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Abstract: Fostering the development of additive manufacturing (AM) in the context of mass pro-
duction is a key factor to ensure its adoption in the industry. It should be remembered that this
technology intrinsically makes it possible to produce parts with unexpected complexities in terms
of shape and structure, but this comes at a price: time. To overcome this productivity barrier, AM
technology providers are developing 3D printing machines with high-speed performance and mass
reproduction means in a single run. Although such trends can be seen as a natural evolution of
this technology with respect to current consumption patterns, it still remains a scientific issue on
production planning to be tackled. The objective is to address the on-demand production planning
of different AM parts in FabLabs composed of unrelated parallel 3D printers. A novel framework
is introduced to consider part orientation, path planning, and part-to-printer assignment, with a
specific focus on fused filament fabrication technique. By targeting a minimum production time, it
exhibits reasoning algorithms implemented in a Python application. A case study with a batch of
six non-identical parts and two fused filament fabrication 3D printers is introduced to illustrate the
added value of the framework and its operational side.

Keywords: additive manufacturing; fused filament fabrication; on-demand production; production
planning; part-to-printer assignment; greedy algorithm

1. Introduction

Additive manufacturing (AM) is currently considered as a key technology that brings
together processes and techniques to produce—in a layer-by-layer deposition mode—objects
or assemblies [1]. Therefore, it provides more design freedom than the formative and
subtractive manufacturing techniques widely accepted and mastered in industry and
academia [2]. With AM, the complexity in terms of shape and structure is free, but the
printing time can be significant, which breaks with current mass production rates in the
industry [3]. This is the reason why AM has been mainly used for rapid prototyping
purposes and complex parts (with added value) manufacturing. Today, a part of the
concerns is devoted to increasing productivity to meet the industrial needs for mass
customization/personalization. In such a context, efforts are currently being made to
produce a batch of parts, while maintaining the same AM technique and machine, therefore
leading to the development of 3D printers with better performances and higher printing
volumes [4].

In addition, the development of AM has also led to the emergence of FabLabs and
3D printing hubs/platforms [5–7] by providing flexible/efficient means and tools to foster
ideation, learning, concept validation, and even the realization of parts/products on
demand. In short, these manufacturing platforms—dedicated to heterogeneous demands—
make it possible to stimulate creativity and innovation while removing barriers over
departments/services of the company. In this case, new methods and tools—similar to the
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existing ones for structuring production systems—must be investigated now to increase
their productivity.

Among the available processes and techniques from ISO/ASTM 52900 standard [8]
that could potentially be available in FabLabs or hubs, material extrusion and its leading
technique—fused filament fabrication (FFF)—has the advantage of being supported by
a strong open source community while being subject to continuous improvement since
the disruptive RepRap project in 2005 [9]. Such advances have enabled a gradual shift
from rapid prototyping towards mass customization with production capabilities of small
batches of plastic parts [10]. However, to reach an industrial threshold, this technique—
which is mainly used for plastic parts—must face its current limitations in terms of weak
mechanical performances and low production rate [11]. Compared to other subtractive
or formative manufacturing processes, the FFF technique does not require any fixture
or tooling, which significantly reduces the production cost. However, a post-treatment
step is often necessary to both support material removal and surface finishing of the
parts. Augmenting the FFF technique via an industry-like production logic calls into
question or requires the evolution of pre-established models and methods, especially at the
production-planning and supply-chain stages [12,13]. In its actual shape, the FFF technique
demands the prior analysis of a part geometric definition for process-parameter selection,
and path-planning specifications consistent with machine capabilities [14,15]. The part can
be scaled, positioned, and oriented on the 3D printer bed. The last parameter is critical as it
influences the manufacturing time with potentially support structures, and the mechanical
performances of the part due to the intrinsic anisotropy induced by the process [16–19].
Once all parameters have been set up, instructions— in G-code format—are sent to the
3D printer.

Production planning and scheduling combined with AM technology have already
received attention from researchers in recent years. Research work has been mainly focused
on nesting, 2D packing, and 3D packing problems with powder-based processes [20].
For this specific AM process, research efforts have attempted to gather multiple parts and
to optimize their position for a given batch [21–23]. Li et al. [12] have introduced two
heuristics, namely, best fit and adaptive fit, for part-to-printer assignment to reduce the
cost per volume by maximizing the number of parts in a single batch. Although such
initiatives seem to be promising, the developed reasoning procedures are not suitable
enough for the FFF technique. In the context of on-demand production, the FFF 3D
printers do not need to be overloaded with multiple parts for a single run. To prevent
manufacturing defects, it is better to organize production according to a one-part-to-one-
machine strategy. As a consequence, nesting algorithms will not be addressed in the present
paper. Arroyo et al. [24] have presented a heuristic in the context of production planning
with a set of unrelated parallel FFF 3D printers that enables the realization of different sized
jobs. Based on a greedy algorithm, their heuristic exhibits better performances than other
works related to discrete differential evolution, ant colony optimization, and simulated
annealing. Similarly, Ransikanbum et al. [25] have optimized the workload balance between
FFF 3D printers in a way to reduce the total cost of the parts and the total completion time.
Recently, Li et al. [26] have analyzed different approaches to the production of multiple parts
in an industrial context. They have compared centralized and decentralized production
systems in terms of cost and response time. More recently, Zhang et al. [27] have solved
the part-to-printer assignment and part placement for stereolithography (SLA) technique.
To do so, they have introduced a combination of heuristic and genetic algorithm that can
be applied and adapted to the FFF technique. Despite the current research efforts—which
are mainly focused on the nesting of multiple parts in a single printing run—there is still
a lack of methods and tools to bring multiple unoriented geometric models to single-run
production. This is typically an issue with the FFF technique where multi-part production
does not provide any efficiency and productivity gain. In such a context, it is important to
consider, as a whole, part orientation, path planning, and part-to-printer assignment. As a
consequence, the objective of the paper is to address on-demand production planning of
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different (non-identical) and unoriented AM parts in FabLabs/hubs composed of unrelated
parallel 3D printers with a specific focus on the FFF technique.

The paper is organized as follows. Section 2 presents the multi-part production
planning framework for AM, in which part orientation, path planning and part-to-printer
assignment are jointly processed with a greedy algorithm. Next, in Section 3, a tool
implementation of the framework is proposed to demonstrate its applicability, and a case
study is introduced and discussed. Last, the conclusion is given in Section 4.

2. Materials and Methods

On-demand production of multiple non-identical parts with AM technology requires
addressing three important steps, namely, part orientation, path planning, and part-to-
printer assignment. Figure 1 shows a flowchart describing the aforementioned steps and
input/output information starting from a heterogeneous demand in terms of geometric
models to appropriate machine instructions for the AM hubs. The part orientation step
consists in finding the best orientation by minimizing either the support volume or the build
time, or maximizing the mechanical properties of the part. This step is processed as many
times as there are parts. In a more detailed way, the reasoning algorithm evaluates the
printability of the geometric models of the parts for a given orientation according to relevant
parameters, such as the overhang area and the bed adhesion surface. Here, the latter is
essential to hold the part during the FFF 3D printing process.

Part 
orientation

Path 
planning

Part-to-printer
assignment

build time 
estimation

best 
orientation

machine
instructions

heterogeneous
3D part models

Parts’ machine 
instructions assigned 
to FFF 3D printers

Figure 1. Proposed multi-part production planning framework for AM.

Once the best orientations have been determined for all input parts, a path planning
step is then processed. The FFF technique uses a layered material deposition model,
to which extrusion paths can be specified at each layer. This step aims at slicing the
part geometric model with a fixed layer height along the normal axis of the printer bed.
The parameters’ values will depend on the optimum settings for each machine. At each
layer, the contour of the part is extracted to determine both the surface to print and the
infill strategy (i.e., geometric pattern and density). This step also considers additional
features (temporary) to ensure the part adhesion on the printer bed and supports when
there are overhang surfaces. The latter is determined according to the angle after which
a surface cannot be printed smoothly. This angle value is defined based on the machine
parameters (nozzle diameter, fan speed, layer height, etc.). Once all parameters have
been determined, build time—which includes the printer’s head travel, its acceleration,
and maximum velocity—can be estimated, and machine instructions are then expressed
in G-code format. The remaining step—to which a mathematical model is developed
hereafter—aims at assigning parts to the FFF 3D printers of the FabLab/hub.

Addressing production planning issues with AM requires a prior formal description of
the problem to be solved. The aforementioned on-demand manufacturing of heterogeneous
parts with unrelated FFF 3D printers (i.e., machines) imposes assumptions to be considered
in order to define the mathematical model, which can be listed as follows:

• A job refers to a single part being built on a machine. It cannot be decomposed
into sub-jobs;

• There is no preemptive job;
• All the parts have the same material;
• All machines have an optimal set of parameters and are able to build any geometry

with an 100 % success rate;
• All the parts can be manufactured on any machine with any orientation;
• The jobs are independent;
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• All machines are parallel and unrelated—they can process the same part but with a
different processing time;

• Part removal and manufacturing setup times are neglected.

Built on this, a mathematical model for part-to-printer assignment is proposed and
described by using the following notations highlighting indices, sets, and parameters:

Indices
m = 1, 2, ..., m machines
p = 1, 2, ..., p parts to be manufactured
j = 1, 2, ..., j jobs

Sets
M = set of machines
Jm = set of jobs of the machines m
P = set of parts
Pm = set of parts to be manufactured by the machine m

Parameters
tp,m = processing time of the part p on the machine m
Jp,m = realisation of the part p on the machine m
Tm = completion time of the machine m
Tmax = maximum completion time among the machines

Tm =
m

∑
i=1

tp,m ∀m ∈ M, ∀p ∈ Pm (1)

Tmax = max(Tm) ∀m ∈ M (2)

min(Tmax) = min(max(
m

∑
i=1

(tp,i))) (3)

Before producing a set of parts P with a set of machines M, the orientation of the parts
in a proper build direction has to be addressed in order to reduce their manufacturing
time. The point is critical to avoid overhang surfaces and then to minimize additional
support required to print them. Although multiple parts can be printed on the same job,
there is no advantage with the FFF technique in realizing multiple parts at once, unlike the
powder-based processes. With the latter, gathering multiple parts allows one to reduce the
production time. As for the FFF technique, the approach is totally different; if multiple parts
are printed in a single run and one fails due to warping effect or other issues, it will lead to
a failure of the entire job. In the present case, a print job Jp,m will consist of a single-part
printing operation p on a machine m. Once the part is oriented, the path planning can be
generated for a given machine, and then the processing time tp,m of the job for a machine
can be determined from the set of instructions. With the build time tp,m of each part for each
available 3D printer, a part-to-printer assignment needs to be made. The completion time
of a machine is the sum of the production time of all the jobs, as expressed in Equation (1).
This step is called the part-to-printer assignment and consists of minimizing the maximum
processing time Tmax, such as described in Equation (2), of the longest time-consuming
machine (Equation (3)), shown in Figure 2.

In the context of FabLabs/hubs, the machines (FFF 3D printers) ensure continuous
production by using ejection solutions to remove automatically printed parts without
human intervention. As an example, with the black belt 3D printers or the Quinly ac-
cessories [28,29], it is then possible to remove 3D printed parts from FFF 3D printers.
Without such a solution, delays could occur between two consecutive jobs, which would
significantly increase production times. Here, the FabLab/hub is composed of unrelated
parallel machines that are able to perform the same function but have different capabilities
or capacities [30]. In addition, they exhibit the same printing volume but offer different
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production times. This is due to the performances of the machines’ hardware (e.g. nozzle’s
diameter, stepper motors drivers, etc.) and the adapted process planning software’s param-
eters such as printing speed, layer height, etc. It is worth noting that a job in AM-oriented
production cannot be decomposed into sub-jobs in order to balance the production. Indeed,
splitting a job consists of partitioning the part into several bodies, which will later require
assembly operations. Such considerations are not addressed in this paper but are poten-
tially an interesting avenue to balance the production. Lastly, in this proposed model, it
is assumed that parts to be produced have the same material and all FFF 3D printers will
always have sufficient material to perform jobs.

Figure 2. Illustration of the part-to-printer assignment (the width of the jobs are proportional to their
processing times).

3. Results

The proposed framework and its underlying components can be implemented through
a set of tools and applications in order to process heterogeneous 3D STL files in a way to be
rightly assigned to FFF 3D printers of the FabLab/hub.

Figure 3 shows, for each step of the framework, a dedicated application that has
either been used or specifically developed. This is the case for the part orientation step,
to which an open-source Python application called Tweaker—which is able to find an
optimal orientation of an object on a FFF 3D printer— has been adopted [31]. Its reasoning
capacities are aligned with the defined parameters (in the previous section) to be optimized
for ensuring the good printability of the parts. As for the path planning step, another open-
source tool has been considered and integrated, CuraEngine 4.6.3. Developed as a Cura
backend from Ultimaker, it is widely used in the FFF community since it works with any
kind of FFF 3D printer and is suitable enough to analyze parts’ geometries, define trajectory
paths, estimate build times, and generate machines’ instructions. Build time estimations for
all parts are important as they will be used to the part-to-printer reasoning step. This last
step is built upon the aforementioned mathematical model, to which a heuristic—using
the longest processing time (LPT) rule [32]—has been implemented in a dedicated Python
application. The Algorithm 1 has been developed to control information flows between
the components of the framework. More particularly, it consists in attributing the jobs—
which are sorted by decreasing order of processing times—to the FFF 3D printers of the
FabLab/hub so as to minimize the maximum processing times of the machines.
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Figure 3. Implementation of the framework through Tweaker, CuraEngine, and a greedy algorithm-
based application.

Algorithm 1: Independent parts production planning with unrelated parallel
FFF 3D printers.

Input: STL files with any orientation that can fit with any FFF 3D printers
Output: Allocated G-code files to be run to the FFF 3D printers

Generation of the m FFF 3D printers with their process parameters
foreach STL f ile do

Find the best part orientation
foreach FFF 3D printer do

Slice the part geometry
Determine the build time

end
Calculate the average build time of the part

end
Order the parts with non increasing average build time order
foreach STL f ile do

Assign the parts to the FFF 3D printers which will have the minimum total
processing time

end
return Allocated G-code instructions to be run to the FFF 3D printers

To demonstrate how the implemented framework works, a batch of six different parts
(names A to F as illustrated in Figure 4) is introduced. The objective is to first analyze the
related STL files in terms of part orientation, then to construct their path plans and build
times so as to allocate jobs to two RepRap machines (named Machine 1 and Machine 2)
with a maximum build volume of 20 × 20 × 20 cm3. By using Tweaker application and
CuraEngine software, the oriented parts are subject to build time estimation (see Figure 5).
Table 1 sums up the resulting build time per part per machine.

Figure 4. Set of parts to be considered for production planning.
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Table 1. Estimation of build times per part per machine and average processing times.

Part Name A B C D E F

Time (s)
Machine 1 10,760 26,997 1577 165,726 17,779 11,501

Machine 2 8918 8552 1167 38,498 7176 5988

Average processing time (s) 9839 17,775 1372 102,112 12,478 8745

Figure 5. Parts with their optimized orientations in Cura software using Tweaker application.

With the build time per part determined from the previous step, the average build
time can be calculated. Once the average processing time is determined for each part, it is
then possible to sort them by applying the LPT rule. It consists in sorting the parts from the
longest to process to the fastest to process, as shown in Table 2. The part with the longest
build time is at the left of the table (i.e., part D), and the fastest part to be processed is at the
right side of the table (i.e., part C). The original set of parts, ranging from A to F, is now
ordered as follows: D, B, E, A, F, and C. At this step, each part needs to be assigned to an
FFF 3D printer in order to be produced. To assign a part, an iteration is made involving
three parameters. First, it is needed to determine the total processing time for each FFF
3D printer. This can be calculated by computing the sum of the build times of the parts
that have been allocated to the FFF 3D printers. These parameters are shown in column
(i) in Table 2. Secondly, it is required to know the build time of a part to a given FFF 3D
printer. This has been previously determined by the CuraEngine software and is shown in
column (ii) in Table 2. Then, the sum of the current building times in column (i) is added to
the building time of the part for every FFF 3D printer in column (ii) to determine what the
total processing time of an FFF 3D printer will be if the part is assigned to it. This value is
written in column (iii). At the end of each iteration, the part assigned to the FFF 3D printer
will have the lowest building time. By following such steps, the maximum build time can
be minimized.

The case study can be followed by using Table 2 and Figure 6. It starts with the longest
part to be processed, which is part D. At the first iteration, the total build time of each FFF
3D printer is zero because no part has been assigned to any printer, as shown in Table 2
column (i). Then, the processing time of part D for each printer is added in column (ii), and
the sum of the columns (i) and (ii) provides column (iii). The latter represents the processing
time of each machine if the part is assigned to them. At this point, the lowest value is the
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case where the part D is allocated to the Machine 2 because it has the lowest total build time
(see Figure 6b). For this first iteration, the part is attributed to the Machine 2. In Figure 6,
a part assigned to Machine 1 is represented by a blue circle, whereas the part with a red
circle stands for assignment to Machine 2.

Table 2. (i) Printer’s built time before assigning the current part; (ii) build time of the current part;
and (iii) total build time.

Part Name D B E

Build Time (s) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Machine 1 0 165,726 165,726 0 26,997 26,997 26,997 17,779 44,776

Machine 2 0 38,498 38,498 38,498 8522 47,020 38,498 7176 45,674

Part name A F C

Build time (s) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Machine 1 44,776 10,760 55,536 44,776 11,501 56,277 44,776 1577 46,353

Machine 2 38,498 8918 47,416 47,416 5988 53,404 53,404 1167 54,571

Figure 6. Part-to-printer assignment iterations. Black circles represent the remaining parts to be
assigned; blue circles represent the parts allocated to Machine 1 and red circles to Machine 2. (a) Initial
state (b), iteration 1 (c), iteration 2 (d), iteration 3 (e), iteration 4 (f), iteration 5 (g), and iteration 6
(h) results.
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The second iteration occurs with part B. As part D has been assigned to Machine 2,
the current total build time for Machine 1 is still zero. As for Machine 2, part D has been
assigned to it, so the current total build time of Machine 2 becomes the build time of part
D. The total build time column (iii) for each machine is calculated by adding column (i)
and column (ii). This time, we observe that the lowest total build time shown for part B in
column (iii) is the lowest if the part is assigned to Machine 1. Part B is assigned to Machine
1, as shown Figure 6c. The same iteration is done for all the parts until all they are assigned
to the FFF 3D printers. The results of the greedy algorithm are shown in Figure 6h. At the
end of this reasoning step, parts D, A, and F are assigned to Machine 2, and parts B, E,
and C are assigned to the Machine 1.

4. Discussion

The proposed work can be applied in FabLabs/hubs with 3D printing machines
equipped with automatic ejection systems or just on a simple offline hub of machines.
In the first case, the G-code files listed per machine can be added straight away on the
printing list of each machine. In the second case, parts to be printed can require a manual
intervention whether at the beginning of the job or at its end. If additional parts are
introduced into the initial batch or if a machine is stopped for technical reasons during the
production process, the proposed framework will be able to consider these new parameters.
To do so, a new calculation for the remaining parts to be printed with the working FFF 3D
printers can be done.

Furthermore, some of the assumptions made in the paper need to be discussed in
order to present new perspectives. As for FabLab/hub of FFF 3D printers, the opportunity
of splitting a job by partitioning a part into sub-parts has not been considered. However,
such an approach will let the authors address two different important scientific issues at
a later point. Indeed, considering part partitioning can be seen as a strategic action to
balance production through a set of FFF 3D printers. This may also result in a decrease
of the maximum processing time by removing some of the workloads on the machine
with the longest processing time on another machine. Another key issue related to part
partitioning concerns large-scale parts to which the question of splitting is of interest and
will be addressed later.

5. Conclusions

In this paper, a multi-part production planning framework for AM in the context of
unrelated parallel FFF 3D printers in FabLabs/hubs has been proposed and implemented
through a set of applications and illustrated via a case study. It includes, as main pillars, part
orientation, path planning with build-time estimation, and part-to-printer components in a
way to analyze heterogeneous part geometric models (STL files) towards the assignment of
machine instructions (G-code files) to the available FFF 3D printers. The implementation
strategy has been to consider and gather existing independent functional applications
(such as Tweaker and CuraEngine) and to develop a new one (greedy algorithm-based
application) to fully cover the main components of the framework in a seamless manner.
As a result, the framework implementation is suitable to be reused in any FabLabs or
AM hubs, to which demands and 3D printing machines are heterogeneous. By following
such a tool’s architecture, each step of the AM production planning can be addressed
independently and then can be tuned or even replaced in order to improve the final output.
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