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Abstract: One important problem in the operation of medium voltage networks is the detection of
a single-line-to-ground fault in its incipient state, when the fault resistance values are very high.
In a medium voltage (MV) distribution network with a neutral grounding resistor (NGR), one of
the methods employed to discriminate a single line-to-ground fault is the use of an overcurrent
relay with an operating characteristic adjusted according to the effective value of the current flowing
through the limiting resistor. In case of a single line-to-ground fault with a high fault resistance
value, the correct tripping settings of the protective relay require the precise computation of this
current. In comparison to the assumptions made by the models from the literature—the three-phase
voltage system of the medium voltage busbars is symmetrical and there are no active power losses
in the network insulation—the model proposed in this paper considers the pre-fault zero-sequence
voltage of the medium voltage busbars and the active power losses in the network insulation, which
is necessary in certain fault conditions where the use of the former leads to unacceptable errors.

Keywords: power distribution systems; mathematical model; fault current; single-phase fault;
symmetrical components

1. Introduction

In order to enhance the reliability of medium voltage electrical networks’ protective
schemes, the detection of a single line-to-ground fault in its incipient state, when the
fault resistance has very high values [1–6], is required. The detection of these defects and
their isolation prevent equipment damage, therefore reducing the costs of grid operation.
Single line-to-ground faults are the most common type of fault in medium voltage electric
networks and their effects on consumers depend on the neutral grounding method of
the network [7–10]. Furthermore, in medium voltage networks where overhead lines are
predominant, single phase-to-ground faults account for more than 80% of the total number
of faults [11,12]. In the mathematical models presented in the literature for the calculation
of the single line-to-ground fault current in the medium voltage electrical networks, the
phase voltage system of the medium voltage bars in the transformer station is considered
to be symmetrical. In reality, in most cases this voltage system is not perfectly symmetrical.
The European Standard (European Committee for Standards -Electrical) EN 50160 from
1995 limits the zero-sequence unbalance factor in medium voltage electrical networks to 3%.
The IEC (International Electrotechnical Commission) energy quality standards limit the
zero-sequence unbalance factor to 2% for low voltage electrical networks. The American
National Standard Institute (ANSI) does not regulate the zero-sequence unbalance factor
for medium voltage networks, but it accepts a value of 5% for voltage and 10% for current,
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respectively. In the paper it was considered that the maximum value of the zero-sequence
unbalance factor for the 20 kV network considered is 5%.

In works [13–18] are presented different methods for detecting line-to-ground faults
that occur in medium voltage electrical networks. In the case of faults with very high fault
resistance, the method of controlling the effective value of the current through the neutral
grounding resistor of the medium voltage network is more efficient [3,4,7,10,19,20].

A calculation with a higher precision of the current through the neutral grounding
resistor allows the appropriate regulation of the protections that detect line-to-ground faults
through very high resistance. For the proper setting of protective relays, it is very important
that the equations used for the calculation of this current include all the parameters that
affect its value.

For this reason, it is necessary to develop mathematical models for single line-to-
earth fault currents’ calculation that do not neglect the zero-sequence voltage existing
on the medium voltage busbars in the transformer station in the absence of fault and
also take into account the state of the insulation of the medium voltage network and the
resistance at the fault location. In the literature these parameters are usually neglected [21]
(pp. 474–507), [22] (pp. 327–334), [23,24]. In paper [25] it is shown that the insulation
state of the medium voltage electrical network strongly influences the value of the single
line-to-ground fault current in the case of the Petersen coil network. This paper analyzes
how the insulation state of the medium voltage network, the zero-sequence voltage value
U0

e of the medium voltage bus bars and the resistance at the fault location (Rt) change the
value of the fault current and the current in the limiting resistor (Rn), for resistor grounded
neutral networks.

This paper proposes a mathematical model that contains all these parameters, and
a model that complements the models presented in the literature [21] (pp. 474–507), [22]
(pp. 327–334), [23,24,26].

In the study, the real medium voltage resistor grounded neutral network from Figure 1
was considered.
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Figure 1. Simplified diagram of the medium voltage electrical network with the neutral connected to
ground through the resistor (resistor grounded neutral networks).

The meanings of the notations in Figure 1 are as follows:

• S—power source, considered source of infinite power (110 kV system);
• T1—110/20 kV transformer (nominal apparent power 25 MVA, wye (Y0) connection

on the 110 kV side and delta (∆) on the 20 kV side);
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• NTP—the own utilities transformer, with a zig-zag connection with neutral for the
primary and a wye with neutral for the secondary, transformer also used to create
the artificial neutral point of the 20 kV electrical network (nominal apparent power
600 kVA);

• L1—faulted line phase–ground;
• L2, . . . , L10—20 kV lines without fault (the number of fault-free lines supplied from

medium voltage bus bars is 9);
• Rn—the resistor used to connect the neutral of the medium voltage electrical network

to ground and limited value of fault current for phase-to-ground fault;
• Rt—fault resistance;
• K—the location of the phase-to-ground fault;
• Id—single-line-to-ground fault current.

It is considered that the zero-sequence voltage of the 20 kV bars in the transformer
station is in phase with the plus sequence voltage and its effective value changes from 0 to
1000 V, which corresponds to an asymmetry coefficient of the three-phase system of the
phase voltages of the 20 kV bus bars in the transformer station belonging to the closed
range [0–8.7%].

In insulating materials, including the insulation of medium voltage electrical networks,
located in an electric field, active power losses occur. For this reason, the electrical scheme
equivalent to a real capacitor consists of an ideal capacitor connected in parallel with an
ideal resistor (Figure 2a) [27]. This scheme is also valid for the electrical capacity between
the phase conductors of the medium voltage power line and ground. From the phasor
diagram shown in Figure 2b it can be seen that the phase shift angle between the capacitive
current (Ic ) and the voltage Uph is (90◦−δ). The angle δ represents the loss angle of the
dielectric material [27]. The insulation state of the 20 kV network is characterized by the
tangent of the loss angle (δ). If the insulation is perfect, then the tangent of the loss angle is
equal to zero, and the zero-sequence impedance of the 20 kV network is purely capacitive. If
the insulation of the medium voltage network deteriorates, then the tangent of the loss angle
increases. In this paper, the maximum value of the tangent of the loss angle of 0.105 was
considered. In the case of 20 kV cable power lines, the active component of the capacitive
current is higher than that of overhead power lines. The total capacitive current of the 20 kV
network, shown in Figure 1, is 102.5 A. This value was determined experimentally.
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diagram associated with the diagram in Figure 2a (b).

In the mathematical models presented in the literature for the calculation of the
single line-to-ground fault current in the medium voltage electrical networks, the phase
voltage system of the medium voltage bars in the transformer station is considered to
be symmetrical. In reality, in most cases this voltage system is not perfectly symmetrical.
Moreover, the rules in force accept that when the zero-sequence components represent less
than 5% of the sequence components, the three-phase system is considered symmetrical. In
the case of faults where the resistance at the fault location (Rt in Figure 1) is very high—over
1 kΩ—the zero-sequence of voltages before the fault occurs influences the current value
through the resistor (Rn—Figure 1) that connects the neutral point of the medium voltage
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network to ground. For this reason, the paper presents a mathematical model that also
takes into account the zero-sequence component of the phase voltages of the medium
voltage bars in the transformer station before the defect occurs (noted U0

e in Figure 3). The
paper justifies the fact that the proposed mathematical model is superior to those presented
in the literature. The calculation with a higher precision of the current through the resistor
that connects the null of the medium voltage network to earth (resistance Rn in Figure 1)
allows the appropriate regulation of the protections that detect phase-to-earth defects through
very high resistance.
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The Rin resistance in Figure 2a takes into account the active power losses in the
insulation of all medium voltage lines connected to the same medium voltage bus bar
system in the transformer station. If the insulation of the medium voltage network is
perfect, the resistance of the Rin becomes infinite. As the network insulation degrades, the
value of the Rin resistance decreases and the loss angle δ increases, respectively. This is
depicted in Figure 2a,b.

In Figure 2a,b the notations have the following meaning: Uph—the phase voltage of the
medium voltage network; Ic—the total capacitive current of the medium voltage network;
Icr—reactive component of the total capacitive current of the medium voltage network; Ica—
active component of the total capacitive current of the medium voltage electrical network;
Cph—phase–ground capacity of the medium voltage network; Rin—electrical resistance
equivalent to active power losses in the insulation of the medium voltage electrical network.
The use of the Petersen coil to treat the neutral of medium voltage electrical networks
becomes inefficient if the active component of the current between the phase conductor of
the network and the earth (Ica in Figure 2b) increases. From Figure 2b the current Ica is
by (1):

Ica = I ∗ tan
(π

2
− δ
)

(1)

From (1) it is found that as the total capacitive current of the medium voltage network
(denoted by Ic in Figure 2a) increases, the value of the Ica current increases; for this reason,
the value of the total capacitive current of the medium voltage electrical network must be
taken into account when choosing the solution for neutral treatment.
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2. The Mathematical Model for the Analysis of a Single Phase-to-Ground Fault

The sequence components method is used to calculate the fault current. In the liter-
ature it is shown that in the case of a phase-to-ground fault the sequence networks are
connected in series [13–18], [21] (pp. 474–507), [22] (pp. 327–334).

The meanings of the notations in Figure 3 are as follows:

• U+

e
, U0

e
—the positive, respectively zero-sequence of electromotive forces of the equiv-

alent voltage generator (Thevenin) corresponding to the 20 kV mains terminals, con-
sidered from the fault point;

• Z+

T1
—positive-sequence impedance of transformer T1 in Figure 1;

• Z−
T1

—negative-sequence impedance of the transformer T1 in Figure 1;

• Z+

L1
—positive-sequence impedance from the substation bus bars to the fault location

on the faulted line (L1 in Figure 1);
• Z−

L1
—negative-sequence impedance from the substation bus bars to the fault location

on the faulted line (L1 in Figure 1);
• Z0

L1
—zero-sequence impedance from the substation bus bars to the fault location on

the faulted line (L1 in Figure 1);
• Z+

NPT
—positive-sequence impedance of the utility transformer used to create the

artificial neutral point of the 20 kV network;
• Z−

NPT
—negative-sequence impedance of the utility transformer used to create the

artificial neutral point of the 20 kV network;
• Z0

NPT
—zero-sequence impedance of the utility transformer used to create the artificial

neutral point of the 20 kV network;
• X0

c —zero-sequence capacitive reactance of electrical network with a nominal voltage
20 kV;

• Rin—equivalent electrical resistance corresponding to active power losses in the insu-
lation of the electrical network with a nominal voltage of 20 kV;

• Rt—resistance at the fault location;
• Rn—limiting resistor used to connect the 20 kV network neutral to ground.

For the calculation of the zero-sequence current, the simplified diagram from Figure 4
is considered.
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The negative and zero-sequence network is reduced to a real voltage source that has
the electromotive voltage U0

e1
(Figure 4) and the internal impedance Z

e
(Figure 4). These

parameters are expressed as a function of those of the medium voltage network (20 kV)
using (2) and (4):

U0

e1
=

Z0
c
∗U0

e

Z0
c
+ Z0

NPT
+ 3Rn

(2)
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where Z0
c

represents the zero-sequence impedance of the medium voltage network (20 kV).

This impedance depends on the total capacitive current of the medium voltage network
and the state of its insulation. This impedance is expressed as a function of the parameters
of the medium voltage network using (3):

Z0
c
=

Rin

(
−jX0

c

)
Rin − jX0

c

(3)

The internal impedance of the equivalent zero-sequence source is expressed by (4):

Z
e
= Z

e1
+

Z0
c

(
Z0

NPT
+ 3Rn

)
Z0

c
+ Z0

NPT
+ 3Rn

(4)

where the impedance Z
e1

is expressed by (5):

Z
e1
= Z+

L1
+ Z−

L1
+ Z0

L1
+ 3Rt +

Z−
T1
∗ Z−

NPT
Z−

T1
+ Z−

NPT

(5)

For the calculation of the zero-sequence current, the node potential method is applied.
Considering the potential V

1
in Figure 4 as being equal to 0, potential V from Figures 3 and 4 is

calculated using (7):

V

 1
Z+

T1

+
1

Z+

NTP

+
1

Z
e

 =
U+

e
Z+

T1

−
U0

e1
Z

e

(6)

From Equation (6) the potential V is obtained:

V =
U+

e
Y+

T1
−U0

e1
Y

e
Y+

T1
+ Y+

NTP
+ Y

e

(7)

The admittances in (7) are expressed as a function of impedances as follows:

Y+

T1
=

1
Z+

T1

, Y+

NTP
=

1
Z+

NTP

, Y+

e
=

1
Z

e

(8)

The zero-sequence current (I0) is calculated using (9):

I0 =
V + U0

e1
Z

e

=
U+

e
Y+

T1
−U0

e1
Y

e
Y+

T1
+ Y+

NTP
+ Y

e

∗Y
e
+ U0

e1
Y

e
(9)

The zero-sequence current (I0
n
) flowing through the limiting resistor is determined

from Figure 5, its expression being given in (10):

I0
n
=

U0
e1
+ Z0

c
I0

Z0
c
+ Z0

NPT
+ 3Rn

(10)
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The zero-sequence capacitive current (I0
c
) of the medium voltage network is obtained

by applying Kirchhoff’s first theorem in the diagram in Figure 5:

I0
c
= I0 − I0

n
(11)

The zero-sequence voltage (U0
b
) of the medium voltage bus bars (20 kV) is expressed

by the relation:
U0

b
= Z0

c
∗ I0

c
(12)

3. Numerical Results

Numerical calculations and graphical representations were performed using the Mat-
lab and Mathcad programming environment In order to determine how the zero-sequence
voltage of the 20 kV bus bars from the transformer station (U0

e ) before the occurrence of the
single-phase fault, the resistance to the fault location, and the insulation state influences
the effective value of the currents I0, I0

n, I0
c the single line diagram from Figure 1 was

considered. The sequence parameters of its elements are shown in Table 1.

Table 1. Sequence parameters of the elements in Figure 1.

Z+[Ω] Z−[Ω] Z0[Ω]

The transformer T1 0.1 + j2.1 0,1 + j2,1 ∞
The own utilities transformer NTP 8.2 + j1425 8.2 + j1425 8.2 + j28.5

Impedance line L1 from the substation
bus bars to the fault location 5.3 + j3.8 5.3 + j3.8 5.35 + j5.1

The resistor that connects the network
neutral to ground 37.5 37.5 112.5

Zero-sequence parameters of the 20 kV network that depend on the state of the
insulation, given by the tangent of the loss angle (δ—Figure 2b), are presented in Table 2.

Table 2. Zero-sequence of networks 20 kV.

tanδ Z0
c
[Ω]

0.105 35.31 − j336.11
0.087 29.44 − j336.68
0.07 23.58 − j337.14

0.052 17.67 − j337.49
0.035 11.8 − j337.75
0.017 5.9 − j337.93

0 (perfect insulation) − j338

3.1. The Dependence of the Effective Value of the Currents as a Function of Fault Resistance Rt

For the analysis of the dependence of the effective values of the currents I0, I0
n, I0

c as
functions of fault resistence, it is considered that the value of this parameter ranges from 0
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to 10,000 ohms, while the effective value of the zero-sequence voltage (U0
e ) is either 0, 575 V,

or −575 V are and the tangent of the insulation loss angle (tanδ) 0.105 and 0, respectively.
The positive-sequence electromotive forces U+

e has the value 11,547 V. The range
interval of the fault resistance was divided in two, from 0 to 1000 ohms and from 1000 to
10,000 ohms. The obtained results are presented in graphical form in Figures 6–13.
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3.2. The Dependence of the Effective Value of the Currents as a Function of Zero-Sequence U0
e

For the analysis of the dependence of the currents I0, I0
n, I0

c as functions of the zero-
sequence voltage of the 20 kV bars in the transformer station, it is considered that its
effective value changes from 0 to 1000 V. Values of 500 Ω, 1000 Ω, 5000 Ω, 10,000 Ω were
considered for the resistance to the fault location. The dependence of the effective value of
the currents I0, I0

n, I0
c is shown in Figures 14–17.
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4. Discussion

From Figures 6 and 7 it can be seen that in the case of a single line-to-ground fault the
value of the current through the limiting resistance (Rn) is practically equal to the fault
current regardless of the value of the resistance at the fault place (Rt) if U0

e = 0 and the
insulation is perfect (δ = 0).

From Figure 9 it is found that when U0
e = 575 V, (5% of U+

e ), for Rt = 1000 Ω the
value of the current through the limiting resistor (Rn) is 9.6 A, and that of the fault current
is 7.7 A. If Rt = 10, 000 Ω the value of the current through the limiting resistor (Rn) is 2.6 A,
and that of the fault current is 0.8 A. Therefore, if we consider that the two currents are
equal, an inadmissible error is made.

From Figure 11 results it can be seen that when U0
e = −575 V, (−5% of U+

e ), for
Rt = 1000 Ω the value of the current through the limiting resistor (Rn) is 6.2 A, and that of
the fault current is 7.8 A. If Rt = 10, 000 Ω the value of the current through the limiting
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resistor (Rn) is 0.9 A, and that of the fault current is 0.8 A. Therefore, even in this case the
two currents cannot be considered equal, because they are very different. From Figure 11 it
can be seen that the current value through the resistor Rn is zero for Rt ∼= 4800 Ω. If a fault
of the single line-to-ground is detected by measuring the value of the current through Rn,
in such a case it cannot be detected. This result is important in the operation of medium
voltage electrical networks.

From Figure 13 it can be seen that that when the insulation of the 20 kV network
is no longer perfect (tgδ = 0.105, the delta angle is 6◦) and U0

e = 575 V (5% of U+
e ), if

the resistance at the fault location is Rt = 1000 Ω, the value of the current through the
neutral grounding resistance Rn is 9.2 A, and the value of the fault current is 7.8 A. If
Rt = 10, 000 Ω, the value of the current through the neutral grounding resistance Rn is
2.5 A, and the value of the fault current is 0.8 A.

Comparing the results from Figure 9 with those from Figure 13 it is found that the
values of the currents through Rn differ by 4.17%, and the values of the fault current are
practically the same. Therefore, for the calculation of the fault current the insulation of the
medium voltage network can be considered perfect (δ = 0), and for the calculation of the
current through Rn the network insulation cannot be considered perfect.

From Figures 8, 10 and 12 it is found that for resistors at the fault location (Rt) with
values less than 500 ohms, the value of the current through the limiting resistor Rn is
practically equal to that of the fault current.

Figures 15–17 show that the value of the fault current (Id = 3 ∗ I0) depends insignifi-
cantly on the value of the zero-sequence voltage of the medium voltage bars in the absence
of the phase-to-earth fault, which is no longer true for the current in the neutral grounding
resistor of the medium voltage network (Rn from Figure 1), respectively, for the capacitive
current of the medium voltage network with a neutral grounding resistor. From Figure 14
it is found that for Rt = 500 Ω and the loss angle of the insulation δ = 6◦, the current I0

n
increases from 14.5 A when U0

e = 0 to 16 A when U0
e = 500 V (represents 4.33% of U+

e ),
meaning an increase of 9.37%. From Figure 15 it is found that for Rt = 1000 Ω, the current
I0
n increases from 7.6 A when U0

e = 0 to 9 A when U0
e = 500 V (represents 4.33% of U+

e ),
meaning an increase of 15.56%. From Figure 16 it is found that for Rt = 5000 Ω the current
I0
n increases from 1.54 A when U0

e = 0 to 3.2 A when U0
e = 0 = 500 V (represents 4.33% of

U+
e ), meaning an increase of 51.86%. From Figure 17 it is found that for Rt = 10, 000 Ω the

current I0
n increases from 0.81 A when U0

e = 0 to 2.48 A when U0
e = 500 V (represents 4.33%

of U+
e ), meaning an increase of 67.34%. Therefore, not taking into account the voltage

U0
e in the calculation of this current leads to inadmissible errors. In order to evaluate

how the effective value of the zero-sequence voltage of the medium voltage bus bars in
normal operation influences the effective values of the zero-sequence components of the
current in the limiting resistor I0

n in %, the difference between the effective values of these
currents for U0

e = 0 (I0
n (0)) and for U0

e = 575 V (I0
n(575)), respectively, are calculated using

(13). U0
e = 575 V corresponds to an asymmetry coefficient of 5%; hence, the three-phase

system of phase voltages of the 20 kV bus bars in the transformer station is accepted
as symmetrical.

ε% =
I0
n(575)− I0

n(0)
I0
n(575)

∗ 100 (13)

This difference was calculated considering the tangent of the perfect 20 kV grid
insulation loss angle equal to 0 (perfect insulation) for tanδ = 0 and tanδ = 0.105, respectively.
The results are presented in Tables 3 and 4.
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Table 3. The insulation of medium voltage network is perfect (tanδ = 0).

Rt [Ω] I0
n (575) [A] I0

n (0) [A] ε%

0 178.2 173.8 2.47
100 58.92 56.55 4.03
500 17.53 16.44 6.24
1000 4.83 3.74 22.43
2000 3.1 1.9 38.71
3000 2.6 1.3 50
4000 2.3 0.95 58.7
5000 2.2 0.79 64.1
6000 2.1 0.65 69.05
7000 2.05 0.5 75.61
8000 2.0 0.45 77.5
9000 1.95 0.42 78.46

10,000 1.9 0.4 78.95

Table 4. The insulation of medium voltage network is imperfect (tanδ = 0.105).

Rt [Ω] I0
n (575) [A] I0

n (0) [A] ε%

0 178.1 173.9 2.35
100 57.28 55,12 3.77
500 18.32 17.23 5.95
1000 4.73 3.68 22.03
2000 3 1.75 41.67
3000 2.5 1.25 50
4000 2.25 0.92 59.11
5000 2.15 0.78 63.72
6000 2.05 0.6 70.73
7000 1.95 0.52 73.33
8000 1.9 0.45 76.32
9000 1.85 0.4 78.38

10,000 1.8 0.38 78.89

Comparing the results presented in Tables 3 and 4 it is found that the effective value of
the current intensity in the limiting resistor is strongly influenced by the effective value of
the zero-sequence voltage of the 20 kV bus bars in the transformer station, regardless of the
state of insulation. Therefore, it is necessary that the calculation of the currents I0, I0

n, I0
c

takes into account the value of the voltage U0
e . Neglecting it in the calculation leads to

very large errors, especially if the resistance at the fault location is bigger than 1000 ohms.
According to Figures 5 and 6 and Figures 7 and 8 when the resistance at the fault site is
less than 500 ohms, the influence of the voltage U0

e on the current I0
n is below 5% and can

be neglected.
In order to ascertain the influence of the insulation state of the medium voltage

network on the value of the current I0
n we compare the results from Figure 8, where

tanδ = 0, with those from Figures 12 and 13, where tanδ = 0.105. The difference between the
two values of the current I0

n is calculated using (14). The results are presented in Table 5.

ε% =
I0
n(tgδ = 0)− I0

n(tgδ = 0.105)
I0
n(tgδ = 0)

∗ 100 (14)
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Table 5. Influence of insulation state on current I0
n, when U0

e = 575 V.

Rt [Ω] I0
n (tanδ = 0) [A] I0

n (tanδ = 0.105) [A] ε%

0 178.2 178.1 0.56
100 58.92 58.11 1.37
500 17.53 17.23 1.71
1000 4.80 4.70 2.08
2000 3.10 3.02 2.58
3000 2.55 2.48 2.75
4000 2.30 2.23 3.04
5000 2.18 2.10 3.67
6000 2.10 2.00 4.76
7000 2.02 1.91 5.45
8000 2.01 1.85 7.96
9000 2.00 1.83 8.50

10,000 1.95 1.78 8.72

Table 5 shows that the influence of the insulation state of the medium voltage network
on the current I0

n is much lower than the influence of the voltage U0
e . The difference between

the values of the current I0
n when the network insulation is perfect (tanδ = 0) and imperfect

(tanδ = 0.105), when U0
e = 575 V and Rt = 10,000 Ω, is 8.72%. According to Tables 3 and 4 the

difference between the values of the current I0
n for U0

e = 575 V and U0
e = 0, if Rt = 10,000,

is about 79%. As a result, in the current calculation of I0
n, the state of the insulation of

the medium voltage network can be neglected, but the value of the voltage U0
e cannot be

neglected even if its value represents less than 5% of U+
e .

5. Conclusions

The main conclusions resulting from the study are:
(a) According to Figures 6, 8, 10 and 12, for fault resistance (Rn) values smaller than

500 Ω, the current through the limiting resistor can be calculated using the model presented
in the literature, and the zero-sequence voltage of the medium voltage bus bars in normal
conditions can be neglected. The error computed using (13) is smaller than 6.24%, which is
acceptable considering the degree of precision for the values of the parameters from Figure 3.

(b) Figures 14–17 show that the zero-sequence voltage of the medium voltage bus bars
does not significantly influence the values of the zero-sequence current at the fault location;
thus, implicitly the ground fault current can be neglected in the calculation. For example,
for a perfect insulation (loss angle of 0◦) and a ratio of U0

e to U+
e + of 5%, the error is 4.61%,

whereas for a loss angle of 6◦ (tanδ = 0.105) and a ratio of U0
e to U+

e of 5%, the error is
4.23%. Therefore, the ground fault current can be calculated using the model presented in
the literature.

(c) According to Tables 3 and 4, if the fault resistance (Rn) values range from 1000 to
10,000 ohms, the calculation of the current through the limiting resistor using the model
presented in the literature leads to unacceptable errors. For example, if Rn is equal to 1000
ohms and tanδ is 0, the error given by (13) is 22.43%, whereas if Rn is equal to 10,000 ohms
and tanδ is 0.105, the error is 78.89%, hence the need for the calculation of the currents
I0, I0

n, I0
c that takes into account the value of the voltage U0

e . In this case, in resistor
grounded medium voltage networks where single line-to-ground faults are detected by
measuring the effective value of the current flowing through the limiting resistor, it is
necessary to use the model presented in this paper.

(d) The numerical results from the model presented in this paper indicate that, in resistor
grounded medium voltage networks, it is necessary to consider the zero-sequence voltage
of the medium voltage bus bars in normal condition, thus ensuring the correct setting of the
protective relay used to detect single line-to-ground faults under all circumstances.

(e) Regardless of the model used for the calculation of the effective values for I0, I0
n, I0

c ,
the maximum differences between these values are obtained either when U0

e is 5% of U+
e

and the offset is 0◦ or when U0
e is −5% of U+

e and the offset is 180◦.
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(f) The difference between the effective values of the current flowing through the
limiting resistor, if the offset between U0

e and U+
e is either 0◦ or 180◦ and the fault resistance

ranges from 0 to 10,000 ohms, for both δ = 0◦ and δ = 6◦, is smaller than 8.45%, which
is acceptable considering the degree of precision for the values of the parameters from
Figure 3. This leads to the conclusion that the U0

e and U+
e can be considered in phase for

the calculation of this current.
(g) The influence of the insulation state on the current through the limiting resistor

is significantly lower in resistor grounded medium voltage networks than in resonant
grounded networks. For example, according to Figures 6, 7, 12 and 13, for fault resistance
values of 0 and 5000 ohms, the difference between the effective values of the zero-sequence
current at the fault location is 0.391%, for δ = 0◦, and 4,23%, for δ = 6◦, whereas in a
resonant grounded medium voltage network, it is up to 38.1% [13]. Therefore, in resistor
grounded medium voltage networks, the loss angle δ can be considered equal to 0◦, which
corresponds to an infinite Rin in Figure 3.
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