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Abstract: A study on the application of oxygenated turpentine oil as a bio-additive in diesel fuel was
conducted. The purpose of this research was to investigate the effect of oxygenated turpentine oil
additive in diesel fuel on the performance and emission characteristics in diesel engines. Oxygenated
turpentine oil is obtained from the oxidation process of turpentine oil. In this experimental study, the
influences of oxygenated turpentine oil-diesel blended fuel OT0.2 (0.2% vol oxygenated turpentine
oil and 99.8% vol diesel) were compared with pure diesel on engine performance, and emission
characteristics were examined in a one-cylinder four-stroke CI engine. The test was performed at two
engine loads (25% and 50%) and seven engine speeds (from 1200–2400 rpm with intervals of 200 rpm).
The physiochemical characteristics of test fuels were acquired. The engine indicated power, indicated
torque, fuel flow rate, and emissions (carbon dioxide, CO2; carbon monoxide, CO; and nitrogen
oxide, NOX) were examined. The results revealed that the engine power shows slight increments of
0.7–1.1%, whereas the engine torque slightly decreased with oxygenated turpentine usage compared
to pure diesel in most conditions. Furthermore, a reduction in NOX emission decreased by about
0.3–66% with the addition of oxygenated turpentine in diesel compared to diesel. However, usage
of OT0.2 decreased fuel flow rate in most speeds at low load but gave a similar value to diesel
at 50% load. CO emissions slightly increased with an average of 1.2% compared to diesel while
CO2 emissions increased up to 37.5% than diesel. The high-water content, low cetane number, and
low heating value of oxygenated turpentine oil were the reasons for the inverse effect found in the
engine performances.

Keywords: bio-additive; oxygenated turpentine oil; diesel fuel; diesel engine performance; emission

1. Introduction

Diesel fuel is produced from the distillation process of petroleum and is used to
fuel diesel engines. Diesel engine usage has become more popular today ever since it
was founded in 1983 by Rudolf Diesel. The popularity of diesel engines comes from the
advantage of having a low-cost of fuel compared to gasoline engines. There is a wide
use of diesel engines from transportation to industrial applications [1–4]. As a result, the
amount of harmful gas emissions emitted from diesel fuel combustion such as CO, NOX,
and hydrocarbon (HC) will be increased as well [5–8]. Consequently, this has led to adverse
impacts on human health and on the environment. For this reason, a lot of studies have
been conducted to minimize harmful gases emitted from diesel engines [9–11].

Designs 2021, 5, 73. https://doi.org/10.3390/designs5040073 https://www.mdpi.com/journal/designs

https://www.mdpi.com/journal/designs
https://www.mdpi.com
https://orcid.org/0000-0001-8887-8755
https://orcid.org/0000-0002-5332-4792
https://doi.org/10.3390/designs5040073
https://doi.org/10.3390/designs5040073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/designs5040073
https://www.mdpi.com/journal/designs
https://www.mdpi.com/article/10.3390/designs5040073?type=check_update&version=2


Designs 2021, 5, 73 2 of 17

Mixing diesel fuel with additives is one of the many attempts to reduce emissions from
diesel combustion, as well as a way to optimize fuel consumption of the engine. There are
many compounds used as diesel fuel additives such as organometals, nitrates, oxygenates
(compounds rich with oxygen), and natural matters (bioactive) [12–15]. Organometals
and nitrates have been known to increase the burning efficiency of diesel fuel. However,
it is also discovered that those additives may result in additional emissions of NOX that is
harmful to humans [16–18]. On the other hand, oxygenates and bio-additives are known
to be more environmentally friendly. Nayyar et al. [19] in their recent work stated that the
addition of compounds rich in oxygen (oxygenates) into diesel fuel could reduce smoke
and NOX production by 61.85% and 8.07%, respectively. This finding was also supported
by other research [20–23], which explained how soot reduction is linearly related to the
increasing oxygen mass fraction in the fuel. Other researchers who used oxygenated
additives reported enhancement in its application [24–27].

Turpentine oil is often referred to as spirits of turpentine in the form of volatile liquid,
derived from the distillation of tree sap species belonging to the pine genus. It is colorless
(liquid), has a distinctive smell, and is flammable [28–30]. In general, the physical and
chemical properties of boiling turpentine oil is 149–180 ◦C, insoluble in water, density
0.9, flash point 30–46, auto ignition temperature 220–225 ◦C (International Program on
Chemical Safety and the European Commission, 2002) [31–34]. It contains monoterpenes
with C 10 carbon atoms. Turpentine oil is generally composed of a mixture of unsaturated
isomers, bicyclic hydrocarbons namely α-pinene, β-pinene, and δ-carene as presented in
Figure 1 [28].
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From the work of Polonowski et al. [35], it is reported that diesel fuel with 5% of pure
turpentine oil could reduce smoke production and reduce fuel consumption. This was
in line with Butkus’ finding that 5% of oxidized turpentine oil was the best diesel fuel
additive [36–38]. Furthermore, Kadarohman et al. [39] found that terpene compounds
contained in clove oil (0.2%) were largely contributed to make a better mixture between
bio-additive and diesel fuel, which lead to rapid combustion and shorter ignition delay in
combustion of diesel engines. This discovery is interesting for further investigation on the
influence of terpene compounds addition in diesel fuel [40–42].

The four atom C rings on α-pinene and β-pinene have high spatial strain that are
reactive. The presence of a double bond causes α-pinene to easily undergo an oxidation
reaction when there is air contact, then forms a hydroperoxyl compound which has in-
termediate molecules that are reactive [43]. The cyclic structure in turpentine oil will
effectively disrupt the Van der Waals interaction between the carbon chains of diesel fuel,
consequently leading to the diesel oil molecules becoming easier to evaporate, hence accel-
erating the combustion process [39,44]. The reactive nature of turpentine oil constituents is
also expected to accelerate the combustion of diesel fuel. Song et al. [45] suggested that the
addition of oxygen enriched additives into diesel fuel has a significant role to increase the
cetane number of the fuel. Choi and Reitz [46] mentioned that oxygen atoms in fuel play a
major role in oxidizing soot and CO gas.
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For this reason, efforts to speed up and to refine the combustion process of diesel
fuel can be carried out by enriching the levels of oxygen atoms contained in turpentine
oil through the oxidation of the double bonds formed in the compound. In this paper,
the effects of additive oxygenated turpentine oil-diesel (0.2% vol and 99.8% vol) on the
performance and emission in one-cylinder diesel engines were tested. The experiment
was performed at different engine speeds and two engine loads (25% and 50%). The
physiochemical characteristics of test fuels were determined. Moreover, the effects of tested
fuels upon indicated power, indicated torque, flue flow rate, and emissions characteristics
were systematically observed.

2. Materials and Methods
2.1. Materials

In this study, the diesel used was pure diesel Euro2M from Malaysia. Turpentine oil
and oxygen gas were from Brataco and Sangkuriang companies, Indonesia. Turpentine
oil was oxygenated via the oxidation process. It was carried out by reflux method using
a cylindrical column reactor with length and diameter dimensions of 30 cm and 2 cm,
respectively. The 15 mL turpentine oil was aerated by oxygen gas with flow rate of 3 L/min
and heated by an electrical wire heater at 90–100 ◦C for 3 h. The oxidation procedure was
conducted at Life Science Laboratory, Department of Chemistry, Indonesia University of
Education, Bandung Indonesia. Oxygenated turpentine oil as a bio-additive was dissolved
in diesel fuel at a volume percent level of 0.2% (note as OT0.2) by a manual direct blending
method using a mechanical stirrer IKA RW20 with blending speed 700 rpm for 15 min
at room temperature. The characterizations of diesel, turpentine oil, and oxygenated
turpentine oil were done by gas chromatography—mass spectrometry GC-MS QP5050A.
Diesel fuel and OT0.2 were examined on one-cylinder DI engines in order to obtain their
performance and emission.

2.2. Experiment Setup

The test engine was a YANMAR TF120M one-cylinder DI diesel engine with a 17.7 com-
pression ratio. The specifications of the engine and schematic diagram of the set up for
this test are shown in Table 1 and Figure 2, respectively. The data were recorded by data
acquisition system TFX Engineering, which consisted of in-cylinder pressure and crank
angle sensors. Furthermore, exhaust gas temperature and ambient temperature were
measured using K-type thermocouples, that were recorded using a TC-08 thermocouple
data logger by Pico Technology. The thermocouple was installed at the exhaust manifold.
The emissions were measured using KANE Auto 4-1 series exhaust gas analysers. The
experiment was conducted with seven speeds from 1200 to 2400 rpm with intervals of
200 rpm and two engine loads at 25% and 50%. The test fuels used were diesel as base line
and oxygenated turpentine oil-diesel (0.2% vol and 99.8% vol). The data were recorded
under steady state conditions. The engine power, engine torque, the fuel flow rate, and
the emissions (CO, CO2, and NOx) were measured. The experiment was conducted at
Universiti Malaysia Pahang (UMP), Kuantan, Malaysia.

Table 1. Engine Specifications.

Description Specification

Engine model YANMAR TF120M
Engine year 2016
Engine type Horizontal, 4-cycle, 4 stroke, diesel engine
Number of cylinders 1
Continuous power output (kW) 7.82 kW at 2400 rpm
Rated power output (kW) 8.94 kW at 2400 rpm
Bore x Stroke (mm) 92 × 96
Displacement (L) 0.638
Injection timing 17◦ BTDC
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Table 1. Cont.

Description Specification

Compression ratio 17.7
Combustion system Direct injection
Aspiration Natural aspiration
Cooling system Water-cooled
Starting system Manual (Hand) Starting
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3. Results and Discussion
3.1. Physiochemical Properties

The performed research on physical properties showed that the bio-additive fuel
blends were in full compliance with the standard of American Society for Testing and
Materials, ASTM D975 specifications for diesel fuel. The physical properties of diesel and
OT0.2 were presented in Table 2.

Table 2. Physical properties of test fuels.

Parameters Diesel Fuel OT0.2 ASTM D975 Limit
Min Max

Specific Gravity at 25 ◦C (g/mL) 0.8452 0.8549 - -
Specific Gravity at 15.55 ◦C (g/mL) 0.8522 - 0.848 0.87
API Gravity 34.5408 - - -
Anilin point (◦F) 156.2 159.2 129.6 -
Index Diesel 53.9527 51.3883 - -
Viscosities (cSt) 3.7215 4.4625 1.3 4.5
Flash Point (◦C) 61.89 - 60 80

The diesel, turpentine, and oxygenated enriched turpentine used in this experiment
were characterized by GC-MS. Figure 3 shows the chromatogram of diesel fuel, turpentine,
and oxygenated turpentine that provides the information of its chemical components
and composition. In particular, diesel fuel consisted of saturated hydrocarbons such as
normal paraffins, is paraffins, and cycloparaffins. The main components of diesel fuel
are hexadecane (n-cetane), pristane (2,6,10,14-tetramethylpentadecane), and is paraffins
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(Figure 3a), in line with previous studies [47]. The chemical constituents of diesel fuel are
listed in Table 3.
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Table 3. Chemical constituents of diesel fuel.

Peak No Molecular
Formula Name Retention Time

(Min) Conc. (%) Structure

22 C15H32 Pentadecane 14.050 5.27
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On the other hand, turpentine contains at least 12 compounds as shown in Figure 3b,
that are predominantly composed of α-pinene (61.61%), δ-carene (19.70%), β-pinene (4.8%),
limonene (3.58%), and camphene (2.25%), with based mass fragment at retention times
of 3.127, 3.950, 3.568, 4.712 and 3.267 min, respectively. These results align with previous
studies [48]. All chemical compounds of turpentine including its structure and composition
is listed in Table 4.

Interestingly, oxidation treatment led to remarkable modifications of turpentine in
term of chemical constituents and composition. Figure 3c demonstrates the chemical
constituents of oxygenated turpentine where at least 44 compounds were detected by
GCMS. In particular, the oxidation process of turpentine yields new compounds with
various composition. After oxidation, the composition of major constituents of turpentine
experienced a significant reduction, i.e., α-pinene (32.68%), δ-carene (5.77%), β-pinene
(4.44%), and limonene (1.93%). This presents new oxygenated compounds with significant
composition such as α-pinene-oxide, patchcoulane, trans-verbenol, verbenone, and α-
champholene aldehyde at retention times of 5.213, 8.684, 5.932, 6.974, and 5.604, respectively.
Details of chemical constituents of oxygenated turpentine are summarized in Table 5.
Additionally, the mass fragment of major chemical components of oxygenated turpentine
is shown in Figure 4. The oxygenated products contain more oxygen related functional
groups, i.e., hydroxyl (-OH), aldehyde (-HC=O), and ketone (-C=O). These results indicated
the effectiveness of selected oxidation procedures of turpentine where the predominant
oxygenated compounds came from the oxidation of α-pinene and δ-carene as the most
major constituents of turpentine.
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Table 4. Major chemical constituents of turpentine.

Peak No Molecular
Formula Name Retention Time

(Min) Conc. (%) Structure

2 C10H16 Alpha-pinene 3.127 61.81
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Table 5. Major chemical constituents of oxygenated turpentine.

Peak No Molecular
Formula Name Retention Time

(Min)
Conc.
(%) Structure

3 C10H16 Alpha-pinene 3.143 32.68
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Table 5. Cont.

Peak No Molecular
Formula Name Retention Time

(Min)
Conc.
(%) Structure

29 C10H14O Verbenone 6.974 3.11
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3.2. Engine Performance

Figures 5 and 6 show comparison results of indicated power and indicated torque at
various engine speeds and loads, respectively. The power and torque depended on the fuel
supplied and engine operating conditions. In this study, at the maximum engine speed
of 2400 rpm, the indicated power of the engine slightly increased with the addition of an
oxygenated additive compared to diesel fuel. The average increment when an additive
was introduced into diesel was 0.7% to 1.1%. The higher oxygen content in oxygenated
turpentine improved the in-cylinder combustion reaction process, hence producing higher
power than diesel [33,49,50]. Another reason is due to higher fuel mass flow used for
additive fuel. The increments were supported by a few studies that used oxygenated
additives in the fuel [51–53]. On the other hand, the torque profile for low and high loads
of oxygenated turpentine was found to be lower than diesel. The decrement is due to the
increase in mass and flow resistance and the decrease in volumetric efficiency [33,54].
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(f), α-pinene oxide (g), trans-verbenol (h), and Patchoulane (i) for oxygenated turpentine.
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Figure 7 presents the variations of fuel flow rates at different speeds and loads for
diesel and oxygenated turpentine oil-diesel fuel. Mostly, the flow rate increases with the
increment of engine speed and load. At low load cases, at most engine speeds, there are
decrement of fuel flow rate of additive fuel compared to diesel. The enhancement rate of
fuel flow while using an additive are between 5 to 9.09% compared to diesel. However,
at 50% load, oxygenated turpentine oil-diesel fuel shows a slight increment of fuel flow
rates with diesel at most engine speeds. The percentage of increment of fuel flow rate while
using an additive at 50% load are in the range of 0.42 to 10.67%, compared to diesel. It is
due to the lower heating value of oxygenated turpentine oil—diesel that requires higher
fuel consumption. In contrast, at medium load with high speeds, 2200 and 2400 rpm, fuel
flow rate of oxygenated turpentine oil-diesel fuel shows reduction up to 4.6% compared
to diesel.
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3.3. Gas Emissions

In general, carbon monoxide emission shows a decline pattern when oxygenated
additives are introduced into diesel fuel [55–57]. Reduction in CO occurs due to oxy-
genated characteristics of fuel and well-flammability properties of the oxygenated additive.
Furthermore, the higher latent heat of evaporation in oxygenated-based fuels compared
to diesel allows lower intake of manifold temperature and enhances the volumetric effi-
ciency [58–60]. Figure 8 presents variations in CO emission emitted from the combustion
diesel engine using diesel and oxygenated turpentine oil-diesel fuel. In this study, the
lowest value of CO emission was found at low engine speeds for both engine loads. Mostly,
an increase in engine speed leads to an increase in CO emission. In most operating condi-
tions, CO emission shows a slight increment of 1.2% on average compared to diesel. This
is parallel with previous statements. Several studies also reported the same decrements
relative to diesel fuel when oxygenated fuel was added into diesel [61–64]. However,
at 1600 rpm engine speed, the percentage of CO was increased for both load cases.
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Figure 8. CO emission at various engine speeds.

CO2 emission is a product of complete combustion. Theoretically, the combustion of
hydrocarbon-based fuel should form only two elements, namely CO2 and H2O. Figure 9
shows the CO2 emissions for diesel and oxygenated turpentine oil-diesel fuel at low and
medium loads. For both load cases, there are slight increments of CO2 emissions compared



Designs 2021, 5, 73 13 of 17

to diesel at most engine speeds. The average increment was 0–37.5% and 0–18% for 25%
load and 50% load, respectively. The increase in CO2 emissions compared to diesel fuel
is due to higher average carbon content per energy in oxygenated turpentine. The high
oxygen content of additives also leads to an increment of CO2. The increment aligns with
the reported studies [22,56,65].
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The major concern of emissions from compression ignition engines is NOX. Formation
of NOX is strongly related to combustion temperature. It is also connected to engine
operation conditions including engine speeds and engine loads, as well as fuel-to-air ratio.
Nitrogen reacts with oxygen inside the combustion chamber at high temperatures. At
temperatures above 1600 ◦C, NOX formation occurs and increases rapidly with increments
of temperature [66]. Moreover, NOX formation happens in the presence of CH radicals
at the flame front [67–69]. In this study, generally, there are slight increments of NOX
emission using additives compared to diesel as shown in Figure 10. At 25% load, the range
of increment for NOX emission was 0.5–66% compared to diesel. At 50% load, increments
of NOX emission was 0.3–7.9% relative to diesel. The increment of NOX formation is due
to higher oxygen content in oxygenated turpentine oil-diesel fuel compared to diesel fuel.
A similar finding was reported on oxygenated fuel addition in diesel [56,70].
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4. Conclusions

The performance and emission of a one-cylinder DI engine using pure diesel and
oxygenated turpentine oil-diesel (0.2% vol and 99.8% vol) blend was studied. The addition
of oxygenated turpentine into diesel affected the physicochemical properties of the blends
including specific gravity, density, aniline point, viscosities, flash point, and stability. The
acquired results lead to major conclusions as drawn below.

• The engine power shows slight increments, 0.7–1.1%, whereas the engine torque was
slightly decreased using oxygenated turpentine oil-diesel fuel compared to diesel fuel
in most conditions.

• The fuel flow rate was lower for OT0.2 compared to diesel in most conditions for low
load. The enhancement rate of fuel flow while using an additive is between 5 and
9.09 percent.

• CO emission shows a slight increment when OT0.2 was used, 1.2% on average com-
pared to diesel.

• CO2 emission increases with OT0.2 usage in diesel fuel up to 37.5%.
• NOX emission decreased by about 0.3–66% in addition to oxygenated turpentine in

diesel compared to diesel fuel.

Therefore, there are a few recommendations for future work and research that could
improve and broaden the scope of this experiment. The following suggestions could be used
to improve and gain a better understanding of the additive’s performance and emission.

• The load applied to the engine could be increased to a high-level load;
• For wider understanding of the effect of oxygenated turpentine to the performance

and emission, a larger volume of additive could be tested;
• The application of the additive could be tested in higher power and different types

of engines.
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Nomenclature

OT0.2 Diesel fuel + 0.2% of oxygenated turpentine oil
CO Carbon monoxide
CO2 Carbon dioxide
NOX Nitrogen oxides
HC Hydro carbons
DI Direct injection
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