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Abstract: The shape complexity capability of additive manufacturing (AM) is currently the main
thrust of the design for AM (DFAM) research. In order to aid designers embracing that complexity-
for-free characteristics of AM, many design approaches have been put forth. However, AM does not
only benefit parts’ designs: its capability can be harnessed at assembly level to design performant and
innovative products. Most of the few contributions on the topic are concerned with part consolidation
of existing assemblies, but other advantages such as assembly-free mechanisms, multi-material
components, or even component embedding can also improve product design complexity. This paper
aims to put forth a thorough DFAM framework for new product development (made of multiple
parts) and which consider all the assembly-related characteristics of AM. It considers what can be
called AM-based architecture minimization, which includes, among others, part consolidation and
assembly-free mechanisms as well. Within context of an ‘AM-factory’, in which the most appropriate
machine(s) is/are selected for easing a whole assembly manufacturing before the detailed geometric
definition is committed. For the sake of completeness, a methodology based on functional flows has
also been investigated for the parts’ design. A gripper as case study has been introduced to illustrate
the framework.

Keywords: design for additive manufacturing; additive manufacturing; assembly; part consolidation;
assembly-free mechanisms

1. Introduction

Originally considered as a physical prototyping process, additive manufacturing (AM)
is now being investigated and used for end-of-use products. Such endeavor can be traced
to the expansion of both the techniques following the principle of AM and the materials
processed by them (as shown in Table 1). As such, a new paradigm shift is taking place
in the way we manufacture goods. For instance, while conventional (i.e., subtractive or
formative) processes would require a product to be manufactured sequentially in many
simple shape parts and then to be assembled, the layer-by-layer manufacturing peculiar to
AM allows single step manufacturing of products featuring complex shapes (difficult or
impossible to manufacture with conventional processes).

However, for this paradigm shift to be complete, it is needed to undertake significant
efforts from the early design stages and do over current models, methods, and tools
accordingly, and/or promote new ones. In a way similar to how research efforts have
been targeted at design for X [1]—design for manufacture (DFM) or design for assembly
(DFA) [2]—to aid designers in delivering solutions that are easily manufacturable and
ready for a seamless assembly, research has to be carried out to design in embracing the
full potentials of AM. As such, a new trend in the design theory and methodology realm
has emerged under the umbrella term of design for additive manufacturing (DFAM) [3,4].
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Table 1. Additive manufacturing processes classification.

Family Process Description Typical Processed Material Typical Technique

Material extrusion
A material is semi-solid state is
extruded through a nozzle/needle
and is cured.

Polymers, ceramics, metals,
wood

Fused Filament Fabrication (FFF),
Robocasting (Direct Ink Writing),

Powder bed fusion A thermal source selectively fuses
layers of powder. Polymers, ceramics, metals Selective Laser Sintering (SLS),

Selective Laser Melting (SLM)

Photopolymerization
Layers of photopolymers are
selectively cured upon exposure to a
radiation.

Photocurable polymers Sterelithography (SLA)

Directed energy deposition
A focused high power laser beam
melts a material powder as it is being
deposited.

Metals
Laser Engineered Net Shaping
(LENS), Direct Metal Deposition
(DMD), 3D laser cladding

Sheet lamination

Material sheets are bonded; each sheet
(representing a cross section of the
CAD model) is selectively cut with an
energy source.

Papers, metals, polymers
Laminated Object Manufacturing
(LOM), Ultrasonic Consolidation
(UC)

Material jetting

Droplets of a material (or a mix of two
materials) are selectively deposited in
thin layers from a print head, and
cured either by a source of energy or
by environmental conditions.

Polymers, wax Multi-Jet Modeling
(Drop-On-Demand), PolyJet™

Binder jetting
A binder is selectively deposited, from
a printhead, onto a powder bed,
forming a section of the CAD model.

Plastics, metals, composites,
ceramics, polymers 3D printing

AM is mainly praised for its capability to manufacture intricate shapes or interlocking
features that are unfeasible with conventional processes. This is reflected in the vast
majority of work in the DFAM-related literature. Most of the current contributions to the
field seem to be mainly dedicated to parts’ design where the goals are basically twofold:
(i) providing tools and methodologies for embracing the shape complexity capability of AM
in order to improve performance, and (ii) constraining the design process by considering
AM specific manufacturing constraints. As such, these contributions are essential for a
better adoption of AM by designers and engineers [5,6]. However, as components rarely
work by themselves and are usually part of a whole assembly, the design freedom allowed
by AM should be extended to the assembly level as well. The AM capabilities are not
limited to shape complexity, nor are they only beneficial to a part’s performance. DFAM
contributions—aimed at seizing these benefits—are rather scarce, but the issue is being
given more and more research interest. As a matter of fact, when DFAM is considered
from an assembly point of view, it is mainly for redesign cases [7]. Indeed almost none
of the current works is led to the consideration of the AM benefits for assembly design
in a new product development (NPD) context. Nevertheless, a few contributions [8–12]
are targeted at conceptual design for AM. Furthermore, the few assembly-oriented DFAM
(A-DFAM) contributions do restrict the scientific issues to part consolidation (PC) [13].
These two aforementioned situations are fully encapsulated in Yang et al.’s [11] statements:
‘[A-DFAM] mainly focuses on the redesign of assemblies by taking advantage of AM-
enabled capabilities . . . ’ and ‘The general motivation of assembly-level DFAM research
is to investigate the possibility of part consolidation which brings benefits of reduced
part count, enhanced performance (e.g., frictionless), and decreased cost . . . ’. While PC
is indeed an AM-benefit that can greatly simplify an assembly, other benefits are still
poorly explored. Fully functional assemblies of components can seamlessly be printed [14],
with the advantages of consolidated parts, multi-material parts, moving mechanisms,
electronic components embedding, and so on. The purpose of this article is to address the
aforementioned gaps in the literature, namely considering assembly-level DFAM beyond
PC and redesign cases. More specifically the paper aims at putting forth a thorough DFAM
framework for NPD (made of multiple parts) and which considers all the assembly-related
characteristics of AM. As these characteristics do vary across AM techniques and machines,
another novelty of our proposal is that AM techniques and machines are selected to ease
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the product manufacturing, PC decisions are made based on these techniques’ actual
capabilities.

The content of the paper is organized as follows. In Section 2, the literature is re-
viewed, the rationale behind the proposed framework is explained, and a summary of the
characteristics of AM processes is provided; the proposed methodology is presented in
Section 3; demonstration on a case study is presented within Section 4; finally, conclusions
and future work are drawn.

2. Literature Review
2.1. Design for Additive Manufacturing

The main capability of AM is praised for is its ability to seamlessly build virtually
any shape at no extra (tooling) cost. This can explain why the vast majority of current
DFAM works is targeted at part design. These contributions consist in optimizing part
geometry in order to enhance performance through topology optimization or latticed
design [13,15,16]. Other contributions are dedicated at making designers aware of the AM
specific constraints in order to reduce iterations and tailor what can be designed to what is
truly manufacturable.

DFAM is barely being considered from an assembly design perspective. This branch
of DFAM can be split in two subbranches according to Yang et al. [11], namely consistent
assembly (CA) and reduced assembly (RA). CA deals with all the design alterations that
can be done to make an existing assembly printable without decreasing its number of com-
ponents. RA—which is the scope of this paper—is concerned with how to take advantage
of AM in order to reduce assembly complexity (through PC for instance).

The few works related to RA tend to gravitate around PC. An earliest DFAM contri-
bution is the well-known Airbus aircraft duct [17], whose part count has been drastically
reduced from 16 components (and fasteners) to one component. Another AM-based PC
case study is the one made by Schmelzle et al. [18]. In order to aid designers seizing such an
opportunity, some methodologies have been developed. Yang et al. [19] have presented a
PC method that aims at redesigning assemblies of non-moving parts. The method requires
a computer-aided design (CAD) file of the original design definition along with functional
performance requirements. It is implicitly assumed that the parts of the assembly are
originally secured together with conventional assembly methods. Worth mentioning in
their methodology is that function integration is made by merging the product functional
surfaces into a single design space. Moreover, in order to leverage AM capability beyond
PC, the so-generated design space is used to define an optimized shape of the consolidated
assembly. In a similar study, Rodrigue and Rivette [20] proposed a design methodology tar-
geted at assemblies design for AM. The goal of their proposal is to assist the designer in the
embodiment design stage, so that all the advantages offered by AM are considered; these in-
clude mainly PC and multi-material part. Using the Boothroyd and Dewhurst (B&D) rules
for design for manufacture and assembly (DFMA) [21], they proposed simple guidelines
for PC in an AM context. In addition, once the assembly’s parts that need to stand alone
were identified, their geometries were optimized for functionality improvement using
topology optimization. Yang and Zhao [22] have taken another look at the B&D DFMA
rules for part count reduction in the light of AM capabilities, where a new set of design
rules have been put forth. These new rules were then used to propose a design framework
following a screening-and-refinement strategy. In the screening step, the derived rules
are used to filter a given existing assembly in order to find potential parts candidates
for consolidation. The (second) refinement step consists in consolidating and optimizing
the selected candidates leveraging part-related AM capabilities. The overall goal of their
framework is to synthesize optimal solutions with the minimum cost-to-performance ratio
by optimizing the part-material-architecture triplet. In order to automate these new rules’
implementation, they developed a numerically assisted approach called part consolidation
candidate detection. Given a CAD assembly model, the developed approach aims at first
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verifying the rules and secondly at finding optimal grouping solutions with the lowest
number of groups.

A common characteristic of the aforementioned DFAM contributions is that they
require an initial design of an assembly to be consolidated. As such, as shown for the GE
fuel nozzle case [23], such work is needed for a better adoption of AM in the industry.
Nevertheless, designing a right AM-friendly assembly from scratch could also be part of
the road to an AM industrial establishment. A few contributions have also been made
in this regard. Yang and Zhao [11] made it clear that conventional design methodologies
are not suitable at prompting designers to embrace the design freedom allowed by AM.
For instance, generating concepts with conventional design methods (such as axiomatic
design) could not lead to products with consolidated parts and thus function integration.
In order to somehow fill this gap, the authors proposed a conceptual design framework
aimed at aiding design flow management in an AM context. The goal being “to stimulate
designers who are novice in AM to think in an AM way”. While their proposal may prove
helpful at generating innovating concepts, these concepts would still need to be checked
against the constraints of the actual AM techniques or machines selected to manufacture
them. Similarly, Laverne et al. [10] proposed a conceptual design framework for supporting
AM-enabled product innovation. Surveying such DFAM contributions, Rias et al. [24] came
up with the conclusion that concepts generated for AM were only partially original with “a
maximum of 75% newness”. They have then proposed a five-stage creative DFAM method
fostering the generation of creative concepts exploiting the unique capabilities of AM; the
proposed method is somewhat based on the AM design features database presented in Bin
Maidin et al. [9].

All these DFAM contributions are quite similar in that AM techniques/machines’
specific capabilities and constraints are not explicitly taken into account. A situation well
exemplified by one of the inputs of the PC detection algorithm proposed by Yang et al. [25]:
“AM Process General Constraints”. As will be shown in the following subsection, these
AM characteristics vary from technique to technique. Even for the same technique, two
different machines embodying it may have different constraints. For instance with the FFF
machine Ultimaker 2, two parts moving relatively to each other or two mating parts made
of different materials must be printed separately (and assembled afterwards). However,
with a FFF Ultimaker 3 Extended machine—which is capable of multi-material printing and
particularly can process sacrificial (water soluble support) material—the two components
can be printed together and thus designed differently than if they were to be printed and
assembled afterwards. This shows that there is a need to be aware of what techniques or
machines are needed to print an assembly, while the latter is being designed.

To sum up this literature review, worth mentioning is the survey of the A-DFAM
contributions, led in Yang et al. [26]. They showed that the following issues still to over-
come are:

1. The lack of an analysis of what impact AM could have on conceptual design. An issue
somehow addressed by the aforementioned conceptual design methods [9–12,24].

2. The lack of an explicit functional analysis (FA) method.
3. Too few decision-making decision support tools for easing PC.
4. The deficiency of functional reasoning approaches to generate AM-enabled features.
5. Too few approaches integrating manufacturing and assembly knowledge into the

design stage.

We posit that point 2 cannot really be an issue peculiar to DFAM, even though we
acknowledge that as for any design activity FA is paramount. Points 1 and 4 are currently
being investigated, but these approaches usually prompt the designer to embrace the
design freedom allowed by AM, regardless of what the actual AM techniques or machines
are able to do. Therefore, while being efficient at leading to innovative designs, they are
highly prone to iterations.

In this paper issues 3 and 5 are addressed. Our contribution to A-DFAM is threefold.
First, in contrast to most of the aforementioned contributions, our proposal is dedicated at
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new product development (even though it may be used for redesign cases as well). Secondly,
it encompasses what can be called AM-based architecture minimization, which include PC
and assembly-free mechanisms as well. Thirdly, our proposal considers a manufacturing
context of an “AM-factory” (i.e., FabLabs, Hubs), where many AM machines embodying
different techniques are available. Particularly, the approach aims at selecting the most
appropriate machine(s) for easing (possibly) a whole assembly manufacturing before this
latter is fully designed.

2.2. Additive Manufacturing Design-Related Characteristics

The ultimate goal of DFAM is about harnessing the unique capabilities offered by
AM to maximize products’ performance while taking into account the constraints related
to these processes to ensure a seamless manufacturing. This section is about clarifying
these capabilities and constraints, and also it is aimed at providing a comparison between
AM process families regarding these characteristics. In addition, this clarification is also
intended to specify the levels of a product (e.g., part level), which are likely to be impacted
by these characteristics. It will then provide insights into how and when to guide designers,
or raise their awareness about specific aspects of AM.

2.2.1. Assembly-Related Additive Manufacturing Characteristics

AM is usually described as having the unique capabilities of shape complexity, hierar-
chical complexity, material complexity, and functional complexity [27]. All these capabilities
are mostly considered at part level, except for the functional complexity, one which may be
considered at product level. More specifically, at this level, the unique capabilities of AM
can be enumerated as:

• Multi-material manufacturing [28]: the capability to directly manufacture multiple
material components either discretely or continuously. Processes fully capable—that
is, without any hardware alteration—of this property include DMD [29], LENS [30]
for the metals, and FFF [31], 3DP, and PolyJet for the polymeric materials.

• Kinematic pair printing [14]: the capability to directly manufacture assemblies with
moving parts. This has been referred to as non-assembly fabrication, in situ fabrication,
or assembly-free fabrication. The printing of historical Reuleaux kinematic models [32]
is a great illustration of this AM capability. Table 2 shows some kinematic pairs and
specific joints, which have been additively manufactured. Critical to this capability is
the clearance between the moving parts and access to these clearances for uncured or
support material to be removed.

• Around insert building: in some cases it is likely that groups of components are not
(or cannot be) manufactured with AM (e.g., engines, batteries, etc.), but are required
to be embedded into a part. Some AM processes have this capability to be paused,
for a complete part to be laid on the part being manufactured, and to be resumed.
This can be viewed as another route for multi-material printing. AM techniques
that have been demonstrated to build around inserts include stereolithography [33],
ultrasonic consolidation [34], laminated object manufacturing [35], shape deposition
manufacturing [36], and PolyJet [37].

• Electronics printing: the capability to deposit electronics components (e.g., conductive
inks, sensor, etc.). This ability is somewhat related to the machine capability. In various
ways, these capabilities can ease a product architecture. It is the case for the example
for the Voxel 8 machine [38].
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Table 2. Non-assembly additively manufactured kinematic pairs and joints.

Type SLA SLS FFF SLM PolyJet

Revolute [39–41] [39,40] [42,43] [44–46] [47,48]
Prismatic [40] [40]

Cylindrical [45]
Spherical [39,40] [39,40]

Gear [44] [48]
Universal joint [40] [40] [46] [47]

2.2.2. Part-Related Characteristics

There are number of characteristics that distinguish AM techniques as regards the
features and the quality of the output without considering any post-processing step. These
are described as follows:

• Material type: as shown in Table 1, materials processed by AM machines include
plastics, metals, ceramics, and composites. Whereas some techniques such as SLM or
LENS do only process metals, techniques such as PolyJet or SLA are limited to plastics.
As such, choosing a type of material is an implicit way of selecting an AM technique.

• Resolution: the features details and minimum wall thickness of a part strongly depend
on the machine resolution (XY resolution and layer height or vertical resolution).
Resolution varies between techniques, and for the same technique it can also be a
matter of hardware.

• Maximum size: any AM technique is limited in buildable size by the machine embody-
ing it, therefore so are the parts (or the number of parts) that can be manufactured at
once. This limitation may lead to break down the CAD model to manufacture it in
smaller chunks and then reassemble them afterwards [49]. The largest AM machines
have built dimensions ranging from 90 × 60 × 30 cm (Merke IV) to 40 × 10 × 6 m
(Windsor) and even to (theoretically) infinite dimensions. Knowing which machine
will manufacture the part before designing it will definitely restrain the design space,
and conversely with a rough idea of the overall dimensions of the part a proper
machine may be selected.

• Surface quality: number of factors do affect part’s surface finish. Owing to the layer-
wise manufacturing method peculiar to AM, stair step effect makes orientation and
layer thickness very influential regarding surface finish. On a single part, many
different surface finishes may be encountered, varying by a more than nine factors
in terms of roughness (Ra). Nevertheless, the technique itself does also influence
the surface quality. In techniques processing plastics for instance, SLA machines do
provide a better surface quality than FFF ones; in metals, SLM parts have better quality
than those manufactured with LENS.

3. Assembly-Oriented Design Framework for AM

When considering AM at product level, the ultimate goals that should be sought are:

• The possibility to consider parts consolidation, in order to minimize the product
architecture.

• The consideration of assembly-free mechanisms [39,40], that is, assemblies (of moving
parts) that can be printed at once and which after a few minor post-processing tasks
(e.g., support removal, surface polishing, etc.) are ready for use.

The aim of this research is to provide a methodology for seizing these opportunities
by the conceptual design stage of the product. In other words, the methodology aims
at seizing these benefits before a detailed geometry of the product is defined. As shown
in the assembly-related AM characteristics section, these goals can be reached for single
material mechanisms with some AM machines. Furthermore, multi-material products can
be printed by AM machines such as PolyJet machines or the Voxel8 which, during the
same print job, can process multiple polymers (including hard, soft, and flexible) and print
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electronics components as well. However, as the previous analyses have shown, none of the
available AM techniques are capable of all the enumerated assembly-related characteristics
at the same time. Besides, some components in a product may prove more economically
viable if manufactured by conventional processes or simply if outsourced. For these reasons
we posit that:

• Owing to the heterogeneous nature of a product, assembly-free AM is not, generally,
possible in the current state of the art. The AM of a product may involve many
techniques, even in some cases other conventional manufacturing processes as well
(hybrid manufacturing [50]), and a few assembly operations.

• The possibility to consider part consolidation cannot be made regardless of the specific
characteristics of available AM techniques.

The goal that should, therefore, be sought is to find a product architecture, or an
engineering bill of materials (eBOM) in case of redesign, which is minimal (while still
functional)—that is, with the least separate components—and which is manufacturable
with a single AM technique or with the least AM techniques. Besides, once the product
architecture is minimized, a strategy must be retained for the way the parts will be designed
to take advantage of the selected AM techniques’ characteristics. Our strategy is that, once
the part’s functional interfaces (i.e., surfaces, lines, etc.) are identified, these are connected
both to ensure structural integrity and a proper conveyance of the flows getting through
the part, abiding by any design space and manufacturing constraints. Thus, AM-friendly
parts’ geometries can emerge.

3.1. Overall Description

At the core of the proposed assembly-oriented design framework for AM are the
aforementioned premises. The framework is dedicated at helping designers mainly through
embodiment and detail design stages. It aims for three main goals:

1. Ensuring that the product architecture is kept to its supreme boundary by considering
the available AM techniques and machines specific part consolidation capabilities.

2. Determining a manufacturing plan along with any in situ (during manufacturing) or
subsequent assembly operations.

3. Providing critical geometric elements building the design space—such as functional
interfaces and volume-envelopes—(based on the architecture and the manufacturing
plan) to be used for the detail design of the parts.

As shown in Figure 1, these goals are reached through three main steps, which are
described in the following sections. Since the framework is adapted for new product
development, the way functional analysis is to be conducted is first described for the sake
of clarity and consistency.

3.2. Initial Product Architecture Derivation

The framework is dedicated to new development of products mainly manufactured
and assembled with AM. As such, it is intended to guide the product architect and designer
from the overall functionality statement of the product to the detailed design of the product.
A first stage is to get an enhanced product architecture from a comprehensive functional
analysis (both external and internal). This stage is structured in three steps described as
follows.

3.2.1. Functional Analysis

The product environment—that is, everything it is to interact with in order to fulfil its
functionality—is analyzed and enumerated (e.g., human, air, raw material, etc.) in terms of
external elements (EEs). Such analysis can be summarized using a diagram like the one
presented in Figure 2a (for the gripper case study). In this case study, EEs include the user’s
hand, the object to clamp, and the environment that the product is surrounded by. Two
kinds of top level functions are then to be identified: main functions, which are those whose
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action is related to two EEs, and constraints functions, which act on a single EE (as shown
in Figure 2a), these do not actively participate in the overall functionality but are required
for the product to be conveniently usable (e.g., maintain gas tightness, stand on a plane
platform). The flows (i.e., energy, material, or signal) to be conveyed by the product are
enumerated. Using standardized basic functions from the Reconciled Functional Basis [51],
each top level function is decomposed to its lowest level and the basic functions derived
from it are arranged in an order allowing the fulfillment of the overall function. Finally, the
flows are routed through all the standardized functions. The outcome of this step can be
summarized with a block diagram (see Figure 2b).

1 
 

 
 

 
Figure 1. Flowchart of the assembly-oriented design framework for AM (blue boxes relates steps,
green ones represents input/output information).

3.2.2. Concept Derivation and Decomposition

A concept is derived for the product with a close attention to the fact that each basic
function is fulfilled by one or many components and that many components may fulfil a
single function. The derived concept is abstracted with a product architecture that combines
three views:

• Part-to-part kinematics relationships view: all the parts are enumerated and the
kinematic pair between them are specified.

• Functional flows view: components in the part-to-part relationships graph are first
clustered according to the basic functions they fulfil, and then the corresponding
flows are routed from the EEs through the components. Some flows may have to be
split, while others may be required to merge. Spatial relationships view: using the
mereotopological primitives descriptors to describe the physical connections between
spatial regions (denoted x and y) such as developed in Demoly et al. [52] as “x is part of
y”, “x is internal part of y”(IP), “x is tangent of y”, and “x overlaps y”. Such descriptors
provide complimentary information on relationships between non-relatively moving
parts specified.

3.2.3. Specific (Technical) Requirements

Specific information is added for the components. Firstly, maintenance/repair require-
ments and production requirements (i.e., 3D printable, not to be 3D printed, or outsourced
component) are specified. Then for each part, candidate to AM, a number of desired
characteristics are to be specified. These characteristics (or requirements) are used to gen-
erate suitable AM techniques and materials. Figure 3 delineates a data structure for the
characteristics of a part to be additively manufactured, along with some values of the
characteristics. It is worth highlighting that some of these characteristics (such as minimum
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wall thickness for instance) are conventionally known after a part’s detailed geometry has
been made, or these may be constraints set by the available AM machines. However, in our
proposal, the designer using the approach is prompted to think about them beforehand,
and to somehow commit to them. Nevertheless, not all the characteristics must be specified,
one may choose to simply ignore the less crucial ones; the aim of that strategy is to get the
proper AM techniques that will manufacture the parts and design the product geometry
accordingly (and avoid time consuming design iterations). This choice is consistent with
the proactiveness of the proposed approach: the way(s) the product is to be additively
manufactured will be known before efforts are put into its detailed design, so that the
designer is aware of how the designs can fully leverage the specific capabilities of the
selected AM techniques while abiding by their constraints. In addition, to direct detailed
design, these specific requirements will also be used to influence decisions made about part
consolidation.

Figure 2. Clamp’s functional analysis. (a) External functional analysis; (b) Functional decomposition.

The pieces of information contained in the derived initial product architecture are:

• For the parts themselves: indication of whether the component will be outsourced or
is not to be additively manufactured (e.g., battery, engine, bearings, etc.), indication of
whether the component would need to be maintained (in case of a weary component)
or often moved, characteristics for AM techniques/machines selection.

• For the part-to-part relationships: kinematic pairs, spatial relationships, and flows.
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Figure 3. Part characteristics for AM techniques selection.

3.3. AM Context Definition at Product Level

We define a minimal product architecture as an architecture containing the minimum
necessary separate parts. This stage of the methodology is intended to make sure that AM
capabilities and constraints are taken into account at product level by setting up an AM
context. More specifically it aims at:

• Determining an architecture with the least components based on the available AM
techniques’ capabilities.

• Maintaining functionality regardless of how parts have been combined.
• Determining a manufacturing plan (including assembly operations) so that the de-

tailed design stage is made accordingly, abiding by the selected processes’ constraints.
Another rationale underpinning this goal is that, those components that are to be man-
ufactured together (be them moving relatively to each other or not) must be designed
together (or at least with the same awareness of how manufacturing will occur), since
manufacturing direction will be the same for them.

As the product concept is generated regardless of any conventional manufacturing
constraint, it is likely that standalone components have to be so for various reasons (i.e.,
functionality, maintenance, etc.). As such, a product architecture—which is derived within
a AM context—may already be a minimal one, that is, without unnecessary standalone
components like fasteners. However, to ensure that unnecessary standalone components
are eliminated, any architecture should be checked, and the framework can be used for
that purpose. It is notable that the method may also be used for redesign cases where the
product has been originally designed to be manufactured by conventional processes.

Hence, setting an AM context is based on the initial product architecture (as described
in Section 3.2) and it requires knowledge about the specific characteristics of the available
AM techniques (as described in Section 2.2). The stage is organized in three steps.

3.3.1. Preliminary Processes Selection and Manufacturing Plan Generation

A number of studies have been carried out about AM process selection for parts [53,54].
As this aspect is not the core of our proposal, we elected to build on previous work address-
ing this issue. This preliminary technique selection is achieved through two substeps:

1. Materials and techniques selection for each part individually based on the specific
requirements stated for each of them. This is where research work from Ghazy [53] on
a decision support system has been harnessed to our contribution.
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2. Techniques selection for the whole assembly. Each of the part to be additively man-
ufactured is likely to be manufacturable by more than one AM material-technique
combinations. This substep is, basically, intended to determine the combinations that
will suit most of the parts, as a way to streamline the manufacturing of the whole
assembly.

The procedure for techniques and materials selection at part level is made through
two main steps as depicted in Figure 4. Requirements on the part that has an influence
on the AM technique are first used to generate a set of feasible techniques (among the
available AM techniques); these requirements are used to find techniques satisfying them
individually, then the so-found sets of techniques are crossed to find techniques meeting
all the requirements. In case there is no available techniques meeting all the requirements,
those which are conflicting are highlighted and either they are edited or the part is deemed
not manufacturable by the available AM techniques. Each technique has a set of required
materials that it can process. Techniques generated from the first step, along with parts’
requirements related to materials used to select techniques and materials combinations
possible for the part. Similarly to the previous step, when no combination is found, either
material requirement is edited or the part is deemed not additively manufacturable.

Figure 4. AM preliminary techniques selection (at part level).

For each component Ci, candidate to AM (that excludes outsourced components or
those required to be manufactured by a conventional process), a set Si of available AM
techniques that can, possibly, manufacture it, is therefore generated. As an attempt to
streamline the product manufacturing, the maximum intersection of the selected AM
techniques sets (that is, the largest set where the sets Si overlap), which is denoted S, is
determined. S is then ranked according to the assembly related characteristics described in
Section 2.2.1. The best process is then selected and designated as the main AM technique.
The same procedure is repeated for the remaining components (those whose Si elements are
not included in S) to find a secondary AM technique. The process may be repeated again
in case there are still parts not manufacturable by the selected secondary AM technique.
In order to keep the manufacturing scheme simple, a criterion for limiting the number of
repetition—that is, the number of secondary AM techniques—is decided. In case where
the criterion does not met either the requirements on parts revised, or the whole concept is
deemed as not easily additively manufacturable and have to be altered.
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At the end of this stage, a new view is then generated for the product architecture: a
manufacturing view indicating whether a component is manufacturable by the main AM
technique, manufacturable by a secondary AM technique, or not additively manufacturable.

3.3.2. Architecture Minimization between Mating Components

Once the techniques by which components are to be manufactured are determined,
decisions are made both about how they can be consolidated to generate a minimal ar-
chitecture and how the whole product will be manufactured and assembled. In others
words, the purpose of this step is to provide an answer to the following question: given
two parts non-moving relatively to each other, how can these parts be consolidated in order
to simplify the product architecture? As shown in the bottom of Figure 5, three outcomes
can result from this analysis: either the parts are simply merged (Consolidated assembly),
or one of the part is laid inside the other, while this latter is being manufactured (assembly
with part embedding), or they are regularly assembled. The process is as follows:

Figure 5. Decision ladder of the product architecture minimization through mating pairs.

1. Components without relative motion are first clustered within sub-assemblies.
2. Consolidation is made by components pairs comparisons in each sub-assembly. The

components are subsequently denoted by x and y. Four cases can then occur, as
regards manufacturing and materials requirements:

- Case 1: components are of the same material and are manufactured by the same
AM technique (AM(x) = AM(y) and M(x) = M(y)). In such case, they are simply
merged as a single component and their respective functional flows are combined.

- Case 2: components are of different materials processed by the same technique
(AM(x) = AM(y) and M(x) 6= M(y)). In that case, they are also merged and flows
are combined.

- Case 3: components are of different materials processed by different techniques
(AM(x) 6= AM(y) and M(x) 6= M(y)). In this case, spatial relationships between
the components (read from the architecture spatial relationships view) along with
the abilities of the two techniques of building around insert are used to make a
decision as shown in Figure 5. The two parts are either tangent or overlapping at



Designs 2022, 6, 20 13 of 22

some region. In case they are tangent, they are simply manufactured separately
and regularly assembled (requiring therefore assembly features for a rigid kine-
matic pair). If they are overlapping, let us denote 2, the outermost component in
the regions where the parts are overlapping. If the technique manufacturing 2
is capable of building around insert, then 1 and 2 are assembled in such a way
that 1 is embedded in 2, while this latter is being manufactured, otherwise they
must be regularly assembled, that is, manufactured separately and assembled
afterwards.

- Case 4: one of the components is outsourced or non-additively manufacturable.
We assume that two adjacent outsourced components are considered as a single
outsourced component, the case where both compared components are out-
sourced is thus excluded. In case the parts are overlapping and the outermost
component is the outsourced one, then the parts are regularly assembled. Other-
wise, the outcome is the same as for Case 3.

3.3.3. Architecture Minimization between Moving Components

Components moving relatively to each other are conventionally manufactured sep-
arately and assembled afterwards; however, as shown in Section 2.2, depending on the
kinematic pair linking them and the selected AM techniques, the adjacent components can
be manufactured together while still be able to move relatively to each other. This step is
about identifying all these moving components that can be manufactured together. It will
have implications on the final design, in that manufacturing a joint may require a particular
orientation and consequently alterations of a conventional joint’s design [39]. The step is
conducted by comparing pairs of moving components A and B, which are related by joint J:
A–J–B. The possible situations are as follows:

• A and B are manufacturable by the same technique. If kinematics pair J is also
manufacturable by the technique, then the whole assembly is consolidated during
manufacturing. Otherwise—that is, if the kinematics pair is not manufacturable—the
components are assembled afterwards and assembly features must be integrated in
their designs.

• A and B are not manufacturable by the same technique (or one of the parts is not an
AM part). In that case, they are assembled normally.

As depicted in Figure 6, at the end of this stage, the enhanced product architecture
derived in the previous stage (Section 3.2) has been used to generate a minimal architecture
and a manufacturing plan based on the available AM machines capabilities. The derived
minimal architecture shows parts that have been combined, flows that have been merged.
The manufacturing plan tells which part is to be manufactured by which AM machine and
how the part is to be assembled. The minimized architecture and the manufacturing plan
are then the basis of the parts design stage, which is described in the next subsection.

Figure 6. Elements characterizing a part.
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3.4. AM Constrained Part Design
3.4.1. The Case of Mechanisms to Be Manufactured by the Same Process, in a Single Print Job

It is likely that groups of components, moving relatively to each other or not, are
to be manufactured and assembled together (it is actually one of the sought goals of our
proposal). This case has been covered in Sossou et al. [55]. The methodology there proposed
can be summarized as:

1. Product architecture 3D laying out: the design space of each part is defined and
accordingly positioned.

2. Functional interfaces definition: based on the part-to-part kinematics relationships,
the design spaces are updated with the proper functional interfaces (FIs).

3. AM contextualization: a step that consists in setting clearances between FIs, choosing
a printing configuration, choosing a printing orientation, and allowing access to the
clearances.

4. Components’ geometries designs.

For more details, the reader is advised to refer to [55].

3.4.2. Foundations of Our Strategy for Harnessing AM Shape Complexity to Part’s Performance

Any system, sub-assembly, or component is designed to fulfil a function that represents
what the device must do. The device shape, form, or architecture answers the question of
how the function is fulfilled. This shows why a device function must be fully understood
before time is spent on its embodiment design. Tightly related to a device’s function is
the notion of flow, which basically is what the device operates on for the function to be
fulfilled. Systems, even those made of a single component, rarely fulfilled their function(s)
in an isolated manner. In other words, they always fulfil their function by interacting with
their surroundings (be it made of a user or others components) by means of one or several
flows exchange. The interaction between a component and its surroundings occurs at its
interfaces, which can be seen as the flows “gates”. It can be summarized that a component
is fully defined firstly by its functions (which is what it does), the flows it processes for the
functions to be fulfilled, its interfaces through which the flows are exchanged, and its shape
holding the interfaces together. This breakdown of component is depicted in Figure 6.

Once flows getting through a component are identified, it is of interest to determine
what impact (if any) they have on the shape and interfaces of the component. At their lowest
level of specificity, flows are either energy, material, or signal [51,56]. Functions associated
with material flows are basically functions that process the materials by somehow changing
its state. These are categorized by Ullman [57] in three groups: through flow functions
(e.g., rotate, translate, move, lift, channel, etc.), diverge flow functions (disassemble and
separate), and converge flow functions (mix and attach). A component fulfilling such
function must “clear the way” for the materials and as such its shape is not crucial for the
flow conveyance. However, when the processed flow is energy, say in a mechanical form
(load for instance), it is obvious that shape, along with interface, play a key role.

Ullman [57] has stated that: “It has been estimated that fewer than 20% of the dimen-
sions on most components in a device are critical to performance. This is because most of
the material in a component is there to connect the functional interfaces and therefore is
not dimensionally critical. Once the functional interfaces between components have been
determined, designing the body of the component is often a sophisticated connect-the-dots
problem”. The premise governing the methodology proposed to leverage AM shape com-
plexity capability to design effective components is profoundly related to that statement.
The extra 80% of components’ dimensions that are not critical to the performance may be
due to conventional (subtractive) processes’ limitations. Furthermore, to better suit our
approach, the statement can be extended as “ . . . a sophisticated connect the dots problem
in order to assure a structural integrity and a proper conveyance of the flows related to the
component’s functionality”. A strong statement in Ulman [57], highlighting the importance
of interfaces, in agreement with the aforementioned statement and which is worth quoting
reads: “Components grow primarily from interfaces”.
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In a nutshell, a component is bounded by its FIs, these must be connected to ensure
structural integrity and to ensure that flows entering or leaving interfaces are conveniently
conveyed. The AM shape complexity gives way to ensure that connectedness with the
bare minimum matter. This minimalist vision of part design is illustrated in Figure 7 for an
aircraft hinge plate; a comparison is made between how this component has been designed
for conventional processes and how it could have been designed for AM.

Figure 7. Aircraft hinge plate designs according to various manufacturing processes including AM.

3.4.3. The Proposed Methodology for Part-Oriented DFAM

Consistent with the aforementioned philosophy, a five-steps strategy is proposed
to design the geometry in a minimalist way, as outlined in Figure 8. The selected AM
techniques constraints are taken into account as well. The strategy is illustrated in Figure 8
with a vise’s frame. First, the component’s FI shapes are drawn. Second, the FIs’ shapes
are thickened into functional volumes (FVs); the thicknesses can be governed both by
resolution of the considered AM process and tolerances related to the considered FIs. In
the third step, paths joining the FVs are defined; this can be done either to ensure the
component’s connectedness, or to ensure a way for a specific flow (or even a combination
of flows), or both. To allow for the subsequent parametric optimization to generate a proper
path for the connecting element, this curve can be parameterized. This could be done, for
instance, by creating a curve as a spline through three points and by using the four middle
point coordinates in a plane as parameters. Fourthly, the connecting elements’ shapes along
the previously defined paths are designed. To improve the performance of the component,
the section can be of different types including solid cross-section, solid cross-section with
lattice structure, hollowed cross-section, hollowed cross-section with lattice structure, etc.
To avoid sharp corner (and equivalently, stress concentration), corners are smoothed in the
fifth step. Each of these steps leads to some geometric parameters. Those are then finally
optimized to generate a component that behaves and conveys the flows appropriately. The
following scheme has been retained for the parametric optimization:

1. Choice of each parameters bounds.
2. Specification of any constraint on the parameters. These can be geometric constraints

such as relationships between parameters, or constraints ensuring a proper behavior
such as maximum stress or minimal natural frequency. The functional flows conveyed
by the part on one hand, and the chosen material on the other hand can provide
indication on what constraints related to an appropriate behavior must be met.

3. Definition of the component’s mass as an objective function. Choosing the compo-
nent’s mass as an objective function to minimize is consistent with the endeavor to
design components with the bare minimum matter. Other objective functions that are
sensitive to the chosen parameters and that are relevant to the sought performance
may also be chosen.
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Figure 8. The proposed design methodology for part’s design illustrated via a vise’s frame based on
prior research work [56].

4. Case Study

The proposed framework has been illustrated with a one handed bar clamp, similar to
the one that is discussed in Chapters 7 and 9 in Ullmann [57]. The main steps have been
shown hereafter.

4.1. Initial Architecture Derivation

After a functional analysis (see Figure 3), as explained in Section 3.2, and generation of
a concept, an architecture with 17 components have been retained. The eBOM of the design
concept, along with the requirements for each component, can be found in Table 3. Figure 9a
shows the part-to-part kinematics relationships view combined with the functional flow
view. In Figure 9, edges representing a kinematic relationship are tagged with the name of
the kinematic pair involved, the other edges represent the functional flows as indicated in
the legend.

Table 3. Parts’ requirements.

ID Part Name AM Material Class Surface Finish
Min Wall
Thickness

Accuracy
Level

Dimensions
(mm)

Mechanical Properties

Yield
Strength Durometer

1 Main body Yes Plastics Average-rough Thin-average Average 100 × 150 ×
30 10–20 MPa Shore D 60–70

2 Trigger Yes Plastics Average-rough Thin-average Average 40 × 90 × 30 10–20 MPa Shore D 60–70
3 Bar No
4 Tail stock Yes Plastics Average-rough Thin-average Average 50 × 50 × 30 10–20 MPa Shore D 60–70
5 Lock Yes Plastics Average-rough Thin-average Loose
6 Pad1 Yes Plastics Good-average Thin-average Loose Shore A 40–100
7 Pad2 Yes Plastics Good-average Thin-average Loose Shore A 40–100
8 Roll pin Yes Plastics, metals Average-rough Average
9 Knurled pin Yes Plastics, metals Average-rough Average
10 Release trigger spring1 No
11 Release trigger spring2 No
12 Release trigger Yes Plastics, metals Average-rough Thin-average Average 10–20 MPa Shore D 60–70
13 Power spring No
14 Jam plates1 Yes Plastics, metals Average-rough Thin-average Average 10–20 MPa Shore D 60–70
15 Jam plates2 Yes Plastics, metals Average-rough Thin-average Average 10–20 MPa Shore D 60–70
16 Split pins1 No
17 Split pins2 No
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Figure 9. Product architecture showing part-to-part kinematic pairs along with functional flows:
(a) initial architecture and (b) minimized architecture.

4.2. Minimized Architecture and Manufacturing Plan

We used a scenario of an AM factory that has six machines based on the following
techniques: FFF, SLA, PolyJet, and SLS. Details of the available machines can be found in
Appendix A. All parts candidate to AM were found manufacturable with the available
machines. Based on the assembly-related characteristics, and especially the capability
to build around inserts, the Ultimaker 3 Extended (U3E) machine has been found to be
the best AM machine. The combination U3E-PLA has been selected for the components:
1, 2, 4, 5, 8, 9, 12, 14, and 15 (see Table 3). For components 6 and 7 (pads), a different
material—TPU 95A—was selected; it is a semi-flexible and soft (shore A 95) material with
high wear and tear resistance. These choices have led to a generated minimized architecture
with 13 separate components, as shown in Figure 9b. The manufacturing plan is delineated
in Table 4.
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Table 4. Manufacturing plan.

Operation Part or
Sub-Assembly Machine-Material Comment

1
4-5-8-9
14-15
1-2-12

Ultimaker 3
Extended—PLA

(1, 2, 5) in situ assembly
In situ assembly for 1-2 and 1-12

2 6, 7 Ultimaker 3
Extended—TPU-95A Regular assembly after AM

3 3, 16, 17 (not AM) Regular assembly to (4-5-8-9)

4 10, 11, 13 (not AM) Regular assembly to (1-2-12) and 3

4.3. Final Design

The generated minimal architecture has been used to designed the components’ geome-
tries. A proprietary tool—the Pegasus CAD Assistant from Demoly et al. [2], was harnessed
to semi-automatize the generation of the design spaces and the functional interfaces based
on the kinematic relationships as shown in Figure 10a.

1 
 

 

 
 

Figure 10. (a) Design spaces definition and (b) emergence of the detailed geometry of the case study.

Based on these, the parts have been designed by following two approaches including
the one proposed in this paper and another one based on lattice structures. As an example,
Figure 10b presents a lattice structure developed for the tail stock (i.e., part 4 in Table 3).
The design has been made in alignment with the required mechanical behavior of the
part as well as the selected technique capabilities. On the other hand, the main body (i.e.,
part 1 in Table 3) has been defined by using the proposed methodology. The final design
results from a flow of integrated design intents, enabling to get an improved solution from
a top-down manner.

5. Conclusions and Future Work

In a call to action regarding assembly-level DFAM, Yang et al. [11] stated that “the lack
of decision-making support for function integration and part consolidation hinders the
search for supreme boundary”. In this paper, the highlighted gap has been somewhat filled,
in that a support tool for part consolidation—based on the specific characteristics of the AM
machines available in a factory and the relationships between the parts—has been proposed.
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It is a framework for new product development, with the goal of seizing the assembly-
related benefits of AM. These include: PC, in situ assembly of moving components, multi-
material printing. It has been shown that seizing these benefits depend on what the
available AM machines are actually capable of. A proposal has then been made—based on
a set of desired components’ characteristics—to select the best AM techniques that allow
both for a seamless manufacturing of the product and architecture minimization. Function
integration—which has been implicitly covered by part consolidation—could be integrated
in the proposed approach by enlarging its scope to conceptual design as suggested in [11].
Considering it has the potential outcome of increasing product performance. Nevertheless,
this research has revealed areas of investigation that are worth considering for improving
DFAM in general and opportunities for improving our proposal particularly:

• AM materials description. There must be a way to describe materials (be they pro-
prietary or generic) that is consistent with all the existing machines. Some materials
may have nearly the same properties, but with quite different names. Some machine
manufacturers may call their material with a generic name like ABS, PLA; such names
should be made more explicit. Indeed, ABS for an Ultimaker FFF machine may not
have the same properties as ABS extruded from a Stratasys FDM (fused deposition
modeling) machine.

• Cost as a selection criterion. Criteria such as cost could be included in the preliminary
machines selection. Indeed, the approach led to cases where the main selected AM
machine and material combination was actually the most expensive one, while there
are other available cheaper AM machines that could also seamlessly manufacture the
assembly with the prescribed parts’ requirements.

• An indicator of viability of AM of assembly. In case many of the components are
outsourced, operations such as assembly during AM may dramatically increase the
production time. There should therefore be an indicator that quickly checks the
architecture and the parts’ requirements and tells how valuable it can be to consider
the product for AM.

As AM is still in its infancy compared to the conventional manufacturing techniques, it
is likely that the full potentials of AM may not be seen in the current generation of designers’
artifacts. As such, education is to play a crucial role in allowing the AM paradigm shift
completeness [58]. In the proposed approach, machine limitations, especially those related
to build space have not been considered in the minimal architecture derivation. However,
these can require a product (or even a part) to be digitally cut before AM and reassembled
afterwards. A future work could include in the minimum architecture generation of such
limitations by considering integration of interlocking features as shown in Song et al. [49].

Author Contributions: Conceptualization, G.S. and F.D.; Methodology, G.S. and F.D.; Writing—
original draft preparation, G.S.; Writing—review and editing, F.D.; Supervision, S.G. and G.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the French ‘Investissements d’Avenir’ program,
project ISITE-BFC (contract ANR-15-IDEX-0003), the EIPHI Graduate School (contract ANR-17-EURE-
0002), the S.mart academic network, and the Bourgogne Franche-Comté Region.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Designs 2022, 6, 20 20 of 22

Appendix A

Table A1. Available AM Machines.

Machine AM
Technique

Min Wall
Thickness Accuracy Surface Finish

Max
Dimensions

(mm)
Material Type Processed Materials Multi-

Material

Capability to
Print

Electronics

Capability to
Build around

Insert

Ultimaker 3
Extended FDM Very thin Average Good-average 197 × 215 × 300 Polymers

Nylon, PLA, ABS, CPE,
CPE+, PVA, PC, TPU 95A,
PP, Breakaway

Yes No Yes

Ultimaker 2+ FDM Very thin Average Good-average 223 × 233 × 205 Polymers PLA, ABS, CPE, CPE+, PC,
Nylon, TPU 95A, PP No No Yes

Objet30 PolyJet Very thin Tight Excellent 294 × 192 × 149 Polymers; Wax
VeroWhitePlus™,
VeroGray™, VeroBlue™,
VeroBlack™, Durus

Yes No No

Form 2 SLA Very thin Tight Excellent 145 × 145 × 175 Polymers

CLEAR FLGPCL03, HIGH
TEMP FLHTAM01, TOUGH
FLTOTL03, DURABLE
FLDUCL01, FLEXIBLE
FLFLGR02, DENTAL SG
FLDGOR01, CASTABLE
FLCABL02

No No No

EOS P 77 SLS Very thin Tight Good-average 700 × 380 × 580 Polymers

Alumide, PA 1101, PA 1102
black, PA 2200, PA 2201, PA
3200 GF, PrimeCast 101,
PrimePart FR (PA 2241 FR),

No No No

FORMIGA P 110 SLS Very thin Tight Good-average 200 × 250 × 330 Polymers PA 2200, PA 2201, PA 3200
GF, PrimeCast 101, PA 2105 No No No
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