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Abstract: This paper describes a vector-controlled Permanent Magnet Synchronous Motor (PMSM)
drive system with the current sensor fault detection mechanism. In general, the control structure is
based on the well-known Field Oriented Control (FOC) algorithm. The structure is equipped with an
additional algorithm for current sensor fault detection based on a neural network. The presented
control structure is able to detect typical current sensor faults, such as lack of signal, intermittent
signal, variable gain and signal noise. The application of the NN detector guarantees a faster detection
of the sensor fault than classical detectors based on algorithmic methods or logical systems. This
work focuses on presenting the methodology of designing detectors and their analysis, based solely
on simulation analysis. The simulation results, conducted in the Matlab/Simulink environment, are
presented for the above-mentioned faults in phase A and phase B for different speed conditions.

Keywords: PMSM; FTC; current sensor; neural networks

1. Introduction

Electrical drive systems constitute one of the most important parts of the industry. The
occurrence of failures may lead to the stoppage of entire processes or a reduction in the
safety level. To prevent this, Fault-Tolerant Control Systems (FTC) are being developed.
They differ from basic control structures by the presence of failure detection and location
blocks, and also their compensation. In the case of drive systems, both mechanical and
electrical components are at risk of failure. Damage to the drive system can be divided
into three basic categories: damage to the motor (mechanical and electrical), damage to the
inverter and damage to measuring sensors (mechanical and electrical) measurements [1].
Sensor failures, especially current sensors, are neglected in the literature, while many
diagnostic systems base their operation on the measurement of current. The sensor most-
used in electric drive systems, the multi-element Hall-effect current sensor, has a certain
probability of failure [2].

In the literature, current sensor FTC drive system structures are most often based
on SlidingMode Observers (SMO) [3,4]. There are also works presenting a combination
of two or three observers. Work [5] describes the use of a Higher-Order Sliding-Mode
(HOSM) observer with the Luenberger Observer (LO). The HOSM is responsible for speed
estimation based on current measurements, while the LO, based on voltages and speed
values, was used to estimate the current. Another article [6] describes FTC based on three
paralleled adaptive observers for an Induction Motor (IM) vector control drive system. The
solution ensures the proper operation of the drive system in the event of the failure of the
speed sensor, the current sensor or both. However, these methods require knowledge of
the object model.

One example of the application of the method based on measurement signals can be
found in [7,8]. In order to detect a fault, the researchers used the measurement of the DC
voltage in the intermediate circuit between the rectifier and the inverter. Methods based
on the measurements of other physical quantities, such as current or rotor position, are
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presented in articles [9,10]. Ref. [11] presents a Fault-Tolerant current sensor control system
based on Cri markers. Their values were determined on the basis of current measurement,
then compared. After detection and localization, the failure was compensated through the
use of measurements from undamaged sensors. The detection rate for this method was
two sampling steps. Another simple algorithmic detector is described in ref. [12], whose
method was based on observation of the estimated value of the rotor flux, which was
compared with the reference value. Stator current sensor fault detection takes few ms (time
detection is dependent on the fault type and chosen threshold). The described solutions are
simple, but they do not provide as much speed of detection as methods based on artificial
intelligence.

In addition to the use of analytical methods, problems related to drive systems have
been solved successfully using artificial intelligence methods. Shallow neural networks are
used in many electric drive applications. Most often, a multi-layer perceptron is used in
combination with signal processing methods for the diagnosis of electrical and mechanical
damage to the drive. In paper [13], the authors used Wavelet Packet Signature Analysis
and a multi-layer perceptron neural network to detect and classify broken rotor bar faults.
Experimental tests were carried out for various speed values and a wide range of loads.
Detection efficiency was strongly dependent on the motor load. Another example of neural
network usage for fault detection is found in work [14]. The authors describe the use of
self-organizing maps with data pre-processing performed using the application of the Fast
Fourier Transform (FFT) method for detecting stator short-circuits and rotor bar damage.
The analysis of the application of various neural network structures for the detection and
classification of rolling bearing faults with the use of the FFT and Huang Hilbert Transform
(HT) methods is presented in paper [15]. The best results obtained were with a multilayer
perceptron: nearly 100%. The disadvantage of these solutions is the use of computationally
complex methods of signal analysis for data pre-processing.

In addition to fault detection, neural networks are also used to select the optimal
parameters of regulators in the control structures of an electric drive. One example may
be found in work [16]. The authors describe an adaptive controller with a Radial Basis
Function (RBF) neural network for an induction motor. To compensate for the nonlinearity
resulting from the nonlinear equations of the state of the induction motor, RBF neural
networks were used. The neural network parameters are updated online. Article [17]
is an application of an RBF neural network in a speed sensor-less system. The authors
describe speed estimation using two different neural networks, a feedforward artificial
neural network and an RBF neural network. In the article, both estimators were compared,
in order to find the optimal structure that can be applied to the real drive system.

Another application of neural networks in drive systems is the modelling of motors
and the identification of their parameters. Work [18] is a good example here. The article
proposes the use of a two-layer Recurrent Neural Network to identify a non-linear Switched
Reluctance Motor (SRM) model online based on operational data.

In the case of electric drive control, neural networks are usually used in control
structures without fault detection [19–21]. Paper [22] describes the sensorless control of
a PMSM using the sliding mode observer (SMO) method in combination with a phase-
locked loop (PLL) to estimate the position and speed of the rotor. Moreover, the speed
controller was based on the RBF neural network. The authors also presented the simulation
results which confirmed the effectiveness of the solution. There are few works describing
the applications of artificial intelligence methods in Fault-Tolerant control systems. The
works in the literature describe only the use of shallow neural networks, mainly perceptron
networks, for IM [23,24]. This approach does not require a priori knowledge of the facility
and provides very good results, which is its great advantage. Work [23] presents a passive
FTC system based on RBF neural networks. The passive controller adaptively compensates
for external disturbances. Paper [24] presents a fault monitoring system with a motor fault
detector, the broken rotor bars and stator inter-turned the short circuit faults. A model-
based strategy was used to detect failures. This solution was not enough to determine the
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type of failure. In order to locate the damage, neural networks were used. The signals
were applied to the network inputs, after using a combination of the Hilbert transform and
fast Fourier transform techniques. Article [25] shows the use of a multilayer perceptron
in an FTC to detect current sensor faults in an induction motor drive system. This article
presents experimental results. The shortest detection time of 0.4–0.8 ms was obtained for a
lack of signal. The longest detection time was given for variable of gain, at 143.7–987.2 ms,
depending on speed. Additionally, for high speeds, this type of failure was not detected. A
similar solution is described in work [26]. The neural networks presented in both articles
differed in the input vector and the complexity of the structure. In this case, a time of less
than 0.1 ms was obtained. The input vector in both cases was much less complex than the
studied in this article. This confirms that the problem for a PMSM is more complicated. In
a PMSM, there are more significant changes in the dynamic states than in the induction
motor. Therefore, it was difficult to design the network in such a way as that it would
not confuse the dynamic states with the failure state. In PMSM control, we also have
fewer input signals available. The works described above use rotor flux as an important
neural network input. In the case of PMSM, this signal is not used in the control structure.
In work [27], in the Fault Detection and Isolation (FDI) block, the neural network was
responsible for damage to sensors and inverter detection, while a fuzzy logic system was
responsible for isolation. These solutions were presented for induction motors. In the case
of a PMSM, such a solution has not been described in the literature to date.

This research paper presents the application of a current sensor fault detection PMSM
drive system with the usage of the neural network, presenting simulation results conducted
in a Matlab/Simulink environment. A traditional Field-Oriented control was modified
with a neural detector of current sensor failure, based on raw signals. Depending on
the type of detector, typical current sensor faults were found, including lack of signal,
intermittent signal, variable gain, and signal noise in phases A and B. Simulation results
are presented for the Multilayer Perceptron for different parameters and various speed
conditions. This paper proposes three types of damage detectors. The first detects whether
the system becomes corrupted in a 0–1 binary manner. This type detects all common
failures. The following types are able to detect fewer types of faults but are able to locate
failures. The second type of detector determines which sensor phase failed, while the third
additionally detects the type of failure. The application of neural networks in the detection
of failures by stator current sensors ensures faster failure detection compared to other
methods. This solution also allows us to locate the failure and determine its severity, which
is impossible with many simpler methods. Another advantage of the presented solution
is the lack of knowledge of the motor model and the fact that raw signals are used. The
use of signal analysis methods greatly simplifies the detection process. The neural network
was taught with vectors that consist of several dozen to several hundred samples, and each
of them accurately indicates damage or its absence. Using raw signals involves training
the network with much larger vectors, these are full transients from the structure. Besides,
not every sample would show direct damage. This complicates the problem significantly
and causes detection errors, especially in dynamic states. However, this approach makes
implementations on real-time processors much easier. The developed detector can also be
used successfully in an active FTC system. Most of the works describing the use of NN in
FTC systems show speed controllers adaptively changing their parameters in the event of
external disturbances and minor damage. These are passive systems. There is a gap in the
literature discussing the use of neural networks as fault detectors in FTC systems, especially
in the case of damages to sensors. The most important goal of the study was to develop
a very fast fault detection system for stator current sensors, which would be suitable for
electrical drive systems with an increased degree of safety. For this task, artificial neural
networks were used, which, according to the authors, are faster than classical algorithmic
detection systems and can detect more than one fault type.

This article is organized as follows. In the first Section, FTCS and neural network
applications in electric drive systems are discussed. The second Section presents a general
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diagram of the control structure used in the simulations. A general diagram of the used
neural network structure with a description of the damage symptoms used as network
inputs, is presented in the third part. The results of the simulations for various neural
network structures and testing data based on various speed conditions are presented in
Section four. The applicability of the detector in a simple FTC system with a redundant
sensor is also discussed in Section four. A short summary of the achieved results is found
in the last section.

2. Control Structure of PMSM Drive

The control structure used in the simulations was based on the well-known Field
Oriented Control method. The PMSM requires supply from the frequency converter. To
ensure high-quality operation, it is necessary to measure the current in at least two phases.
The presented control structure uses the measurement from two current sensors to calculate
the stator current components. The third sensor is a redundant element. The structure was
modified by adding a fault detection block of current sensors based on a neural network.
This block will be described in detail in the next part of this paper. The inputs of the neural
network are determined in the control structure. The basic diagram of the control structure
is presented in Figure 1. All values in the control structure are converted to relative units.
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isq are the stator currents components in the rotor frame.

Simulations were carried out for a surface-mounted PMSM with the parameters
presented in Table 1, which were obtained from a real motor. The switching frequency of
the modelled inverter in the control structure was 10 khz.

Table 1. Parameters of the tested motor.

PN
(kW)

Stator Phase
Resistance

(Ω)

Stator Phase
Inductance

(mH)

Pp
(-)

nN
(rpm)

Inertia
(kg·m2)

Viscous
Damping
(N·m·s)

Flux Linkage Established
by Magnets

(Wb)

2.5 5.56 4.11 2 1500 0.015 100 0.8

Where PN: nominal motor power, Pp: number of pole pairs, and nN: nominal speed.

Current sensor faults can be simulated using the appropriate equations, which were
implemented in the Fault-Simulator block. These equations are presented in Table 2 [24].
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Table 2. Typical fault types of current sensor.

Type of Fault Current Value

Variable gain im
s = (1− γ)ia

Phase shift im
s = ia + io f f set

Signal limit im
s = isat

Noise im
s = ia + n(t)

Lack of signal im
s = 0

Intermittent signal im
s = [0, 1]

Where ism: measured current, ia: real current, n(t): white noise, γ: constant value from the range <−1,1>, isat:
limited current, ωoffset = 10 Hz phase shift, and A: current amplitude.

The control structure in healthy conditions ensures the good dynamic properties of
the system and stable work. The transient speed for different reference values and the
transients of the phase currents, current components, and electromagnetic torque are shown
in Figure 2.
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3. Structure of the Neural Network Detector

This section presents the neural network detector block structure. Figure 3 shows a
general diagram of the neural network structure used in the simulations. Detection is based
on a multilayer perceptron. The perceptron is a feedforward neural network consisting of
an input layer, n hidden layers, and an output layer. Each neuron in each layer is connected
to a neuron of the next layer; there are no connections between the neurons of the same
layer.



Designs 2022, 6, 18 6 of 20

Designs 2022, 6, x FOR PEER REVIEW 6 of 21 
 

 

3. Structure of the Neural Network Detector 

This section presents the neural network detector block structure. Figure 3 shows a 

general diagram of the neural network structure used in the simulations. Detection is 

based on a multilayer perceptron. The perceptron is a feedforward neural network con-

sisting of an input layer, n hidden layers, and an output layer. Each neuron in each layer 

is connected to a neuron of the next layer; there are no connections between the neurons 

of the same layer. 

The operation of the perceptron network is based on the following equation [15]: 

(2) (1) (1) (2)
3 2 1 0 0

1 1 

   
            

 
M N

k ki ij j
i j

y f f w f w x w w  (1)

where: 

yk is the k-th output of the network, 

xjis the j-th input of the network, 

are the weights of the first and second hidden layers, respectively, 

are the biases in the first and second hidden layers, respectively, and 

f1, f2, f3 are the activation functions. 

 

 

 

 

 

y1

x4

x3

W0(1)

W0(2)

 

 

x1

x2

f1

f2

f3

xj

Input Layer

Hidden Layers

Output Layer

 

Figure 3. General diagram of neural network structure. 

In this research, the results are presented for three types of detectors. The first one 

recognizes whether a failure occurred (0–1), the second recognizes a damaged phase, and 

the third recognizes the type of failure. For each type, tests were carried out for different 

structures in order to find the optimal number of neurons in the hidden layers. For all 

tested networks, the Levenberg–Marquardt method with Bayesian regularization was 

chosen for learning to obtaining better effectiveness. The results were compared using the 

chosen method and the standard Levenberg–Marquardt method. The standard Leven-

berg–Marquardt method is very sensitive to the initial values of the weights, which are 

determined randomly. Adding Bayesian regularization improves the generalization prop-

Figure 3. General diagram of neural network structure.

The operation of the perceptron network is based on the following equation [15]:

yk = f3

(
f2

(
M

∑
i=1

w(2)
ki × f1

(
N

∑
j=1

w(1)
ij × xj + w(1)

0

)
+ w(2)

0

))
(1)

where:

yk is the k-th output of the network,
xj is the j-th input of the network,
are the weights of the first and second hidden layers, respectively,
are the biases in the first and second hidden layers, respectively, and
f 1, f 2, f 3 are the activation functions.

In this research, the results are presented for three types of detectors. The first one
recognizes whether a failure occurred (0–1), the second recognizes a damaged phase,
and the third recognizes the type of failure. For each type, tests were carried out for
different structures in order to find the optimal number of neurons in the hidden layers.
For all tested networks, the Levenberg–Marquardt method with Bayesian regularization
was chosen for learning to obtaining better effectiveness. The results were compared
using the chosen method and the standard Levenberg–Marquardt method. The standard
Levenberg–Marquardt method is very sensitive to the initial values of the weights, which
are determined randomly. Adding Bayesian regularization improves the generalization
properties of the network. This method aims to minimize the square error of the expected
output from that obtained with the smallest possible network weights. It is influenced by
the α coefficient, which forces a low weight decay rate. This leads to a reduction in the
tendency of the network towards over-fitting to the problem. In the case of the use of the
Levenberg–Marquardt method with Bayesian regularization, the objective function takes
the form [15,28]:

C = βE + αEw (2)

where:

E is the sum of mean square errors,
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Ew is the sum of squared weights,
β is the learning factor, and
α is the decay rate.

The networks were tested with the use of sigmoidal and logistic functions in the hidden
layers. The selection of the activation function did not significantly affect the effectiveness
of the detection. Therefore, the sigmoidal function was used in the presented version of the
detectors. This is the most commonly used function in a multilayer perceptron structure.

The selection of failure symptoms, which constitute the network’s input signals, was
performed empirically. The basic damage symptoms are visible in the modules of the stator
current values in phases A and B and in the value of the space vector module |Is|. The
transients of the |Is| symptom during various failures in phases A and B are shown in
Figure 4.
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The current, isq, error value and isd were chosen as symptoms that improved the
detection efficiency (Figure 5). As the correct current values depend on the speed, it was
decided to use the speed reference and speed error values as an auxiliary symptom.
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Figure 5. Transients of current components in the rotor frame isd, and error values isqerr during
failures in phase A (a) and B (b).

To significantly improve the detection efficiency of all types of detectors, the fact
that the stator current components used in the control structures can be determined us-
ing different equations depending on the phases in which the current is measured, was
used [11]:

isα1 =
2
3
(isA −

1
2
(isB + isC)), isβ1 =

√
3

3
(isB − isC) (3)
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isα3 = −(isB + isC), isβ3 = −
√

3
3

(isB − isC) (4)

isα2 = isA, isβ2 =

√
3

3
(isA + 2isB) (5)

where:

is A, isB, are the phase currents, and
isα, are the stator current components.

The determination of the current components using Equation (3) was based on the
measurement of three phases, A, B, C. Equations (4) and (5) are based on measurements in
two phases, B, C and A, B, respectively. In a healthy system, these values are equal. After
failure appearance, there was a significant difference between them. In the structure, these
values were compared. The 0–1 signal was obtained and used as an input of the network.

All the considered input signals for all types of detectors are presented in Table 3.

Table 3. All considered neural network inputs.

Input Value

|is A| |is A| is A—phase A current

|isB| |isB| isB—phase B current

|Is| |Is| =
√

isα
2 + isβ

2 isα, isβ—stator current components

∆isαβ [0, 1] isα1 = isα2 = isα3 ∧ isβ1 = isβ2 = isβ3 ∆isαβ = [0, 1]

ωerr ωerr =
∣∣∣ωre f −ωm

∣∣∣ ωre f , ωm—reference and measured
values of speed

isqerr isqerr =
∣∣∣isqre f − isq

∣∣∣ isqre f , isq—reference and calculated
values of stator current component q

axis in rotor frame

isd isd
isd—calculated value of stator current

component d axis in rotor frame

All types of detectors had an extensive input vector. The detection of faults in current
sensors using neural networks is a rather complex problem. The input signals take many
different values, which are similar in the states of failure and absence. Additionally, the
input vectors consist of a huge number of samples. Each of the inputs used improved the
effectiveness. The correlation between individual inputs with the detector output is shown
in Figure 6. The charts confirmed that the input ∆isαβ significantly improved the detection
efficiency and none of the other inputs was irrelevant to the detection process.

Figure 7 shows the sample mean square learning error transients for all types of
detectors. The learning process was interrupted when subsequent iterations minimally
reduced the network error.

The neural network training vectors were prepared in the Simulink environment with
use of control structure presented in Section 2. Then the learning process was carried out
in Matlab. At the last stage, the obtained network parameters were read by a properly
prepared block, which allowed for network testing. A diagram of the neural network
implemented in the Simulink environment is shown in Figure 8.
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A flow diagram of the complete diagnostic system with fault compensation is pre-
sented in Figure 9. The measured currents in phases A and B are transformed in the failure
simulator using the equations presented in Table 2. Then the and isβ stator current com-
ponents are determined by the use of the faulty current values which affect the operation
of the control structure. At the same time, the necessary input signals are supplied to the
NN detector, which determines the state of the current sensors. If a failure is detected, it is
compensated by the use of a redundant sensor.



Designs 2022, 6, 18 10 of 20Designs 2022, 6, x FOR PEER REVIEW 10 of 21 
 

 

(a)

(b) (c)
 

Figure 7. Transients of Mean Square Error for the sample structures: type 1 detector, 15-10-1 (a), 

type 2 detector, 15-10-1 (b), type 3 detector, 15-10-5-2 (c). 

The neural network training vectors were prepared in the Simulink environment 

with use of control structure presented in Section 2. Then the learning process was carried 

out in Matlab. At the last stage, the obtained network parameters were read by a properly 

prepared block, which allowed for network testing. A diagram of the neural network im-

plemented in the Simulink environment is shown in Figure 8. 

w1

b1

 
 

  

 
w2

b2

 

  

  
w3

b3

 

  

   

n-inputs

output

f1 f2 f3

 

Figure 8. Block diagram of the implemented Simulink Neural Network on the sample the network 

with two hidden layers, where: w1–3: weights in the i-th-layers, b1–3: biases in the i-th layers. 

A flow diagram of the complete diagnostic system with fault compensation is pre-

sented in Figure 9. The measured currents in phases A and B are transformed in the failure 

simulator using the equations presented in Table 2. Then the and si  stator current com-

ponents are determined by the use of the faulty current values which affect the operation 

of the control structure. At the same time, the necessary input signals are supplied to the 

NN detector, which determines the state of the current sensors. If a failure is detected, it 

is compensated by the use of a redundant sensor. 

Figure 7. Transients of Mean Square Error for the sample structures: type 1 detector, 15-10-1 (a), type
2 detector, 15-10-1 (b), type 3 detector, 15-10-5-2 (c).

Designs 2022, 6, x FOR PEER REVIEW 10 of 21 
 

 

(a)

(b) (c)
 

Figure 7. Transients of Mean Square Error for the sample structures: type 1 detector, 15-10-1 (a), 

type 2 detector, 15-10-1 (b), type 3 detector, 15-10-5-2 (c). 

The neural network training vectors were prepared in the Simulink environment 

with use of control structure presented in Section 2. Then the learning process was carried 

out in Matlab. At the last stage, the obtained network parameters were read by a properly 

prepared block, which allowed for network testing. A diagram of the neural network im-

plemented in the Simulink environment is shown in Figure 8. 

w1

b1

 
 

  

 
w2

b2

 

  

  
w3

b3

 

  

   

n-inputs

output

f1 f2 f3

 

Figure 8. Block diagram of the implemented Simulink Neural Network on the sample the network 

with two hidden layers, where: w1–3: weights in the i-th-layers, b1–3: biases in the i-th layers. 

A flow diagram of the complete diagnostic system with fault compensation is pre-

sented in Figure 9. The measured currents in phases A and B are transformed in the failure 

simulator using the equations presented in Table 2. Then the and si  stator current com-

ponents are determined by the use of the faulty current values which affect the operation 

of the control structure. At the same time, the necessary input signals are supplied to the 

NN detector, which determines the state of the current sensors. If a failure is detected, it 

is compensated by the use of a redundant sensor. 

Figure 8. Block diagram of the implemented Simulink Neural Network on the sample the network
with two hidden layers, where: w1–3: weights in the i-th-layers, b1–3: biases in the i-th layers.

Designs 2022, 6, x FOR PEER REVIEW 11 of 21 
 

 

Current and 
speed

measurments

Fault 
simulator 

with current 
sensors

Diagnostic 
features from 

control 
structure

Neural 
Detector

Fault in phase A or B

Switching 
fault sensor to 

sensor in 
phase C

Changing the 
equations to 

determine αβ 
current components

Determination of the αβ 
current components on 

the basis of phase A and 
B currents

N

Y

 

 

Figure 9. Flow diagram of the diagnostic system. 

4. Analysis of the Vector-Controlled PMSM Drive with an NN Detector 

The point of this article is to present the analysis of a vector-controlled PMSM drive 

system with the proposed NN detection systems. All results were obtained in Matlab/Sim-

ulink software. The model of the control structure was made in the Sim Power System 

toolbox and the neural network was designed using the Neural Network Toolbox. In this 

research, the Euler method with a fixed step size equal to 1 × 10−5 s was used. The Leven-

berg–Marquardt method with Bayesian regularization was chosen as the network learn-

ing method. In the first part of this Section, the effectiveness of the detectors is described. 

The second part presents a simple FTC system based on the detector described in the first 

part with a redundant sensor in phase C. 

4.1. Fault Detector 

Initially, the results are presented for a detector determining 0–1 if a failure was pre-

sent, i.e., if a lack of signal, intermittent signal, signal noise, and variable gain were detected. 

In this case, a structure with two hidden layers was employed. One hidden layer turned out 

to be insufficient. A network with one hidden layer achieved unacceptable effectiveness. 

The problem turned out to be too complex for such a simple structure. The research was 

carried out with a different number of neurons in both hidden layers with the same input 

vector. The best results were obtained for the structure presented in Figure 10 (10-5-1). 

 

 

 

 y1

15

10
5

1

 

 

f1

f2

f3

W0(1) 

W0(2) 

0 – no failure
1 – current sensor fault 

in phase A or B

|isA|

|isB|

ωerr

Δisαβ

|Is|

Input Layer

Hidden Layers

Output Layer

 

Figure 10. General diagram of the neural structure of the type 1 detector with the highest effi-

ciency. 

Figure 9. Flow diagram of the diagnostic system.



Designs 2022, 6, 18 11 of 20

4. Analysis of the Vector-Controlled PMSM Drive with an NN Detector

The point of this article is to present the analysis of a vector-controlled PMSM drive sys-
tem with the proposed NN detection systems. All results were obtained in Matlab/Simulink
software. The model of the control structure was made in the Sim Power System toolbox
and the neural network was designed using the Neural Network Toolbox. In this research,
the Euler method with a fixed step size equal to 1 × 10−5 s was used. The Levenberg–
Marquardt method with Bayesian regularization was chosen as the network learning
method. In the first part of this Section, the effectiveness of the detectors is described. The
second part presents a simple FTC system based on the detector described in the first part
with a redundant sensor in phase C.

4.1. Fault Detector

Initially, the results are presented for a detector determining 0–1 if a failure was present,
i.e., if a lack of signal, intermittent signal, signal noise, and variable gain were detected. In
this case, a structure with two hidden layers was employed. One hidden layer turned out
to be insufficient. A network with one hidden layer achieved unacceptable effectiveness.
The problem turned out to be too complex for such a simple structure. The research was
carried out with a different number of neurons in both hidden layers with the same input
vector. The best results were obtained for the structure presented in Figure 10 (10-5-1).
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ciency. Figure 10. General diagram of the neural structure of the type 1 detector with the highest efficiency.

The training vector consisted of samples for two reference speed values (Figure 11).
Failures in phase A and B were switched on for each speed. The next types damage
switched on were lack of signal, signal noise, and variable gain.

Apart from the detector response to testing data, the transients of the phase currents
and the speed are also presented (Figure 12) for some sample values. The detector set
correctly output 1 in the event of a failure. The percentage results for all the tested structures
are shown in Table 4. The most optimal solution was a network with two hidden layers.
One hidden layer was insufficient, while adding a third layer did not significantly affect
the effectiveness. The learning process was carried out for two reference speed values
(ωre f = 0.3, ωre f = 0.7) and the tests, which are presented in the percentage results, were
performed for five values (ωre f = 0.25, ωre f = 0.4, ωre f = 0.55, ωre f = 0.6, ωre f = 0.75). In
the transient of the testing vector, each of the tested failures was switched on for 0.2 s for
each speed in both phases.
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Table 4. Effectiveness of the first type of detector for different neural network structures.

Structure 15-10-5-1 13-8-3-1 17-12-1 15-10-1 13-8-1 11-6-1 15-1 13-1

Effectiveness 98.2% 98.4% 98.8% 99.1% 98.9% 98.3% 90.9% 85.7%

One significant advantage of the first type of detector is the fact that it detected a
failure when the other detectors in the tested structures produced largely signal noise
errors, both in phases A and B. For this type of detector, the signal noise detection also
caused the most errors. The detector was characterized by a simple structure (fewer inputs,
only two hidden layers, one output), a short learning process, and high effectiveness level
for all tested structures, even during dynamic states.

The second type of detector detected lack of signal, intermittent signal, and variable
gain, and determined the damage phase. The detector was based on two hidden layers.
The research was carried out for a different number of neurons in the hidden layers and
different numbers of hidden layers and the same input vector. The most optimal solution
was structure 15-10-1 (Figure 13). The reference speed, phase currents, and detector output
for this structure for the training data are presented in Figure 14. The structure with three
hidden layers differed insignificantly in terms of effectiveness, while the addition of a third
hidden layer significantly lengthened the learning process. In this case, the third hidden
layer was excessive.
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Figure 13. General diagram of the neural structure of the second type of detector with the highest
efficiency (15-10-5-2).

The tests of all structures for the second type of detector were carried out for four
values of reference speed (ωre f = 0.3, ωre f = 0.4, ωre f = 0.5, ωre f = 0.6) different from
the training values (ωre f = 0.35, ωre f = 0.65, ωre f = 0.85), with dynamic states. Sample
results for the most effective structure for non-training data are presented in Figure 15. The
efficacy results for all tested structures are presented in Table 5. The network was tested
by using the vector where all failures were switched on for 0.2 s for all the above specified
speeds in both phases.
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Figure 14. Transients of speed, phase currents and detector output or training data during failures in
phase A and B for the second type of detector.

The optimal structure for the second type of detector was 15-10-1. The use of a larger
number of neurons in the hidden layers increased the learning process, but not the efficiency,
and the same was true for adding more hidden layers. Fewer neurons led to a decrease in
detector efficiency. Too many neurons in the hidden layers caused efficiency to decline. This
was because the network was over-fit to the problem. During the network testing process,
the structure worked at speeds other than the values used in the learning process, and also
in dynamic states. Therefore, it was important that the network retained the appropriate
generalization properties. All the investigated structures for the second detector showed a
high degree of correct operation, except the networks with one hidden layer. In these cases,
the effectiveness was unacceptably low. The detector correctly recognized the damaged
phase, despite the influence of the second phase.

The last type of detector detected the lack of signal, intermittent signal, and variable
gain. It also recognized the failure phase and type of fault. The detector response is based
on two outputs. The first output specified phase A, where 0 indicated healthy conditions, 1
meant signal interruption, and 2 meant variable gain. The second output defined phase B.
In this case, the same training vector was used as for detector type 2, and only the detector
output was modified. The detector was based on three hidden layers. A third hidden layer
was required to ensure high efficiency. The network with two hidden layers showed too
low efficiency, of around 90%. The greatest efficiency was obtained for the structure shown
in Figure 16 (15-10-5-2).
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Table 5. Effectiveness of the second type of detector for different neural network structures.

Structure 15-10-5-1 13-8-3-1 17-12-1 15-10-1 13-8-1 11-6-1 15-1 13-1

Effectiveness 98.8% 98.6% 97.6% 98.5% 98.0% 97.5% 88.5% 73.6%
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For the structure that obtained the best efficiency, the transients of speed, phase cur-
rents, and detector response for the testing data are presented in Figure 17. The percentage
results for all tested structures are shown in Table 6. The effectiveness tests were conducted
for the same training and testing reference speeds as used for the second detector.
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during failure in phase A (a) and B (b) for the third type of detector.

Table 6. Effectiveness of the third type of detector for different neural network structures.

Structure 19-14-9-2 17-12-7-2 15-10-5-2 13-8-3-2 15-10-2 13-8-2

Effectiveness output-1 98.4% 98.3% 98.9% 98.5% 91.4% 88.1%

Effectiveness output-2 98.9% 98.3% 98.8% 98.6% 90.8% 87.5%

In the case of the third type of detector, the efficiency was similar to that of the second
type, although the problem was more complex. The use of the third layer allowed for high
efficiency. However, at the same time it significantly extended the learning process. This
detector not only correctly recognized a damaged phase, but also determined with high
efficiency whether it was a failure that significantly affected the control structure. On the
basis of the network response figures, it was also observed that the network did not make
errors at the level of damage or its absence, but only in phase recognition.
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The last important element of the detector operation analysis was the detection time.
Table 7 shows the failure detection times for individual types of detectors. Detection time
is also shown in the transient examples (Figure 18).

Table 7. Detection times for most optimal structures.

Detector Lack of Signal
Phase A

Lack of Signal
Phase B

Variable Gain
Phase A

Variable Gain
Phase B

I type 0.01 ms 0.01 ms 0.01 ms 0.01 ms

II type 0.01 ms 0.02 ms 0.01 ms 0.02 ms

III type 0.01 ms 0.01 ms 0.02 ms 0.02 msDesigns 2022, 6, x FOR PEER REVIEW 18 of 21 
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Figure 18. Transients with presented detection times for the I type detector (a), II type detector (b)
and III type detector; output 1 (c) and output 2 (d).

Detection was almost instantaneous (0.01–0.02 ms), which proves the advantage of the
developed solution over many other methods.

4.2. Fault Tolerant System Based on Neural Detector and Redundant Sensor

Detector types II and III, due to the possibility of fault location, can be successfully
used in the FTC system. The control structure presented in chapter 2 is equipped with three
sensors, but in normal operation it uses only two: the in-phase A and B sensors. In the
presented FTC system, after information from the detector about the failure and its location
are received, the method of determining the isα and isβ of the stator current components
was changed. The measurement from the damaged sensor was replaced with the sensor in
phase C. The detector response and the basic state variables transients in the FTC system
are shown in Figure 19. The results are exemplified by a II-type detector for the 15-10-1
structure.
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Figure 19. Transients of speed, phase currents, stator current components, and detector outputs for
an FTC system during intermittent signal in phase A and B (a,c,e,g), and during variable gain (b,d,f,h)
for a detector of the second type.

On the basis of the presented transients, it can be concluded that the proposed method
correctly compensates for the influence of damage on the structure in both phases. Despite
the disturbances in phase currents, the stator current components αβ were determined
correctly and the speed waveforms were not distorted. The network in the FTC structure
commits more errors because the signals that indicate the failure reached their pre-failure
values e.g., space vector module |Is|. This was especially visible in the case of the damage
with a smaller impact on the variable gain structure. Some distortions appeared in the
transients of the stator current components, which resulted from the fact that the sensor
had to be switched in the 2nd fault sample. However, this does not interfere with the speed
transient and the system can work properly.

5. Conclusions

The paper proposes three types of fault detectors of current sensor faults, based on
neural networks, in an electric drive system with PMSM. For all types, the percentage
results and diagrams are presented. Although the first type of detector revealed more types
of damage, it did not require a more complex structure than the others (two hidden layers,
one output). The biggest disadvantage of this solution was that there was no damaged
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phase detection, which makes compensation impossible. Other types of detectors located
the damaged phase, which made it possible to successfully use them in an FTC system
with damage compensation, which was the II-type detector presented (Figure 19). Failure
localization in a short time of 0.01–0.02 ms (Table 7) gives the application an advantage
over many alternative methods. The second type of detector is the most optimal solution.
Its learning process was much faster than that of the third type detector due to the less-
complicated structure. The location of the damaged phase was sufficient to compensate for
it. The type of damage was less-relevant information. The detector determined whether the
failure that occurred in the system had a significant impact on its operation and whether
immediate compensation was necessary. For this reason, the third type of detector would be
used in the most demanding applications. The developed solution can also be transferred
to a real drive system. This is supported by the use of raw signals (no need to pre-process
measurement data with analytical methods) and the low computational complexity of
the learned and implemented neural network on a signal processor. The use of neural
networks also allows for faster detection compared to algorithmic methods, which was
here proven (Table 7) and allows it to determine the severity of the failure (III type detector).
Future work will concern the application of the developed detectors in a more complex
FTC structure with fault compensation in simulations and experiments.
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