 010×1 is a 10 × 1 vector of zeros. The initial
conditions are x(0) = x0. The initial condition g

.
Φ(t) is an excitation whose effect decays

exponentially. In order to obtain steady-state solutions, the initial condition is ignored in
this paper; therefore, Equation (24) becomes

.
x = Qx (27)

Example 3. A smart wing with plunge, pitch, and control DOF and a piezopatch in plunge DOF.

As the third example, a smart wing with plunge, pitch, and control DOF (Figure 10)
was considered with the following parameters [16]: m = 13.5 Kg, Sαh = 0.3375 Kgm,
Sβ = 0.1055 Kgm, Ch = 2.1318 Ns/m, Kh = 2131.8346 N/m, Iα = 0.0787 Kgm2, Iαβ =

0.0136 Kgm2, Cα = 0.1989 Nms/rad, Kα = 198.9712 Nm/rad, Iβ = 0.0044 Kgm2, Cβ =
0.0173 Ns/m, Kβ = 17.3489 N/m, eh = 0.145 C/m, Cph = 268 nF, Lh = 103 H, and
Rh = 1274 Ω.

After running the simulation, the flutter speed was 74.2973 m/s, which showed an
81.41% increase in the flutter speed of a regular wing with the same characteristics and
without the piezoelectric patch. Figure 11 depicts the variation of damping ratios of a
regular wing and smart wing with respect to the airflow velocity or airspeed. It can be
seen that having a piezoelectric patch on the wing can effectively increase the flutter speed.
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Furthermore, due to the piezoelectric effect, there was no flutter in the plunge mode;
however, flutter happens in the pitch mode, as shown in Figure 11.
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In addition, the real part of eigenvalues versus the freestream velocity is shown in
Figure 12. Again, Figure 12b indicates flutter appears in the pitch mode. There is an
effective increase in the flutter speed of the smart wing in comparison to the regular wing.
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Furthermore, the imaginary part of eigenvalues versus the freestream velocity is
depicted in Figure 13. Figure 13b shows that flutter appeared in the pitch mode and
there was an effective increase in the flutter speed of the smart wing in comparison to the
regular wing.
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By using Equation (8), the matrix Q can be formed and its eigenvalues and eigen-
vectors can be calculated for two different airspeeds, U = 10 m/s and the flutter speed,
U = 74.2973 m/s. There are six complex eigenvalues which represent the structural state
dynamics of the smart wing. These complex eigenvalues are conjugates of those of the
regular wing. There are six real eigenvalues for the aerodynamics state dynamics. Further-
more, there are two real eigenvalues representing the piezoelectric state dynamics. In each
eigenvector, the first three elements give structural velocities, the next three correspond to
structural displacements, the next six elements represent aerodynamic state displacements,
and finally, the last two are for piezoelectric electric charge.

The smart wing eigenvalues for the three structural modes at U = 10 m/s are as
follows

λ1 = −1.3460 ± 42.7410i, λ2 = −6.2904 ± 110.9803i, λ3 = −5.4720 ± 205.9954i

and its corresponding eigenvectors which present the smart wing structural mode shapes
are

ϕ1 =


−0.0034
0.3795
0.9249

, ϕ2 =


−0.0014
−0.2027
0.9792

, ϕ3 =


−0.0341
−0.0272
0.9986


where, in each mode shape, the first element presents plunge displacement, the second one
indicates pitch angle, and the last one gives control surface angle. Generally, in aeroelastic
systems, the degrees of freedom are coupled to each other and cannot occur independently.
Mostly, control surface and pitch displacements happen in mode two and three. Despite
the regular wing, mode one contains significant pitch angle. The smart wing deformation
in the three modes has been depicted in Figure 14. There is almost similarity in pitch and
control in modes two and three; however, there is significant pitch in mode one.
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In addition, the smart wing eigenvalues at airspeed U = 74.2973 m/s are

λ1 = −21.2035 ± 13.2734i, λ2 = 0.0000 ± 97.5068i, λ3 = −6.0159 ± 204.6810i

and its corresponding mode shapes are

ϕ1 =


0.0494
0.8685
−0.3664

, ϕ2 =


0.0059
−0.1523
0.9878

, ϕ3 =


−0.0340
−0.0090
0.9986


In comparison to eigenvalues at airspeed U = 10 m/s, the real parts of λ1 are much

more negative, and the real part of λ2 is almost zero. In addition, at U = 74.2973 m/s,
the control components of mode shapes ϕ2 and ϕ3 are very close together and there is a
significant pitch in mode one, as shown in Figure 15.
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In Section 4, a smart wing with three DOF and two piezopatches in the plunge and
pitch DOF, called piezo-plunge-pitch-wing, is presented to illustrate its behavior in com-
parison to a regular wing in aeroelastic analysis and how implementing two piezopatches
can further postpone the flutter phenomenon on a smart wing.

4. A Smart Wing with Plunge, Pitch, and Control DOF and Piezopatches in Plunge and
Pitch DOF

A 2D smart wing with plunge, pitch, and control DOF which has two piezopatches, one
in the plunge DOF and the other in the pitch DOF, is considered, as indicated in Figure 16;
it can be called a piezo-plunge-pitch-wing. The system has the same characteristics of the
piezo-plunge-wing in Section 3.
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The equations of motion of the smart wing can be obtained by using the Lagrange’s
equations and the Kirchhoff’s law as

m
..
h + Sαh

..
α + Sβ

..
β + Ch

.
h + Khh − βhqh = −L

Sαh
..
h + Iα

..
α + Iαβ

..
β + Cα

.
α + Kαα − βαqα = Mx f

Sβ

..
h + Iαβ

..
α + Iβ

..
β + Cβ

.
β + Kββ = Mxh

Lh
..
qh + Rh

.
qh +

1
Cph

qh − βhh = 0

Lα
..
qα + Rα

.
qα +

1
Cpα

qα − βα

(
x f − xp

)
α = 0

(28)

where m, Sαh, Sβ, Ch, Kh, βh, qh, L, Iα, Iαβ, Cα, Kα, Mx f , Iβ, Cβ, Kβ, Mxh, Lh, Rh, Cph, x f , and
xp are defined as in Equation (1), Lα is the pitch inductance of piezoelectric material, Rα is
the pitch resistance of piezoelectric material, Cpα is the pitch capacitance of piezoelectric
material, βα is the pitch electromechanical coupling, and qα is the pitch electric charge. The
pitch electromechanical coupling, βα, depends on the pitch coupling coefficient, eα, and the
pitch capacitance, Cpα, and it can be calculated by βα = eα/Cpα.

Similar to Section 3, the full unsteady aeroelastic equations of motion can be written as

(A + ρB)
..
y + (C + ρUD)

.
y +

(
E + ρU2F

)
y + ρU3Ww = ρUg

.
Φ(t)

.
w − W1y − UW2w = 0

(29)

where y =
[

h α β qh qα

]T is the displacement and charge vector.
Equation (29) can be written in purely first order ordinary differential equations

form by
.
x = Qx + q

.
Φ(t) (30)

where

Q =

 −M−1(C + ρUD) −M−1(E + ρU2F
)

−ρU3M−1W
I5×5 05×5 05×6
06×5 W1 UW2

 (31)

q =

(
ρUM−1g

011×1

)
(32)

where x =
[ .

h
.
α

.
β

.
qh

.
qα h α β qh qα w1 · · · w6

]T
is the 16 × 1 state

vector, M = A + ρB, I5×5 is a 5 × 5 unit matrix, 05×5 is a 5 × 5 matrix of zeros, 05×6 is a
5 × 6 matrix of zeros, 06×5 is a 6 × 5 matrix of zeros, and 011×1 is a 11 × 1 vector of zeros.
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The initial conditions are x(0) = x0. The initial condition g
.

Φ(t) is an excitation whose
effect decays exponentially. In order to obtain steady-state solutions, the initial condition is
ignored in this paper therefore Equation (30) becomes

.
x = Qx (33)

Example 4. A smart wing with plunge, pitch, and control DOF and a piezopatch in plunge and
pitch DOF in aeroelastic analysis.

In the fourth example, an additional piezopatch was used to control vibrations in
pitch DOF in the smart wing in example three. Therefore, a smart wing with plunge,
pitch, and control DOF and two piezopatches, one in the plunge and the other in the
pitch DOF, as shown in Figure 16, was considered with the following parameters. It
assumed the same characteristics as the smart wing existing in example three with the
pitch piezopatch parameters as the pitch coupling coefficient eα = 0.019 C/m, the pitch
capacitance of piezoelectric material Cpα = 1450 nF, the pitch inductance of piezoelectric
material Lα = 103 H, and the pitch resistance of piezoelectric material Rα = 2674 Ω.

Simulation results indicated that adding an additional piezopatch in the pitch DOF
can remove the flutter phenomenon in the pitch mode, as depicted in Figure 17. Hence, by
having two piezopatches, one in the plunge and the other in the pitch DOF, it is possible to
avoid flutter in both DOF. However, there was flutter in the control DOF.

Designs 2022, 6, x FOR PEER REVIEW 17 of 25 
 

 

Simulation results indicated that adding an additional piezopatch in the pitch DOF 

can remove the flutter phenomenon in the pitch mode, as depicted in Figure 17. Hence, 

by having two piezopatches, one in the plunge and the other in the pitch DOF, it is 

possible to avoid flutter in both DOF. However, there was flutter in the control DOF. 

  
(a) (b) 

Figure 17. Smart wing damping ratio versus airspeed with (a) plunge piezopatch and (b) plunge 

and pitch piezopatches. 

Figure 17 shows that the smart wing with two piezopatches has flutter at 

88.4353 m s⁄  in the control DOF, which indicates a 115.96% increase in the flutter speed 

of a regular wing with the same characteristics without the piezopatch and a 19.03% 

increase in the flutter speed of a smart wing with the same characteristics that has only 

one piezopatch in the plunge DOF. Clearly, using two piezopatches can remove the flutter 

phenomenon in the plunge and pitch modes, but flutter happens in the control mode, as 

shown in Figure 17b. 

Furthermore, the real part of eigenvalues versus the freestream velocity has been 

depicted in Figure 18. In Figure 18b, it can be seen that there is no flutter in the plunge 

and pitch modes; however, flutter appears in the control mode. There is also a 

considerable increase in the flutter speed of the smart wing with two piezopatches in 

comparison to that of the smart wing with only one piezopatch. 

  
(a) (b) 

Figure 18. Real part of eigenvalues versus airspeed, (a) smart wing with plunge piezopatch; (b) 

smart wing with plunge and pitch piezopatches. 

In addition, the imaginary part of eigenvalues versus the freestream velocity is 

indicated in Figure 19. Figure 19b shows that flutter appears in the control mode and there 

is an effective increase in the flutter speed of the smart wing in comparison to the regular 

wing. 
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pitch piezopatches.

Figure 17 shows that the smart wing with two piezopatches has flutter at 88.4353 m/s
in the control DOF, which indicates a 115.96% increase in the flutter speed of a regular wing
with the same characteristics without the piezopatch and a 19.03% increase in the flutter
speed of a smart wing with the same characteristics that has only one piezopatch in the
plunge DOF. Clearly, using two piezopatches can remove the flutter phenomenon in the
plunge and pitch modes, but flutter happens in the control mode, as shown in Figure 17b.

Furthermore, the real part of eigenvalues versus the freestream velocity has been
depicted in Figure 18. In Figure 18b, it can be seen that there is no flutter in the plunge and
pitch modes; however, flutter appears in the control mode. There is also a considerable
increase in the flutter speed of the smart wing with two piezopatches in comparison to that
of the smart wing with only one piezopatch.
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In addition, the imaginary part of eigenvalues versus the freestream velocity is indi-
cated in Figure 19. Figure 19b shows that flutter appears in the control mode and there is an
effective increase in the flutter speed of the smart wing in comparison to the regular wing.
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(b) smart wing with plunge and pitch piezopatches.

By using Equation (31), the matrix Q can be formed, and its eigenvalues and eigen-
vectors can be calculated for two different airspeeds, U = 10 m/s and the flutter speed,
U = 88.4353 m/s. There are six complex eigenvalues which represent the structural state
dynamics of the smart wing. These complex eigenvalues are conjugates of those of the
regular wing. There are six real eigenvalues for the aerodynamics state dynamics. Further-
more, there are four real eigenvalues representing the piezoelectric state dynamics. In each
eigenvector, the first three elements give structural velocities, the next three correspond to
structural displacements, the next six elements represent aerodynamic state displacements,
and finally, the last four are for piezoelectric electric charges.

The smart wing eigenvalues for the three structural modes at U = 10 m/s are as
follows

λ1 = −1.7257 ± 40.8313i, λ2 = −12.1919 ± 79.1737i, λ3 = −6.7011 ± 112.7989i

and its corresponding eigenvectors which present the smart wing structural mode shapes
are

ϕ1 =


−0.0034
0.4304
0.9021

, ϕ2 =


−0.0023
−0.1095
0.9930

, ϕ3 =


−0.0014
−0.2062
0.9785


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where, in each mode shape, the first element presents plunge displacement, the second
indicates pitch angle, and the last element provides control surface angle. Generally, in
aeroelastic systems, the degrees of freedom are coupled to each other and cannot occur
independently. Mostly, control surface and pitch displacements happen in mode two and
three. In contrast to the regular wing, mode one contains significant pitch angle. The
piezo-plunge-pitch-wing deformation in the three modes has been depicted in Figure 20. It
is clear that there is slight similarity in pitch and control in mode two and three; however,
there is significant pitch in mode one.
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(a) ωn = 6.5 Hz, (b) ωn = 12.7 Hz, (c) ωn = 18.0 Hz.

In addition, the smart wing eigenvalues at airspeed U = 88.4353 m/s are

λ1 = −39.2529 ± 11.3444i, λ2 = −11.7376 ± 80.3532i, λ3 = 0.0000 ± 96.3908i

and its corresponding mode shapes are

ϕ1 =


−0.0362
−0.6363
0.7085

, ϕ2 =


−0.0145
0.0781
−0.9963

, ϕ3 =


0.0099
−0.1432
0.9890


In comparison to eigenvalues at airspeed U = 10 m/s, the real parts of λ1 and λ2 are

much closer, the real part of λ1 is much more negative, and the real part of λ3 is almost
zero. In addition, at U = 88.4353 m/s, the control components of mode shapes ϕ2 and ϕ3
are almost symmetrical, and there is a significant pitch in mode one, as shown in Figure 21.

Next section presents a smart wing with three DOF and three piezopatches in the
plunge, pitch, and control DOF, called a piezo-plunge-pitch-control-wing, to illustrate its
behaviour in comparison to a regular wing in aeroelastic analysis, and how using three
piezopatches can completely remove the flutter phenomenon on a smart wing.
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5. A Smart Wing with Plunge, Pitch, and Control DOF and Piezopatches in the Plunge,
Pitch, and Control DOF

A 2D smart wing with plunge, pitch, and control DOF which has three piezopatches,
one in the plunge DOF, one in the pitch DOF, and the other one in the control DOF, is
considered as indicated in Figure 22; it can be called a piezo-plunge-pitch-control-wing.
The system has the same characteristics of the smart wing in the previous section.
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The equations of motion of the smart wing can be obtained by using the Lagrange’s
equations and the Kirchhoff’s law as

m
..
h + Sαh

..
α + Sβ

..
β + Ch

.
h + Khh − βhqh = −L

Sαh
..
h + Iα

..
α + Iαβ

..
β + Cα

.
α + Kαα − βαqα = Mx f

Sβ

..
h + Iαβ

..
α + Iβ

..
β + Cβ

.
β + Kββ − ββqβ = Mxh

Lh
..
qh + Rh

.
qh +

1
Cph

qh − βhh = 0

Lα
..
qα + Rα

.
qα +

1
Cpα

qα − βα

(
x f − xp

)
α = 0

Lβ
..
qβ + Rβ

.
qβ +

1
Cpβ

qβ − ββ

(
xβ − xh

)
β = 0

(34)

where m, Sαh, Sβ, Ch, Kh, βh, qh, L, Iα, Iαβ, Cα, Kα, Mx f , Iβ, Cβ, Kβ, Mxh, Lh, Rh, Cph, x f ,
xp, Lα, Rα, Cpα, and βα are defined as in Equation (28), Lβ is the control inductance of
piezoelectric material, Rβ is the control resistance of piezoelectric material, Cpβ is the
control capacitance of piezoelectric material, ββ is the control electromechanical coupling,
and qβ is the control electric charge. The control electromechanical coupling, ββ, depends
on the control coupling coefficient, eβ, and the control capacitance, Cpβ, and it can be
calculated by ββ = eβ/Cpβ.

Similar to Section 3, the full unsteady aeroelastic equations of motion can be written as

(A + ρB)
..
y + (C + ρUD)

.
y +

(
E + ρU2F

)
y + ρU3Ww = ρUg

.
Φ(t)

.
w − W1y − UW2w = 0

(35)

where y =
[

h α β qh qα qβ

]T is the displacement and charge vector.
Equation (35) can be written in purely first order ordinary differential equations

form by
.
x = Qx + q

.
Φ(t) (36)

where

Q =

 −M−1(C + ρUD) −M−1(E + ρU2F
)

−ρU3M−1W
I6×6 06×6 06×6
06×6 W1 UW2

 (37)

q =

(
ρUM−1g

012×1

)
(38)

where x =
[ .

h
.
α

.
β

.
qh

.
qα

.
qβ h α β qh qα qβ w1 · · · w6

]T
is the 18× 1

state vector, M = A + ρB, I6×6 is a 6 × 6 unit matrix, 06×6 is a 6 × 6 matrix of zeros, 06×6
is a 6 × 6 matrix of zeros, and 012×1 is a 12 × 1 vector of zeros. The initial conditions are
x(0) = x0. The initial condition g

.
Φ(t) is an excitation whose effect decays exponentially. In

order to obtain steady-state solutions, the initial condition is ignored in this paper; therefore,
Equation (36) becomes

.
x = Qx (39)

Example 5. A smart wing with plunge, pitch, and control DOF and a piezopatch in plunge, pitch,
and control DOF in aeroelastic analysis.

In the fifth example, an additional piezopatch was used to control vibrations in control
DOF in the smart wing in example four. Therefore, a smart wing with plunge, pitch, and
control DOF and three piezopatches, one in plunge, one in pitch, and the other in control
DOF, as shown in Figure 22, was considered with the following parameters. It assumed the
same characteristics for smart wing existing in example four with the control piezopatch
parameters as the control coupling coefficient eβ = 0.019 C/m, the control capacitance
of piezoelectric material Cpβ = 26.8 nF, the control inductance of piezoelectric material
Lβ = 103 H, and the control resistance of piezoelectric material Rβ = 1274 Ω.
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Simulation results indicated that adding an additional piezopatch in the control DOF
can remove the flutter phenomenon in the control mode, as depicted in Figure 23. Hence,
by having three piezopatches, one in the plunge, one in the pitch, and the other in the
control DOF, it is possible to avoid flutter in all DOF, eradicating all flutter.
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Figure 23. Smart wing damping ratio versus airspeed with (a) plunge and pitch piezopatches and
(b) plunge, pitch, and control piezopatches.

Figure 23b shows that the smart wing with three piezopatches has no flutter. Using
three piezopatches can remove the flutter phenomenon completely in the plunge, pitch,
and control modes, as shown in Figure 23b.

Furthermore, the real part of the eigenvalues versus the freestream velocity has been
depicted in Figure 24. In Figure 24b, it is clear that there is no flutter in the plunge, pitch, or
control modes.
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Moreover, the imaginary part of eigenvalues versus the freestream velocity has been
shown in Figure 25. Figure 25b indicates flutter does not appear in the smart wing.

By using Equation (37), the matrix Q can be formed and its eigenvalues and eigen-
vectors can be calculated for two different airspeeds, U = 10 m/s and the flutter speed,
U = 100 m/s. There are six complex eigenvalues which represent the structural state
dynamics of the smart wing. These complex eigenvalues are conjugates of those of the
regular wing. There are six real eigenvalues for the aerodynamics state dynamics. Further-
more, there are six real eigenvalues representing the piezoelectric state dynamics. In each
eigenvector, the first three elements give structural velocities, the next three correspond to
structural displacements, the next six elements represent aerodynamic state displacements,
and finally, the last six are for piezoelectric electric charges.



Designs 2022, 6, 29 22 of 25

Designs 2022, 6, x FOR PEER REVIEW 22 of 25 
 

 

Figure 23. Smart wing damping ratio versus airspeed with (a) plunge and pitch piezopatches and 

(b) plunge, pitch, and control piezopatches. 

Figure 23b shows that the smart wing with three piezopatches has no flutter. Using 

three piezopatches can remove the flutter phenomenon completely in the plunge, pitch, 

and control modes, as shown in Figure 23b. 

Furthermore, the real part of the eigenvalues versus the freestream velocity has been 

depicted in Figure 24. In Figure 24b, it is clear that there is no flutter in the plunge, pitch, 

or control modes. 

  
(a) (b) 

Figure 24. Real part of eigenvalues versus airspeed, (a) smart wing with plunge and pitch 

piezopatche; (b) smart wing with plunge, pitch, and control piezopatches. 

Moreover, the imaginary part of eigenvalues versus the freestream velocity has been 

shown in Figure 25. Figure 25b indicates flutter does not appear in the smart wing. 

  
(a) (b) 

Figure 25. Imaginary part of eigenvalues versus airspeed, (a) smart wing with plunge & pitch 

piezopatches, (b) smart wing with plunge, pitch & control piezopatches. 

By using Equation (37), the matrix 𝑸  can be formed and its eigenvalues and 

eigenvectors can be calculated for two different airspeeds, 𝑈 = 10 m s⁄  and the flutter 

speed, 𝑈 = 100 m s⁄ . There are six complex eigenvalues which represent the structural 

state dynamics of the smart wing. These complex eigenvalues are conjugates of those of 

the regular wing. There are six real eigenvalues for the aerodynamics state dynamics. 

Furthermore, there are six real eigenvalues representing the piezoelectric state dynamics. 

In each eigenvector, the first three elements give structural velocities, the next three 

correspond to structural displacements, the next six elements represent aerodynamic state 

displacements, and finally, the last six are for piezoelectric electric charges. 

The smart wing eigenvalues for the three structural modes at 𝑈 = 10 m s⁄  are as 

follows 

Figure 25. Imaginary part of eigenvalues versus airspeed, (a) smart wing with plunge & pitch
piezopatches, (b) smart wing with plunge, pitch & control piezopatches.

The smart wing eigenvalues for the three structural modes at U = 10 m/s are as
follows

λ1 = −2.3739 ± 46.5181i, λ2 = −12.1637 ± 82.6875i, λ3 = −5.4879 ± 204.1061i

and its corresponding eigenvectors which present the smart wing structural mode shapes
are

ϕ1 =


−0.0063
0.9905
0.1348

, ϕ2 =


0.0125
−0.9106
−0.3931

, ϕ3 =


0.0759
−0.5052
0.8565


where, in each mode shape, the first element presents plunge displacement, the second
indicates pitch angle, and the last element gives control surface angle. Generally, in
aeroelastic systems, the degrees of freedom are coupled to each other and cannot occur
independently. Mostly, control surface and pitch displacements happen in mode two and
three. In contrast to the regular wing, mode one contains significant pitch angle. The smart
wing deformation in the three modes has been depicted in Figure 26. It is clear that there is
almost symmetry in pitch in modes one and two; however, their values are significant.

In addition, the smart wing eigenvalues at airspeed U = 100 m/s are

λ1 = −40.2408 ± 12.0910i, λ2 = −12.8883 ± 81.8056i, λ3 = −5.5620 ± 204.1067i

and its corresponding mode shapes are

ϕ1 =


0.1040
0.9651
−0.1518

, ϕ2 =


0.0374
0.8767
0.4604

, ϕ3 =


0.0691
−0.4220
0.9014


In comparison to eigenvalues at airspeed U = 10 m/s, the real parts of λ1 and λ2 are

much closer, the real part of λ1 is much more negative, and λ2 and λ3 are close to those
for U = 10 m/s. In addition, at U = 100 m/s, the plunge component of mode shape ϕ1 is
much higher than that of U = 10 m/s. Furthermore, there are significant pitches in modes
one and two, as shown in Figure 27.
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6. Limitation of the Model

In this study, in order to simplify the problem, the structure was modelled by consider-
ing linearity in the structural behaviour. However, there is nonlinearity in the aerodynamic
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part. Therefore, although there is no nonlinearity in the structure, the whole model is
nonlinear.

7. Conclusions

In this paper, we showed how the flutter phenomenon can be postponed and even
completely removed on a wing by using piezoelectric patches. The main contribution or
finding that we’ve provided in this paper is a practical way to suppress flutter on a wing
by implementing a passive aeroelastic control including piezoelectric patches and shunt
circuits in which the size of required inductance is small. In Section 2, system response
of a smart wing with only plunge DOF and pitch DOF has been presented. It is clear that
using an efficient piezopatch can effectively decay the oscillations of the smart wing in
a very short time. The smart wing vibration with only plunge DOF decayed in almost
0.6 s; however, the regular wing without a piezoelectric patch took around 12 s to decay. In
addition, the oscillation of the smart wing with only pitch DOF decayed in almost 0.0198 s;
however, the vibration of the corresponding regular wing took 0.3 s to decay. As illustrated
in Section 3, implementing one piezopatch in the plunge DOF of a regular wing with three
DOF can postpone the flutter speed by 81.41%, which is a considerable increase in the
flutter speed. In addition, we show how the flutter phenomenon can shift from the plunge
mode in a regular wing to the pitch mode in a smart wing. We also present the effect of
adding one more piezopatch to a smart wing in the pitch DOF to further postpone the
flutter phenomenon. The flutter speed in a smart wing can be postponed by 115.96%, which
is a very considerable value. Furthermore, the flutter phenomenon disappears from the
pitch mode; however, it remains in the control mode. Finally, adding one more piezopatch
on a smart wing in the control DOF can completely remove the flutter phenomenon from
the wing, which represents a great achievement in dynamic aeroelectic behavior of a wing.
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