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Abstract: Recent population migrations have led to numerous accidents and deaths. Little research
has been done to help migrants in their journey. For this reason, a literature review of the latest
research conducted in previous years is required to identify new research trends in human-swarm
interaction. This article presents a review of techniques that can be used in a robots swarm to find,
locate, protect and help migrants in hazardous environment such as militarized zone. The paper
presents a swarm interaction taxonomy including a detailed study on the control of swarm with and
without interaction. As the interaction mainly occurs in cluttered or crowded environment (with
obstacles) the paper discussed the algorithms related to navigation that can be included with an
interaction strategy. It focused on comparing algorithms and their advantages and disadvantages.

Keywords: swarm mobile robots; human-swarm interaction; autonomous rovers

1. Introduction

The study of mobile robots swarm has reached a high level of maturity including
human-swarm interaction (HSI) [1]. Unlike most existing robotic systems, swarm robotics
bear a very large number of robots and promote scaling, which implies that the swarm must
work regardless of its size (from a certain minimum size). Their number varies from fifty to
a hundred robots. Each robotic unit making up the swarm is easier to reproduce and replace
if there is a problem (a hardware failure, a bog, energy storage and management failure,
etc.). Favored forms of communication are the use of local communications, infrared or
wireless. Robots communicate with each other both for decision making and for sharing
information about their perceived environment. The redundancy of perceived information
promotes the stability and robustness of the system. This implies the capacity of the swarm
to continue to function despite the failures of certain individuals composing it and/or the
changes that may occur in the environment. The swarm is able to adapt in a better way to
its environment compared to an external disturbance. This flexibility implies a capacity to
propose solutions suitable for the tasks to be carried out. However, some issues arise as the
number of sensors and data limit the capacity to analyze and find an analytical solution.
Moreover, due to a lack of standardization in methodologies, software and hardware,
swarm has less real-world applications [2]. Moreover, each robot composing the swarm has
a simple individual performance. The robots are almost identical to each other, and this is
common in most of swarms. They are controlled in decentralized mode. For swarm systems
in decentralized mode, the individual performance of each robot is asynchronous. This
means that the sequence of their perception-decision-action loop (sensing, processing, until
servomotor actions) is performed independently of other robots. They do not have a global
knowledge of the system in which they cooperate. A swarm improves the execution of
complex task when decentralized sensing is required compared to a single robot. Examples
are in applications such as field exploration, searching for a target, surveillance or rescue.
This is possible because of their number as well as their group intelligence which allows
distributing tasks between robots in the swarm. These various characteristics of the swarms
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of robots allow them to have certain properties compared to simpler and less complex
robotic systems.

Despite all of these proprieties, most modern mobile swarms are controlled by one
or more operators. The operators must follow the evolution of robots, and influence their
performance: if necessary, they should assign them a different goal to achieve. There are
many problems seen in the implementation of more automated robots swarm. One of
them, and not the last, is to find an optimal balance between the individual command of
a robot and the overall performance of the swarm. The robot must have enough liberty
to perform its actions, and also comply with the aims and goals of the swarm. Another
important problem is the planning of the trajectory. The swarm must ensure that each
robot which composes it is moving to the right direction and avoids obstacles present on
the road. There is massive literature on this subject of simple robotics systems. There are
many types of planning suggested: local planning and overall planning. The local one
works on the assumption that the robot does not have all the information about its position
and that of its target. Therefore, it must progress towards its target with the information
it is detecting and it is looking for as it progresses. On the contrary, the overall planning
is only possible if the robot knows the entire environment between its position and the
targeted one. The first planning is often preferred because the environment in which robots
are progressing is variable.

A large number of algorithms for simple robotic systems exist for this purpose; most of
them are inspired by the animal or physical world such as genetic algorithms or potential
fields. There is currently no literature review of algorithms used for moving swarms
of mobile robots interacting with human, such as an operator or a person needing help.
Moreover, less research works are interested in using swarm to help migrants in hazardous
environment. To better understand design methodologies, taxonomies related to design,
analysis methods and collective behavior were previously addressed in [3]. This review
will therefore aim to fill the information gap on interaction and trajectory planning concepts
for robots swarm by identifying key issues and future work. First, we will introduce our
article selection methodology for our review in Section 2, and secondly, we will present in
detail in Section 3 the concept of robots swarm, specifically the targets, goal or objectives
that they are asked to achieve. Section 4 is the main contribution of the paper and it will
focus on the interaction media between a human and a swarm of robots. This section
will help to better understand the behavioral outlook of a swarm dedicated to helping
people on the move. We will propose taxonomy of these algorithms as well as a discussion
detailing our conclusions in Section 5. Finally, we will conclude our discussions on the
remaining problems and issues which have to be resolved and future research to be carried
out in Section 6.

2. Methodology

In this study, an in-depth two-step search was carried out on swarms of mobile robots,
both on the means of interaction between these and the operator, as well as the various
algorithms that can exist to make them navigate in an open and cluttered environment.
First, some research was done based on the Scopus database for articles related to the
domains of the swarms of robots. Keywords were used such as ‘swarm interaction hu-
man’, ‘human swarm mobile robot interaction’, ‘swarm robot interaction human’, ‘mobile
swarm intelligence’, ‘swarm motion planning’, ‘swarm outdoor’. An attempt was made
to find papers related to rover helping migrants journey, but the result is limited to one
paper related to rovers swarm. However, four papers related to UAV along borders for
surveillance and policing were found. Secondly, the articles related to the subject of this
study were kept manually.

The study selection criteria for scientific articles are based on the definition of a swarm
of robots. Indeed, the authors only selected swarms of robots completely or in mobile
parts on the ground. Some of the selected references are related on multi-robots system in
order to compare their algorithms. Drones (or UAV) swarms are not considered because
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many of their characteristics are different compared to mobile homogeneous robots in a
swarm. For instance, due to less power autonomy and weight load of sensors, they need
different strategies to pursue their goals. The authors have read the selected articles and
those dealing with either interaction between a human and a swarm, or algorithms that
make them to navigate in an open and cluttered environment.

After applying these criteria, 12 articles concerning the human-swarm interaction and
60 articles concerning the use of algorithms which can further allow a swarm to navigate
in an open environment with obstacles were found. These articles will be analyzed and
discussed in this survey. The study will provide answer to the following research questions:

1. Which media are currently used to control a swarm of robots?
2. What are the constraints to the use of each of the supports?
3. How does interaction support influence the relationship between the robots swarm

and humans?
4. How does this support influence the level of autonomy of the swarm?

The taxonomy of these interaction supports is presented in Section 4 as well as the
answer to the questions above. Section 5 will focus on the different algorithms used by
mobile robots swarm in an open and cluttered environment. The study will provide answer
to the following questions:

1. What are the existing algorithms?
2. In what ways does the algorithm used influence the performance of swarm?
3. In which contexts can each algorithm be used?
4. What level of autonomy does the algorithm offer to swarm?
5. Which constraints of use does the algorithm impose on swarm?

3. Swarm of Robots

The design and manufacturing of a robots swarm must, before anything else, be made
as a function of its use. The swarm must be adapted to the task it does; otherwise the
aim may not be achieved. Through the reading of these articles, we have arranged the
activities of the swarm into three categories: (1) navigation and trajectory, (2) task to do
and (3) maintaining the structure of the swarm aimed for the conception of these swarms.

3.1. Navigation and Trajectory

This category is the one that the majority of swarms of mobile robots must accomplish.
It is divided into two subcategories: exploration/avoidance of collision, and reaching a
targeted position given by an operator or by the swarm itself. The existing algorithms for
achieving this objective are detailed in Section 5.

3.2. Swarm Robotics Tasks

One of the advantages of robots swarms is that they can do many tasks faster by
dividing the work. Seven tasks done by swarm are presented in this paragraph and papers
which are doing these tasks are listed:

Localization of the target :
Husnawati et al. [4] developed a robots swarm to identify a gas leak. Aniketh et al. [5]
set up a swarm to find people who needed help. The literature review by Senanayake
et al. [6] and Saeedi et al. [7] describes most of the algorithms which can locate a
target. Garzn et al. [8] created a swarm capable of detecting a chemical source or
radiation source, particularly for mines. Fricke et al. [9] built immune system T cells
to develop a target search algorithm that can be applied to robots swarm. Zhang et al.
[10] developed a swarm capable of assisting a hunter in locating a target for hunting.

Surveillance of a region:
Hacohen et al. [11] created a swarm capable of intercepting targets which are not
desirable in a surveyed zone. In [10], the robots swarm also allows the survey of the
zone with the aim of finding prey to hunt.
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Rescue:
In [5], the swarm can locate a person in order to warn the emergency services so as to
step in. The possibility of location offered by [6] and [7] also helps to warn emergency
services if a person in danger is found. Gutierrez et al. [12] proposed a humanitarian
swarm platform of multifunctional robots (land, sea, air) that helps to rescue people
in danger during natural disasters.

Follow-up of a target:
The literature review by [6] describes the existing algorithms for the follow-up of a
target by a robots swarm.

Prevention and detection of a forest fire:
The literature review by [7] proposes a robots swarm which is capable of detecting
and warning emergency services in the case of forest fire.

Maintenance of installation:
The literature review by [7] also proposes a robots swarm which can ensure the
maintenance of an installation.

Transport of material/cooperation:
Contreras-Cruz et al. [13] created a swarm of mobile robots that can transport objects
in warehouses. Ardakani et al. [14] offer a swarm of robots capable of transporting
plastic plates. Sun et al. [15] also developed a swarm of robots that can carry objects
in a warehouse.

3.3. Maintaining the Structure of the Swarm

The structure of the swarm considers its geometric formation in the space under some
constraints such as energy storage and management, geometry of the environment while
exploring different zones, signal strength to share wireless data, etc. Then, these constraints
were detected to maintain the structure of the swarm:

Adapting the size of the swarm:
Zelenka et al. [16] propose an algorithm capable of adapting the size of a robot swarm
during the exploration of a zone. When there are too many robots in the swarm
located in a same zone of proximity, they can decide to explore another zone.

Data sharing:
Dang et al. [17] chose a strategy to share all the data concerning the environment of
their robot swarm to make some exploration of ground.

Coordination of the swarm:
In [13], the use of an algorithm of colony of artificial bees allows the maintenance of
the cohesion of the swarm. Bandyopadhyay et al. [18] created an algorithm using
the properties of the chains of Markov to ensure the stability of their swarms. Araki
et al. [19] leaned on an algorithm that optimizes the movement of a swarm of robot
taking into account the environment of the mobile and flying robots, battery voltage
and state of charge (remaining battery energy) as well as the objective to achieve.
Hattori et al. [20] present an algorithm of estimation of position for mobile robots to
maintain their formation during their movement. Luo et al. [21] use an algorithm of
movement of a swarm of robots in which a robot finds its way in relation to the others
robots and moves forward randomly. Das et al. [22] proposed an improvement of
the algorithm Particle swarm optimization to maintain the coordination of swarm.
Bandyopadhyay et al. [23] used a probabilistic approach to lead a swarm of mobile
robots. Liu et al. [24] presented a swarm of mobile robots capable of adapting to
their environment by ensuring that they agree with each other thanks to the data
collected on their environment. Poundmaker et al. [25] used an algorithm that keeps
the formation of the swarm of robots due to the position of the leader and that of the
robots relative to each other. Wallar et al. [26] used the combination of potential fields
and probabilistic methods to maintain this coordination. Kim et al. [27] created a
Firefly algorithm to satisfy this objective. Chang et al. [28] developed an algorithm
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capable of maintaining the formation of a swarm of mobile robots subjected to strong
disturbances due to wind.

Energy optimization:
Jabbarpour et al. [29] used an improved ant colony algorithm to optimize the energy
consumption of a mobile robots swarm. As noted earlier, Araki et al. [19] used an
energy optimization algorithm for its swarm.

3.4. Conclusions

As we have seen, swarms of robots can have many purposes depending on their
ability to achieve a task. All of these tasks and actions can be done if a swarm is able to
move itself into the environment of its mission. To do these, the swarm needs algorithms
to plan its path and motion. The next sections will present many algorithms developed to
achieve these goals, according to the type of swarm. We will do a taxonomy to sort them
and compare them between each other.

4. Interaction Models for Human Being-Swarm

The interaction between a human and a swarm can pose many problems and is-
sues. Indeed, there are many obstacles that can prevent the swarm from achieving the
human objective:

The human objective:
This must be attainable by the swarm according to its capabilities. If the target is too
complex for the swarm functionalities, it will not be achieved.

The means of communication:
To communicate their objectives, the operator must use an appropriate means of bidi-
rectional communication that enable both the operator and swarm to be understood.

The travelling environment:
Depending on the environment, there are different problems involved in moving a
swarm. In outdoor sites, weather conditions and fields of deployment are the main
challenges to overpass. In indoor areas or building, communication between the
swarm and operator can be very difficult due to loss of communication signals. The
difficulty also increases if the operator does not have a line of sight on the swarm, and
if he controls it through a graphical interface that gives him the essential information.

The level of autonomy of the swarm:
If a swarm is very dependent on the operator’s decision, the operator must constantly
observe the evolution of the swarm and guides it swarm in its task. If the swarm
has a high level of autonomy, this would not be the case. An optimal operational
shared autonomy between a swarm and an operator depends on the complexity of the
mission and environment. An operator should only submit commands at a strategic
level. Of course, a complex mission could need submitting commands at a tactical
level. The strategy chosen will influence the number of robots deployed.

The number of robots composing the swarm:
With more robots composing the swarm, it becomes more difficult for the operator
to control the swarm behavior considering all constraints such as battery voltage or
state of charge, the current state of the mission and what has been accomplished in
the mission.

4.1. Swarm Interaction Taxonomy

This section will present the studies that have been conducted for this purpose.
Figure 1 shows a possible taxonomy for these different means of interaction depending on
the support used. In this figure, hybrid method is possible such as using Augmented Real-
ity to see the swarm, Haptic to control the structure of the swarm and electrocardiogram to
control, as an example, the velocity and orientation of the swarm.
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Figure 1. Taxonomy of interaction support for mobile robots swarm.

In their article, Bowley et al. [30] proposed to control a swarm of robots from a phone
or tablet with their touch screen. It has several functions that can be used due to finger
movements (touching or removing fingers, scanning the screen, enlarging or reducing
with two fingers, etc.). With this interface, the operator uses an algorithm to influence the
behavior of the swarm through several attractive or repulsive beacons:

The attractive beacon:
It attracts the robots swarm towards its position.

The obstacle beacon:
It emits repulsive force so that the robots avoid going to its zone and thus avoid
collision with the obstacle.

Recall Beacon:
Similar to attractive beacon, it is used in an emergency or at the end of a test exercise.

The management beacon:
It is supposed to lead the swarm towards this target.

The beacon circle:
It is a mix between the attractive, obstacle and the management beacon. It is used for
zone control.

Dividing or multiplying beacon:
It is used to change the perception of the environment of robots in an area in order to
change their behavior accordingly.

Each of the beacons located on the screen has a modifiable influence radius. Simula-
tions were carried out to validate the operation of this concept, which allows the behavior
of a swarm of robots to be intrinsically modified.

Crandall et al. [31] developed an interface that allows an operator to interact directly
with a swarm of modeled mobile robots following a bee colony. This is done in order to
share decision making process and offer fault-tolerant capabilities. Thus, the goal of the
swarm is to find quality sites to collect resources. Each robot behaves like a bee. It can enter
different states: exploration, observation, pause, evaluation and dancing as a message.
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Each bee will initially explore an area at random. If she encounters a potential site, she will
evaluate it and go back to the colony to dance more or less according to the quality of the
site. Then she rests before starting the cycle again. Observers watch bees dance to visit
potentially interesting sites. If many bees have detected a good site, the colony will exploit
it. Initially, the project performed computer simulations of a bee colony. Subsequently,
they wanted to improve the safety and speed of bee exploration. To do so, they allowed an
operator to place beacons to guide bees in their tasks, and then they evaluated the impact
of this interaction on the robots swarm. From this experience, they were able to define
several categories of control on the swarm:

Parametric control:
It can be achieved by exciting or inhibiting the behavior of bees in their exploration
whether by specifying a direction of research or altering their speed.

Association control:
The operator can directly control one robot of the swarm, which will then influence
the overall swarm.

Environmental monitoring:
This is done by placing attractive or repulsive beacons in the bee environment.

Strategic control:
It is to ensure that the swarm changes the allocation of its own goal in order to select
the best strategy to adopt. In this case, it would be to reassess the quality of a site after
a certain operating time.

In conclusion, Crandall et al. [31] admit that these methods of influence work well
if the operator knows exactly how to give the tasks to be carried out by the swarm and
accepts sharing its control with others.

Kim et al. [32] developed a swarm of mobile robots capable of tracking people’s move-
ment. The system consists of three steps: (1) sequence of operation, (2) receiving/sending
messages and (3) approximate location of robots. This interaction takes place through a
connected watch and a connected belt. The swarm is composed of a leader who receives
orders from the watch via a Bluetooth Low Energy (BLE) communication. The belt is used
to assess the distance between the person and the swarm through infrared communication.
The leader then sends instructions to the other robots by radio and infrared communication.
The authors created the communication protocol for this swarm in order to keep it in
formation. This system works for a small number of robots. Indeed, the system is tested
with real mobile robots and realized that communication becomes noisy if the number of
robots is high. The user can choose the formation of the swarm when moving according to
several prefixed patterns.

To interact in various ways with a swarm of robots, Ferrer [33] made an enumeration
of various physical supports existing for this purpose. First of all, he takes a gesture
taxonomy from the existing hand to be able to apply it to a swarm of mobile robots. This
gesture recognition is done via a camera that associates the gesture with a command
to be made for the swarm. Of course, hand gesture could also be executed with an
electromyography (EMG) such as with an eight-channel armband [34]. In their paper,
Mendes et al. described how they can obtain better results by selecting the best feature
reduction process of EMG signals data before the classification of gestures. Then another
method of communication with the swarm is presented. Several studies have been carried
out on the interaction between a swarm and a human via the haptic, especially with the aim
of obtaining feedback from others instead of using visual information to help the operator
in his control. The operator uses some haptic sensors which send some feedback to him.
It does not make a human being an external operator of the swarm, but rather a special
member of the swarm. Both methods are hard enough to put in work and cannot allow
interacting with a large swarm. Subsequently, various means of interaction by augmented
reality are presented. Finally, Ferrer concludes on portable tools on a human that can act as
a support for interaction between a swarm and an operator. First, a gesture recognition
can be done by an armband that can recognize the gestures of the fingers, hand and wrist
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thanks to the muscles of the forearm. The armband used was a Myo armband by Thalmic
Labs. With each of these gestures, we can associate a command with the swarm. Then,
usually for gesture recognition, it is possible to use the Leap Motion [35] to detect the
movement of the fingers via infrared light. It identifies the gestures of the fingers, their
movements and their spatial coordinates if necessary. It is a precise tool that can provide
a wide range of control for an operator. The last physical support presented is a vest for
video game players acting as a connected garment. It is equipped with haptic devices that
allow the user to feel immersed in a chosen environment. Ferrer concludes by comparing
the advantages and disadvantages of different media of interaction.

In their work, Mc Donald et al. [36] developed a method of interaction with a swarm
of mobile robots based on haptic. The purpose of the robots swarm is to carry out patrols
and encircle buildings at the request of an operator. When robots encircle a building, they
are represented by virtual force fields which then allow the formation of the swarm to be
represented by a flexible virtual ring. The operator can perform three types of handling
when the robots are in encirclement mode:

Shape exploration mode:
The haptic tool allows the operator to feel the shape of the swarm without changing it.
This is possible because of the virtual force field created by mobile robots.

Shape manipulation mode:
This mode allows the operator to modify the formation of the swarm by means of the
haptic remote control which changes the shape of the virtual ring.

Spacing mode:
In normal mode, the spacing between each robot is identical. This mode allows the
operator to change these values. The operator also has actions to perform during the
patrol of mobile robots.

Near travel mode:
This mode activates if the swarm has selected its target position to be reached and it
is not in encirclement mode. Its purpose is to allow the operator to reach the target
position faster.

Shape exploration mode:
During the work of the swarm, the operator may choose to feel the formation chosen
by it without modifying it.

Mc Donald et al. were able to simulate their systems in order to validate them and
test the effects of this physical medium on the performance of the operator’s controls on
the swarm of mobile robots.

Kapellman et al. [37] suggested using Goolge Glass as physical support. These allow
an operator to guide a swarm of robots for the transportation of an object. One of the robots
is appointed as the leader of the swarm, the one that the operator can influence. It acts as an
intermediate target which the other robots are going to recognize and follow. The operator
has the possibility of choosing the leader among the robots of the swarm. He can also check
the state of each robot by selecting them and communicating orders via Bluetooth:

Starting the task of the robot:
It is the basic behavior of the robot that is activated.

Becoming the leader:
Movement of the robot can be directly controlled by the operator (go ahead, back,
turn right/left, stop).

Overdrive mode:
The robot must ignore all commands from a remote control other than glasses.

Disconnection:
Via connection.

These instructions can be given by the voice command or by touching the glasses.
This support could be tested with a real swarm of mobile robots. This medium allows
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the operator to have free hands to perform other actions. It was also demonstrated that
interaction allows for dynamic selection of the target to reach.

In their work, Mondada et al. [38] decided to process Control operator’s electroen-
cephalography (EEG) signal so that it can select a swarm’s robot to control it. It is based
on the stationary state of the potential evoked by vision (Steady-State visually evoked
Potential: SSVEP). This detection is done by flashing light on each robot, allowing knowing
whether the selected robot is the one the operator wants. For this, an EEG acquisition
helmet is placed on the operator’s head. Three parameters are important to extract the
SSVEP signal from the EEG: the flashing frequency of the lights, the color of the lights
and the distance to the stimulus. Mondada et al. [38] used existing literature to select the
ranges of parameters to be tested. The blinking frequencies were chosen according to [39]
study. The distance between the target and the operator was chosen according to [40] study.
For the color of the LED, the scientific community is not able to give the best one (there
is some debate between white, red, green and blue). Several tests were conducted with
individuals. The results indicate that the success rate varies greatly from person to person
(on average 75% success with a standard deviation of around 15% success depending on
the frequencies used). More trained operators are in this process, the better the results
will be. This method also delays for several seconds in the recognition of the signal, as
does gesture recognition by image or voice. The main disadvantages are the uncontrollable
factors for a real application such as the personal attitude of the different operators, the
distance from the robots, the brightness, etc.

In their article, Setter et al. [41] used the haptic to obtain feedback about the swarm
of mobile robots. The swarm used is made up of a leading robot and other followers
robots that maintain a given formation. The operator can control the speed of the leader,
which can influence the behavior of the swarm. This is done through a haptic device.
The feedback given by the force of the haptic device indicates to the operator whether his
control is good or bad for the swarm, that is to say whether the speed of the following
robots is more or less different from that of the leading robot. This information allows the
operator to adjust the leader’s speed. The system was successfully experimented with a
real swarm of mobile robots.

Podevijn et al. [42] developed a gesture recognition interface capable of ordering a
swarm of mobile robots. A Microsoft Kinect RGB-D sensor is used for body tracking and
to identify the gestures of the user This interface allows the operator to dedicate himself
fully to the management of his swarm. The contribution is to have a simple command
interpreted by the swarm of decentralized robots and also to allow it to give some feedback.
Since a swarm is too difficult to command directly, the swarm could be subdivided it into
several sub-swarms. The following commands are used by the operator:

Direct:
The operator can guide a sub-swarm to a target position.

Stop:
The sub-swarm stops.

Division:
Creation of new sub-swarms.

Merger:
Gathering of two sub-swarms.

Selection:
The operator chooses the sub-swarm with which he wants to interact.

Each of these controls is associated with a gesture of the operator’s arms. Eighteen
participants were able to test this interface with a real swarm of mobile robots.

Kolling et al. [43] provided a 2D graphical interface, which is optimized to display
only important information for the operator, to simulate interaction with a swarm of mobile
robots. The robots move following Voronoï graphs based on [44], in the environment to be
explored. For each new information retrieved, they must return to a departure station that
will update the swarm movement card. The operator can visualize these movements from
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his interface and interact with a mouse on the swarm via a few commands: stop, go to a
zone, appointment point, deployment, random movement, update data, leave a zone. It
can also use other means of control, such as a robot selection rectangle, which defines a
sub-swarm that is obedient to different commands of the swarm in general, and also places
a beacon that attracts robots to its area.

Diana et al. [45] used a joystick made of modeling paste as a physical medium for
interaction. This allows the operator to control the formation of the robots swarm with the
geometry of the modeling paste. It uses modeling paste to define the desired formation
for its swarm. A camera is used to take the form (scan the geometry) and compare it to
a library for the identification and classification of the geometry. Once this is done, the
information is sent to the swarm that performs the desired formation using a method that
minimizes the energy of the system during its displacement. Simulations were carried out
with a real swarm of mobile robots.

Alessandro et al. [46] developed a human-swarm interaction based on the recognition
of hand gestures. For this, 13 gestures was used and 70,000 images of these gestures
was collected by cameras representing the position of all the fingers of the hand. These
data were used to train a vector support machine that will perform the classification of
the 13 gestures by affecting a probability of belonging to a category of the gesture to be
recognized. Every swarm robot has a camera on it. The robot move around the operator to
improve their point of view and facilitate gesture recognition. The robots then share the
information obtained by their classification and the swarm makes a decision afterwards.

4.2. Discussion

Table 1 shows a summary of the various interaction media. Through these various
articles, we have been able to observe the diversity of the interaction between human and
swarms. These have several advantages and disadvantages depending on their nature.
One of the advantages is the ability to control the formation of the swarm in order to adapt
it to its changing environment. Despite this control, the operator must always be able
to explicitly give a target to the swarm. There is no interaction support that can do this
implicitly. This has an impact on the autonomy of the swarm, which certainly remains
at a fairly high level but cannot be completely autonomous in its decision-making. Its
autonomy is limited to planning its displacement and mastering its deployment training.
The following section will be devoted to algorithms that can perform these actions.
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Table 1. Summary of the various supports of interaction.

Papers Way of Interaction Type of Interaction Interaction Context Swarm Autonomy Advantages Usage Constraints

Qin et al. [30] Touch screen on the phone or
tablet Beacon to influence the swarm Change behavior of the swarm

to easily explore areas
The swarm needs only a target

to work

Change global behavior of the
swarm without complex

commands

Not allow selecting robots
separately

Crandall et al. [31] Graphic interface Change parameters of
hub-based colonies

Change behavior of the swarm
to easily explore areas

The swarm needs only a target
to work

Allow us to have a deep control
on the swarm behavior

Need knowledge about the
algorithm to use it correctly.
Not allow selecting robots

separately

Kim et al. [32] Smart watch/belt Command send to the leader Control the form of swarm
during his motion

The swarm control his motion
and the form ordered

The operator controls the
swarm’s form

Not possible to control the
motion of the swarm and to
select one robot separately

Ferrer [33]
Hand gestures by

camera/haptic/Myo
band/connected vest

Command to control the
swarm form Feel the feedback

of the swarm

Control the form of swarm
during his motion

The swarm control his motion
and the form ordered

The operator controls the
swarm’s form and have some

feedback

The operator should see the
swarm and each of his gesture

could be interpreted as a
command

Mc Donald et al. [36] Haptic Control the form of the swarm
and change it if needed

Control the form of swarm
during his motion

The swarm needs only a target
to work

Many people can control the
state of the swarm at the same

time

The operator cannot see the
swarm. He can only feel

feedback provide by the swarm

Kapellman et al. [37] Google glass Command send to the leader
Allow us to guide the swarm
during the transportation of

objects

The swarm needs a regular
monitoring to achieve his target

The operator can select any
robots and can send many

orders to the leader

The operator should follow the
swarm during his motion. He

also should see it

Mondada et al. [38] EEG signal Select one robot by thought
and vision

Allow us to select a robot in
order to perform a task

The selection depends of
the operator

The operator doesn’t need to
do gesture to interact with the

swarm

This method is difficult to
apply and needs learning
(depend of the operator)

Setter et al. [41] Haptic Command send to the leader
Allow us to control the

behavior of the swarm through
the leader

The swarm needs a regular
monitoring to achieve his target

The operator can change
behavior of the swarm through

one robot

The operator should follow the
swarm during his motion. He

also should see it

Podevijn et al. [42] Gestures recognition Control the swarm form The operator can give order by
selecting one or several robots

The swarm follows the choice
of the operator

The operator can guide the
swarm as he wants

The operator should check the
behavior of the swarm

constantly

Kolling et al. [43] Graphic interface Give order to the swarm (shape
and target)

Change shape of the swarm
during his motion to easily

explore areas

The swarm needs only a target
to work

The operator can select any
robot and give him several

orders

The operator should follow the
swarm during his motion. He

also should see it

Diana et al. [45] Joystick and camera Control the form of the swarm Allow us to select the form of
the swarm

The swarm follows the choice
of the operator

The operator can select any
form for the swarm

Quite some time is required
before a command is executed

by the swarm

Alessandro et al. [46] Gestures recognition Decision taken by the swarm Give some orders to robots by
gestures

The swarm follows the choice
of the operator

The operator can select any
form for the swarm

The operator should see the
swarm and make an exact
gesture to give an order
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5. Algorithms to Motion a Swarm in an Open Environment with Obstacles

There are many challenges in moving swarms of robots, especially if their environment
is crowded. Because of this uncertain environment, uncertainties may arise when operating
mobile robots. These may be due to vagueness of sensor measurements, lack of environ-
mental knowledge and lack of control of external disturbances on robots. It all depends on
the set up of the swarm as well as the type of environment in which they operate.

One of the big challenges today is to allow robots to operate in an environment without
having to adapt them to the environment, i.e., robots are self-sufficient to carry out their
mission. In these circumstances, ensuring the performance of a task under the conditions
of safety and efficiency requires consideration of the environment as it can be perceived
by embedded sensors. In addition, the swarm must be equipped with algorithms that
enable it to move and perform the tasks it must perform. This section will be devoted
to the presentation of existing algorithms for this purpose. We will describe them and
discuss their effectiveness using a high level taxonomy of these algorithms as presented in
Figure 2.

Mobile robots swarm 

algorithms

DecentralizedCentralized

Deterministic

Probabilistic

Heuristic

DistributedUndistributed

Deterministic

Figure 2. Taxonomy of algorithms for mobile robots swarm.

5.1. Centralized Swarm

A centralized swarm is a swarm controlled by a leader, which can be a robot of the
swarm or a distant server which sends command to the robots. The leader can also be a
human operator sending the commands to the swarm. In this section, we will present all
the algorithms developed for this kind of swarm.

5.1.1. Deterministic Algorithm

Vaidis and Otis [47] created a swarm which is capable of adapting it shape according
to the displacement of a group of migrants. The main purpose of this swarm is to protect
these people from an attack when there are moving. The swarm is commanded by a leader
which analyzes the situation and sends some commands to all robots. The algorithm used
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to control the position of each robot is divided into three steps. The first step is to find
the position around the people each robot will have to reach. The position of people is
processed and allows the swarm to create a convex hull around them. Each robot has
a position to reach on this convex hull, where these positions are uniformly distributed
according to the number of robots. Then, a path planning algorithm is used to compute the
path of each robot in order to reach their targeted position. The path planning used a Vector
Field Histogram (VFH) method [48] to detect obstacles and bypass them. The last step is
an algorithm which takes the result of the VFH algorithm, and converts it into a motor
command for each robot. This last algorithm used a fuzzy logic to find the good command
according to the target position and the obstacle to be avoided. With all these three parts,
the leader is able to control all the robots and move them around the group of migrants.
Vaidis and Otis also used a state detection algorithm in order to detect some issues with
robots. This algorithm used a Convolutional Neural Network (CNN) to process the data
coming from an Inertial Measurement Unit (IMU). The data of the IMU are converted into
a picture, then these pictures are analyzed by the CNN to find the state of the robots. Four
states were studied: normal state, fallen state, skid state and collision state. The result
shows a good performance of the detection compared to other methods used. The goal
of this detection is to find an issue with one robot, and then replaces it by another one
of the swarm to do the task it cannot do anymore. The swarm was tested in an indoor
environment with real robots.

Qin et al. [49] developed an algorithm in three (3) stages which can make this mission
for a marine swarm of robots: assignment of the objectives, the planning of the trajectory
and order of engines. An operator is necessary to oversee the swarm. This one can send
simple orders to robots, for example the target, the goal or the objective to achieve. The
first stage tries to position a robot in relation to the others. A central point is located and
their position is defined by the variation of their distance face to face from this point. Then,
the algorithm tries to define the best orientation and the speed to be given for robots. To
avoid collisions between robots or with obstacles, a method of the fields of potential is
applied. It gives the desired orientation value and speed for the movement of each robot.
Robots are controlled by a Lyapunov function [50]. Simulations were conducted to validate
the algorithm in different situations. They are able to deal with different kinds of barriers
and do optimization, computation and analysis in real time. The formation of the swarm is
not maintained but this does not prevent it from achieving its objectives.

Araki et al. [19] offer a system capable of directing robots that can fly and move on
the ground called Crazyflie. This flying car is composed of two wheels, a ball caster, a
motor for the wheels and four motors for the rotors used as a quadcopter. The weight of
the platform is around 41 g. The swarm takes into account the energy consumption of each
of the robots to carry out their displacement. Two algorithms share this task: one performs
the path planning for the swarm, while the other optimizes the solutions found by the first
one. Trajectory planning is based on a graph of the robot environment. A travel energy
cost function for each robot is defined and will need to be minimized. The cost of travel
varies based on whether the robot is on the ground or flying in the air. Algorithm A* based
on [51] is used to find a solution to the displacement problem. Several paths are considered
and the optimization of the problem is then carried out according to the energy consumed
by the robots as well as the non-collision constraints. This path planning is computed
according to a cost function calculated for each edge of the map, based on the work due
to the displacement of the flying car. The cost function c(ei) of one edge ei is presented in
Equation (1).

c(ei) = µ
W

Wmax
+ (1 − µ)

t
tmax

, 0 ≤ µ ≤ 1 (1)

Wmax and tmax are the maximum possible energy and time of any edge in the graph.
W is the work due to the displacement of the flying car calculated depending on if the
car is flying or driving with the distance between the edges, its power consumption and
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velocity in both cases. Power consumption is calculated in real time and a threshold is used
to indicate if the power is low and limits the displacement of the robot. The parameter µ
is used to tune the planner according to the weight energy and time in the cost function.
Simulations and experiments have been carried out and have shown that robots consume
much less energy by driving rather than by flying; but the flying mode is quicker than
the driving one. Because of this, flying can serve as a high-cost and high-speed transport
option, while driving serves as a low-cost and low-speed option. The robots were also able
to travel without collisions.

Wei et al. [52] use the principle of the graphs of Voronoï [44] to move their swarm of
mobile robots. These have to reach a platform where they will have to make their tasks.
Their environment is cut in cells of polygonal shape in which the center of these is placed
in their centroid (Centroidal Voronoi Tessalation [53]). The algorithm acts in several steps:

1. The target of robots is defined.
2. The system initializes its parameters with the aim of computation.
3. The diagram of Voronoi is generated and cells are computed.
4. The error of position of every robot is evaluated.
5. If this one is bearable, the algorithm pursues its execution. Otherwise, it begins again

from the beginning by updating the position of the robot.
6. The robot performs the given trajectory. If the target is reached, the robot performs its

task. Otherwise the next iteration is done to plan its next move.

Each robot is represented with a rectangular prism in order to simplify the recognition
of collisions. Several simulations were performed by varying several parameters such as
the number of robots used or the error tolerance threshold. They show that as the number
of robots increases, the time the algorithm iterates increases.

Vatamaniuk et al. [54] offer an algorithm capable of representing the swarm of mobile
robots with a convex envelope. Each robot is represented by a small circle of a fixed radius.
The algorithm consists of six steps:

1. Analysis of the shape of the desired convex envelope and assignment of the coordi-
nates to be attained on it.

2. Placing possible passage points on the contour of the convex envelope to allow robots
to cross it without collisions.

3. Adding two normal equidistant points to the convex envelope in relation to each final
coordinate point or in relation to each point at the crossing points.

4. Assigning final coordinates to each robot on the convex envelope.
5. Tracking planning for robots: they must successively reach the nearest normal points

in order to rationalize their final objective.
6. Setting a deadline to avoid collisions between robots. It depends on the distance

between the moving robot and the one closest to it, as well as its speed. Once all the
delay problems have been resolved, the order is sent to each of the robots.

This algorithm is interesting for several reasons. First of all, the computation time is
very low, which allows the swarm to move in real time. In addition, the trajectories are all
segments which simplify the movement of robots. They change directions up to three times
during their trip, saving the battery life. Simulations show that algorithm performance is
acceptable in up to 100 robots in the swarm.

Garzon et al. [8] developed an algorithm that can help a swarm of mobile robots
explore an area. Exploration takes place in different spiral forms of robots’ movement.
Their goal is to find a signal from a beacon, which is used to simulate mines or detect
chemical source. Each robot has an area around it where it can detect obstacles or listen to
the transmission of information. The algorithm optimizes the movement of robots to cover
as much ground as possible within this area. The spirals made will move the robot from
the center of the area to be explored to its periphery in a square or rectangular shape. The
robot sends a signal every 100 ms to detect the beacon. If it obtains a response, it measures
the strength of the signal in order to evaluate the transmitting distance. Experimentations
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were conducted with three robots each covering a specific area. Several beacons were
placed in them for the robots to detect. Comparison between the different strategies used
was successful.

Liu et al. [24] developed a mobile robots swarm control system that can be operated
by an operator. It sends orders to the group leader. The leader communicates and executes
tasks to the entire swarm. Path planning is done by minimizing a defined cost function
for each robot. It takes into account the distance between the robot and an obstacle and
the distance between the robot and the rest of the swarm. The stability of the formation
of the swarm is controlled through a function of Lyapunov-Krasovskii [55]. Simulations
were conducted to validate the operation of the system in obstacle configurations and
by changing several parameters. They have shown that the swarm is well able to move
without collisions and can maintain training through redundancy of information.

Radu-Emil Precup et al. [56] created a trajectory planning system for mobile robots
that can adapt to load levels of robots. A finite number of rovers is composing the swarm.
At the beginning of the algorithm, their initial position is known. At each iteration, they
move a certain distance in a straight line to their target. The goal of the algorithm is to
minimize the distance traveled for each robot as well as avoid collisions. To do this, four
optimization variables are introduced into the computation:

1. One which minimizes the Euclidean distance between the position of each robot
specific to the same population at each iteration.

2. Another which maximizes the distance between robots of the same population and
the nearest robot of another population in order to avoid collisions.

3. The third and fourth variables are used to maximize the distance between the trajecto-
ries of each of the robots in X and Y to avoid collision.

4. A fifth penalty variable can be added in certain situations that need to be avoided.

The algorithm works in five steps: first it initializes the optimization parameters,
the robot population and the maximum number of iterations. Then, it performs the
unconstrained solution search on the robots during the maximum 20% of iterations. The
third step is to add the stresses on the robots to the calculation for an additional 40% of
the computation. The next step refines the result obtained under a threshold set by the
user. The last step is verified by simulation that the results obtained are correct and then
validate them.

Sun et al. [15] developed an autonomous team of robots capable of coordinating and
delivering boxes of goods on fixed stations in a warehouse. The robot is of a size of 50 by
50 cm possessing a weight of 60 kg as well as an holonomic command. It is equipped with
LiDAR, odometry and inertial measurement unit sensors. The position of every robot is
found by the law of Monte Carlo via the previous sensors. Robots synchronize together via
local wireless communication. This swarm possesses eight types of behaviors:
Follow-up points of reference : the robot reunites them one after the other until it reaches

its target position. If it is the case, another target will be allocated to it and it will begin
again this action.

Avoiding: the robot bypasses the obstacle in its path and will continue to follow its
landmarks.

Exchange: if there is a frontal collision, the two robots will bypass each other and then
continue to track the marker afterwards.

Passing through: if a side collision occurs, the robot continues its way while the other
waits for it to pass in front of it. Subsequently, it conducts the benchmark tracking.

Docking: the robot reaches its target and is placed in its intended location.
Waiting for a safe distance: the robot expects another robot and keeps a safe distance

from it. When the other robot leaves the area, it resumes its normal activities.
Waiting to get through: following a side collision, the robot is waiting for the time the

other robot passes in front of it. Then it continues its activities.
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Waiting for docking: the robot must wait for another robot to finish mooring at the
same dock.
All these behaviors allow the swarm to organize and carry out their tasks. The

advantage of this algorithm is that it does not require a computational time to do trajec-
tory planning such as Roads maps. It can work specifically in confined environments
with obstacles.

5.1.2. Discussion

Table 2 shows a comparison of the previous algorithms. Deterministic algorithms
are not widely used to move mobile robots swarm to the outside environment. This is
because they have several inherent disadvantages to their design. Algorithms can meet
different uses for the swarm of robots as long as the objective is clear. Their level of
centralized swarm autonomy is less than the decentralized swarms of robots. This is due
to the fact that the leader of the centralized swarm has to give commands to each of the
robots in the swarm. Without these commands, the robots will not be able to achieve the
task of the swarm. In a decentralized swarm of robots, robots communicate with each
other and then distribute their tasks between themselves. This prevents some issues due
to miscommunication between the leader and the swarm, and also allows the swarm to
do difficult tasks. Nevertheless, centralized swarms can perform simple very well tasks
because of their ease of implementation.

5.1.3. Probabilistic Algorithms

Husnawati et al. [4] use a combination of three algorithms to set up a swarm of mobile
robots capable of detecting gas leaks. They propose to use as an algorithm the followings:

Fuzzy logic to control robots:
Each robot has three infrared sensors (front, left and right). The values of these are
leveraged into the system to allow the robot to control its speed when an obstacle
is present.

Swarm Optimization (PSO) particle algorithm:
This optimizes the trajectory planning of robots. If a gas leak is detected by a robot,
the algorithm will lead the robot to its source. Otherwise the robots move freely in the
area to be explored.

Algorithm support vector machines (SVM):
This is used to detect a gas leak with MQ3 (Alcohol Vapor) and MQ5 (LPG, Natural
Gas, Town Gas) sensors.

The combination of these algorithms boosts the performance of robots in locating a
gas leak.

Hacohen et al. [11] developed a probabilistic navigation algorithm for mobile robots.
The positions of all objects are considered to be random variables. The purpose of the
algorithm is to focus on the probability of localization of different objects (robots, obstacles,
targets). Objects can have a different geometry of a point (circle/disc of a fixed radius),
which changes their probability of location. In addition, priority values can also be at-
tached to targets, which further changes their localization probability. To move robots, the
algorithm performs several iterations. At each iteration, a probability map of the location
of objects is updated. A gradient descent of the map probabilities is carried out to direct
the robots towards their targets. Simulations have shown that this solution can be applied
to real-time problems.
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Table 2. Comparison of the different deterministic algorithms for centralized swarm.

Skills Vaidis and Otis [47] Qin et al. [49] Araki et al. [19] Wei et al. [52] Vatamaniuk et al. [54] Garzon et al. [8] Liu et al. [24] Radu-Emil Precup et al. [56] Sun et al. [15]

Swarm with leader X X
Local intercommunication X

Motion in outdoor environment X X X X
Static obstacles avoidance X X X X X X X X X

Dynamic obstacle avoidance X X X X
Control of the swarm form X X X

Map of the environment X X X X X X X X X
Storing the different motion X X

Different types of robots used X
Simulated X X X X X X X X

Real-life experience X X X X
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Bandyopadhyay et al. [23] proposed a new way to plan the movement of a very large
swarm of mobile robots by keeping a precise formation (Probabilistic Swarm Guidance
using inhomogeneous Markov Chains). A heterogeneous matrix of Markov with a desired
stationary distribution is implemented using feedback based on Hellinger’s distance. This
matrix satisfies the travel constraints, minimizes the cost of transitions at each moment
and distributes the number of robots where it is lacking. Simulations were conducted to
compare algorithm performance with others. It turns out that it reduces the transition costs
by 16 compared to a homogeneous Markov chain algorithm (HMC). Experimentations
were also conducted with three to five quadrotors. In their other work, Bandyopadhyay
et al. [18] improved the robot control part by adding an algorithm based on the Voronoï
graph algorithm. It was successfully tested.

In their work, Nurmaini et al. [57] developed a fuzzy logic algorithm that allows a
swarm to move. The robots are equipped with three infrared sensors used for obstacle
detection. A CCD camera is used for experimenting and allows seeing the position of the
robots and their orientation. Each robot can be identified by its color (in the tests: red,
green, blue). All this information is given at the input of the fuzzy logic block which sends
out the engine speed (in translation and rotation) for each robot. This allows them to reach
the target position they have received.

Finally, Chang et al. [28] developed a trajectory planning algorithm for swarms of
robots subject to disturbance flows. Their objective is to find the source of the flow and lead
the swarm. First, they look at the mathematical representation of a chemical plume and
these characteristics. Then the problem of going back to the source is posed. The swarm is
made up of a finite number of mobile robots. A marker is defined and the speed of each
robot can be found in it. Once this is done, the trajectory planning takes place in three steps:

1. Measuring the turbulence of the flow over a small period of time.
2. Estimating based on probability of distance to source: the speed of the different robots

is then defined for the trajectory planning.
3. Moving robots for a short period of time.

Simulations confirmed the validity of this algorithm based on blue crabs. The waiting
time between each decision-making has a great importance on the behavior of robots. The
bigger it is, the more robots will go directly in the right direction to find the source.

5.1.4. Discussion

Table 3 shows a comparison of the previous explained algorithms. Probabilistic
algorithms of centralized swarms rely little on the use of maps to locate themselves. They
mainly use distance sensor data to learn about their environment and can plan their route.
They are not very good at avoiding dynamic obstacles or controlling swarm formation.

5.1.5. Heuristic Algorithms

Sharma et al. [58] use a new Lyapunov function acting as a field of artificial potential
to control a swarm of mobile robots. Their contributions relate to:

1. Avoidance of a swarm of moving obstacles.
2. Design of a heterogeneous robotic system in a closed environment with obstacles.
3. Control laws for the non-linear heterogeneous robotic system and invariant according

to its accelerations.

The swarm of mobile robots should therefore be able to avoid the other swarm of
obstacles. The artificial potential field represents the energy of the system and the forces
generated by it or on it. The goal is to minimize this function. The result is a translation and
rotational control for the swarm robots. Simulations were made to validate the functioning
of the algorithm.

Roy et al. [59] compare two algorithms so that their swarm of mobile robots can
move around avoiding obstacles: bacterial foraging and particle Swarm Optimization.
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Functions designating the purpose to be achieved and the obstacles to be avoided are
defined. Another function defining time errors is then set from the previous two. The
purpose of both algorithms is to minimize this function. To do this, the swarm must first
move in a coordinated way, i.e., each robot must have about the same average speed as well
as the same average direction. The control of the swarm must then be defined autonomously.
Simulations show that the first algorithm is more concerned with maintaining the formation
of the swarm, while the second optimizes its movement.

Table 3. Comparison of different probabilistic algorithm for centralised swarm.

Skills Husnawati et al. [4] Hacohen et al. [11] Bandyopadhyay et al. [18,23] Nurmaini et al. [57] Chang et al. [28]

Swarm with leader
Local communication between

robots
Motion in outdoor

environment X X X X

Static obstacle avoidance X X X X X
Dynamic obstacle avoidance X
Control of the swarm form X X

Map of the environment X X
Storing the different motion

Different types of robots used
Simulated X X X X

Real-life experience X X X

In their work, Jann et al. [60] use the D*lite algorithm [61] to obtain a mobile robots
swarm through an obstacle field. Several checkpoints are defined in the obstacle zone and
the robots must go through one of them. Once it has passed, it goes into closed mode and
no robots are allowed to return to it. The algorithm already possesses information on the
map and then updates itself when moving the robots. A cost function is defined based on
the cost of moving the robot between two nodes of the map, as well as the heuristic cost of
travel. The purpose of the algorithm is to minimize this function. Several simulations were
carried out with different changing parameters: the number of vehicles, static or dynamic
obstacles. In all cases, the robots were able to reach their objective without hindrance.
Trajectory planning is highly dependent on the disposition of obstacles as well as the
grid used.

Devi et al. [62] used gorilla behavior to create an algorithm for moving a swarm of
mobile robots. In this algorithm, three behaviors are possible:

Action of climbing/moving: the gorilla will move to an elevation position that will allow
it to have an overview of its environment.

Observation of an easier path: once the gorilla has reached a peak, it observes the sur-
roundings in order to find a higher point to reach it.

Jumping: the gorilla changes position by rotating forward or backward to the new higher
point of view.

In the algorithm, the highest point to be reached is assimilated to the target position
that the robots will have to reach. The robots will perform each iteration of the algorithm
(three steps). However the path obtained will not be optimal. This is why the algorithm is
linked to the open vehicle routing problem (OVRP). Simulations validated the operation of
this algorithm.

Zhang et al. [10] developed in their work an algorithm based on the model of a
simplified virtual force for moving a swarm of mobile robots to help with hunting. This
model prevents obstacles and robots from colliding with each other. The purpose of this
algorithm is to evenly distribute robots on a circle around a target. The robots follow the
contour of the circle and stand one by one at the coordinates assigned to them. Several
simulations were carried out in environments with or without obstacles to verify the
proper functioning of the algorithm. The advantage of this method is that it avoids local
minimum problems.

Caska et al. [63] use an algorithm whose purpose is to compute the number of drones
and mobile robots composing a swarm in order to cover all the landmarks of a surveillance
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zone, and also to plan their trajectory optimally. As a first step, the algorithm defines
coordinated points to be reached for vehicles on the ground and for drones. Then it
calculates the greatest distance to travel between the previous points, taking into account
the climb or descent of a slope. A computation of the energy consumption is then carried
out to determine whether the vehicle and the drone can carry out the distance without
any problems. If so, a drone and vehicle will suffice. Otherwise the algorithm proposes to
increase the number of vehicles and drones until the energy consumption is sufficient to
carry out the journeys. It is estimated that each robot and drone can travel three kilometers
at full load and starting with a full charge. A genetic algorithm was also used to compute
the optimal solution to this problem.

Wallar et al. [26] proposed to combine two types of algorithms in order to move a
swarm of mobile robots in a congested and dynamic environment: Roadmaps Probabilistic
and potential fields. The roadmaps are used to carry out an overall planning of the path of
the swarm to its target position. The global trajectory search is chosen by the potential field
algorithm that allows mobile robots to avoid collisions with obstacles or with other robots.
Simulations have demonstrated the validity of this combination of algorithms. It can work
for a hundred robots and at least fifty dynamic obstacles.

Agrawal et al. [64] developed an algorithm based on ant colonies so that the mobile
robots swarm can move without collisions. This algorithm makes it possible to find the
shortest path between the swarm and the desired target. It is based on the deposit of
pheromones and the probability that one robot will choose one path over another. The
algorithm will browse the map ahead for robots following several trajectories. The shorter
a trajectory is, the more important will be the deposition of pheromone. This will increase
the probability that this path will be chosen. In the end, this path will be chosen to lead the
robot. Each path found for these will be added as you go on the obstacle map. Simulations
were performed to validate the functioning of the algorithm.

Vicmudo et al. [65] used genetic algorithms to direct their swarm of underwater
robots. They initialize the algorithm with random positions as the starting population.
Chromosomes were used to contain all the robots movement coordinates. When the initial
population changes, the chromosomes will be sorted according to the sum of the distances
they will contain to get to the target. If this distance is too great, the chromosome will be
removed. If two robots were to have the same position during the algorithm, a penalty
is given to the chromosomes. Three different simulations were conducted with several
starting populations (150, 250 and 500). The conclusions are that the larger the initial
population, the more the algorithm will converge towards the optimal solution. This
method is able to plan the trajectory of robots moving in swarms.

Hedjar et al. [66] used a collision avoidance algorithm for mobile robots swarm. It
creates a safety ring around the robot that prevents it from moving towards the obstacle
if the ring is in it. The ring is capable of adapting to several types of robot shapes. In
addition to this, trajectory planning is achieved using convex optimization of a nonlinear
equation system. A cost function is defined for each route of the robots. This must
be minimized to plan their route. Each robot considers the other robots as dynamic
obstacles. Simulations and experiments were conducted to validate this model. Using
convex optimization prevents local minimum problems. In addition, this algorithm is
capable of being integrated into centralized and decentralized robots swarm systems.
Additionally, the position of the obstacles must be known in advance. Otherwise, you have
to add to the system a means of detecting them.

Dang et al. [17] developed a control algorithm for a swarm of mobile robots using
artificial potential fields combined with a rotary vector field. This-allows each robot of the
swarm to move towards a target position while retaining its formation. Repellent potential
is defined for obstacles and attractive potential is given to the objective to be achieved.
The rotary vector field is used to avoid oscillation problems. An attractive force is defined
so that robots can maintain their formation. Simulations were performed to validate the
functioning of the algorithm.
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5.1.6. Discussion

A comparison of the previous algorithms is given in Table 4. The advantage of
heuristic algorithms is that they allow the swarms of centralized robots to move in difficult
outdoor environments. Indeed, most of them are combinations of different algorithms
that allow them to eliminate the disadvantages of each of them. All are based on a map to
complete the trajectory planning. They also do not need robots to communicate with each
other. Some other research works present algorithm for three-dimensional path planning
using cuckoo search algorithm with Levy flight in a random way [67]. However, this
algorithm needs to be improved for a swarm of rovers.

Table 4. Comparison of different heuristic algorithms for centralized swarm.

Skills Sharma
et al.
[58]

Roy
et al.
[59]

Jann
et al.
[60]

Devi
et al.
[62]

Zhang
et al.
[10]

Caska
et al.
[63]

Wallar
et al.
[26]

Agrawal
et al.
[64]

Vicmudo
et al.
[65]

Hedjar
et al.
[66]

Dang
et al.
[17]

Swarm with leader
Local communication

Motion in outdoor environment X X X X X X X X X X X
Static obstacle avoidance X X X X

Dynamic obstacle avoidance X X
Control of the swarm form X X X X X X X X X X X

Map of the environment X X
Storing the different motion X

Different types of robots used
Simulated X X X X X X X X X X X

Real-life experience X

5.2. Undistributed Decentralized Swarm

A decentralized swarm does not have one leader. Instead, it uses its multiple robots
as leader, each of which usually stores a copy of data of the other robots to take a decision.
A decentralized system can be just as vulnerable to issues as a centralized one. However,
by design, there are more tolerant and robust due to the fact that robots have their own
information to take decision, and share them with others. A distributed system is similar
to a decentralized swarm. The difference is the way robots share information between
each other. In an undistributed and decentralized swarm, the information is not uniformly
distributed. Some robots will have more information than others. This section is dedicated
to this type of swarm.

5.2.1. Deterministic Algorithms

Aniketh et al. [5] developed an algorithm based on weights according to different
situations to move a swarm of mobile robots in an environment with obstacles. The weights
are fixed on the surrounding boxes of the robots. The travel direction chosen will be the
one with the highest value. The value of the weights is 0 if there is an obstacle or a robot;
1 if the box has been explored; 4 if it is the target and 5 if the box has not been explored.
The map is updated after every robot moves. Tests were performed with real robots. The
algorithm runs quickly and allows you to quickly explore the entire map. The robots
behave independently and can thus move on various types of terrain.

5.2.2. Probabilistic Algorithms

Mendonça et al. [68] developed an algorithm using dynamic Fuzzy cognitive maps [69].
Robots have several capabilities: mobility, autonomy, responsiveness, adaptability, collabo-
ration and caring. Several basic rules are built around these capabilities. They allow robots
to move according to the situations encountered. Each robot can then enter a particular
state and does the actions associated with it: exploration, avoidance of obstacles, reaching
object or target and reversing when there is an obstacle. Points are set between the transi-
tions of the different states and the actions to be carried out. The learning of these rules is
given to the robot using a method similar to Q-learning in order to find the weights of the
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system. Simulations in a virtual environment were conducted to observe the results. The
algorithm has yielded good results and allows the swarm of mobile robots to learn from
situations encountered, to adapt and cooperate.

A. Belkadi et al. [70] used the Swarm Optimization particle algorithm [71] to direct
their drone swarm. It acts like a decentralized swarm: drones have their own behavior
and are independent. The goal is to minimize a cost function that will be used to optimize
the drone’s trajectory. The law of control is based on their quaternions. The algorithm can
very well be implanted for mobile robots swarm. Tests with real drones were performed in
different situations (without/with obstacles, number of drones).

Ayari et al. [72] used the Swarm Optimization particle algorithm to guide a swarm of
mobile robots to its target. This algorithm has several key principles:

1. Defining a position in a space.
2. Assessing this position.
3. Associating one speed to this position to have the following.
4. Memorizing possible movements with this speed to find the best next position.
5. Selecting the following position.

Starting populations are initialized at random. The speed of the particles will be
dependent on the previous best positions as well as on randomly selected variables. The
algorithm stops when the maximum number of iterations is reached. This algorithm is
combined with two other parameters to avoid maximum local problems for the best overall
position and stop the algorithm when it converges. Collision management is performed by
computing the distance between each obstacle and each robot. Simulations were conducted
with static obstacles. These show that the algorithm is capable of properly directing the
swarm of mobile robots in its environment.

Alam et al. [73] also proposed a Swarm Optimization particle algorithm so that the
swarm can avoid sources of danger. In their work, the algorithm first calculates the distance
between the starting distance of the robots and that of their lens, and then draws a line
between these two points. The map is then cut into a finite number of sections. If there
are no obstructions in the sections, a reference point is attached to the intersection of
the right to the target and the right to the section. Otherwise the Swarm Optimization
particle algorithm looks for the smallest distance that will allow the robots to bypass the
obstacle. The algorithm will successively perform this method for each of the swarm robots.
Simulations in different environments have demonstrated the validity of the algorithm. It
could only be tested for static obstacles.

Das et al. [22] chose to improve the Swarm Optimization particle algorithm for
the trajectory planning of a mobile robots swarm. They developed a method to adapt
the weights and accelerations of the coefficients of the algorithm to increase its rate of
convergence. It works according to the following steps:

1. The robot knows its current position and that of its target.
2. They look towards their target to see if there are obstacles or not: if they do, they

make the decision to shoot.
3. If there are no obstacles, it goes to the target.

The planned path is determined by the improved algorithm. Simulations and exper-
iments have shown that it allows several robots to move in an environment with static
obstacles. It could not be used for dynamic obstacles.

Sharma et al. [74] proposed a new algorithm capable of directing a swarm of mobile
robots to carry out area exploration. It starts by dividing the environment into several
partitions. Each will be assigned to a robot to explore. The path planning of each robot is
done by the Swarm Optimization particle algorithm. The method of moving them can be
in two ways: either it is random or zig-zag. The aim is, of course, to travel as quickly as
possible through the area to be explored. Several parameters are taken into account and are
computed: the distance of movement at each iteration, the energy consumed, the coverage
performed and the time to perform this coverage. Simulations were conducted to validate
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the functioning of the algorithm. Its performance depends on the number of robots used as
well as the type of direction to be taken.

Luo et al. [21] developed a swarm of mobile robots capable of moving to a target.
They used the Golden Shiner Fish movement [75] to design their system. The displacement
of robots is therefore influenced by several factors of their environment that change their
speed and direction of travel. These factors are the brightness and presence of robots in
their vicinity. These are detected by measuring the force of their transmission signal by
three antennas located on the robot. They show that robots are able to reach a darker area
that is their target.

5.2.3. Heuristic Algorithms

In their works, Zelenka et al. [16] present a method to create a swarm of mobile robots
that is decentralized and can adapt its form with the aim of exploring a zone. The algorithm
bases itself on the use of artificial pheromones. Robots travel into their environment and
store the information perceived on a map which will then be transmitted in all the swarm.
The zone to be explored is divided into cells. As soon as a robot explores one of them,
it leaves a pheromone to indicate its passage and sends on the information to the other
robots. The motion of every robot is dictated by several rules: the robot moves towards a
cell possessing the least possible pheromones. If several cells possess the same quantity,
the robot chooses it randomly. This method makes it possible to add several robots during
the operation in order to cover the area to be explored more easily. It also anticipates
the optimal number of robots and removes some if they are too many. Simulations were
conducted to test its validity.

Del Ser et al. [76] used bats to design a trajectory planning algorithm for mobile robots.
This is based on the echolocation of obstacles by robots. In their case, each robot moves
randomly at a certain speed. Sound wave emission is done at a fixed frequency, varying
wavelengths and intensity. At each iteration of the algorithm, the values of the robots’
speed, the wavelength and the intensity of the sound wave used are modified randomly
according to a uniform distribution. Trajectory planning is also done at random while
taking into account the obstacles detected by the robot. Simulations and experiments were
carried out with small mobile robots. The algorithm allows them to move well within the
area to be explored. Despite this, robots may find themselves trapped in particular wall
shapes (U or V wall).

Contreras-Cruz et al. [13] applied an algorithm based on the honey-bee colonies [77]
to manage their swarm of mobile robots. The difficulty is to determine when there will be
a possible collision between robots. For that purpose, the algorithm decomposes into two
parts: one, planning of paths and two, coordination. The first part takes care to generate
paths by associating their levels of priority according to their time of motion. The second
part manages the speed of robots according to the obstacles and to the level of priority
of trajectories. It is implemented by the algorithm of the honey-bee colonies. It works as
follows: each robot predicts the future position of the other robots from the information of
the previous iteration. If a collision is detected, the robot is put on hold while the danger
passes. It establishes another trajectory planning and sends the information to other robots
with a low probability of collisions. At the end of an iteration, all robots communicated
their future route plan in order to synchronize their movement. On the next iteration, it
begins again. Simulations were carried out to validate its operation.

Ardakani et al. [14] developed an artificial potential field method for controlling
mobile robots capable of moving plates in an environment with obstacles. The robots
have to coordinate to move the plate together. The forces on the robots and this one were
modeled to predict the optimal control to be carried out. A potential field algorithm is then
used to plan the path of the swarm robots. It allows for the avoidance of obstacles and to
reach the targets of the robots. Tests were carried out by real mobile robots. The algorithm
is capable of adjusting to different forms of plates, in particular by modifying the formation
of the swarm and the speed of the robots.



Designs 2021, 5, 37 24 of 29

Jabbarpour et al. [29] developed a swarm algorithm (ant-based method) of mobile
robots that seeks to minimize their energy consumption when moving. This method is
based on that of ant colonies using pheromones. An energy consumption model was
developed according to the control parameters. The entire algorithm consists of four steps:

1. A phase of exploration in which robots collect and memorize information about their
environment.

2. The second phase consists of computing the energy of the trips to be made for each
trajectory planning.

3. The third concerns the exploration phase of the map defined in the first stage.
4. The last step determines the path to be taken for the robot. The decision is based on

the path with the most pheromone.

Simulations were performed and the results were compared with the PSO and ant
colony algorithms. The performance is better than these two algorithms based on the
distance of the journey and the time of execution of the algorithm.

Fricke et al. [9] based their algorithm on a method called Lévy [78] to allow a swarm
of mobile robots to explore an area. The aim of this method is to optimize the target search
by playing on the intensity of the searches and the distance traveled by the robots. This
involves cutting each robot’s journey into several stages defined by a small-time interval.
Each robot randomly selects a direction according to a uniform distribution and travels
to it during the time interval. At the end of this one, the robot restarts the process. If
it encounters an obstacle, it changes its direction as done previously. The algorithm is
inspired by the movement of T cells in a human being.

Shi et al. [79] applied a combination of pheromone algorithms and Q-learning to
optimize the movement of a mobile robots swarm. A comparison with the Swarm Opti-
mization particle algorithm is performed. The Q-learning is based on Markov’s decision
chain algorithm [80]. At each iteration, the robot observes its environment, then chooses an
action according to its possibilities. It then proceeds to the next iteration, learning whether
it was good or not. The study focuses on learning an optimal strategy of all the actions
carried out. The contribution of this article concerns the contribution of pheromones during
the learning of actions. This allows the algorithm to explore more terrain and share more
information between different robots. It has been tested on several labyrinth maps and
compared to the PSO algorithm, indicating that it is more efficient.

5.2.4. Discussion

A comparison of the previous algorithms is given in Table 5. Most of the algorithms
presented for the swarms of non-distributed decentralized mobile robots can work in an
outdoor environment. Few are able to avoid dynamic barriers, which can be problematic
in such environments. The vast majority use a map to move it. It has the advantage of
representing obstacles and thus allows swarms to avoid them. In some cases it is also used
to memorize the movement of robots for it not to happen again. The task performed by
robots of the same swarm is always the same for all, most of the time exploring an area.
The swarms following this provision have a very high level of autonomy. All they need is
a goal to achieve.

5.3. Distributed Decentralized Swarm

This last section is dedicated to distributed and decentralized swarms. Few swarms
work according to this type of communication. This is due to the difficulties to share
uniformly information between all the robots. Indeed, the means of communication are
usually huge constrains to share information, especially in difficult environment. This
section will present the two papers on this type of swarm.
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Table 5. Comparison of different algorithms for decentralized and undistributed swarm.

Skills [5] [68] [70] [72] [73] [22] [74] [21] [16] [76] [13] [14] [29] [9] [79]

Swarm with leader
Local communication between robots X X X X

Motion in outdoor environment X X X X X X X X X X X X X
Static obstacle avoidance X X X X X X X X X X X X X X X

Dynamic obstacle avoidance X X X
Control of the swarm form X

Map of the environment X X X X X X X X X X X X X
Storing the different motion X X

Different types of robots used
Simulated X X X X X X X X X X

Real-life experience X X X X X X X

5.3.1. Deterministic Algorithms

In their work, Hattori et al. [20] developed a generalized measuring-worm (GMW)
algorithm for map creation and position estimation that is decentralized and allows robots
to do separate tasks. This is an upgrade to the SLAM algorithm [81]. It proposes to estimate
the position of a robot with fewer resources and calculate its displacement. The robots
are divided into two classes: one is designated as the parent and the other as the son.
The robots are both equipped with a camera and markers. The father robot receives the
coordinates to be reached and travels to them. The son robot then tries to follow the father
robot by estimating the position of the robot thanks to the camera of his own marker.
Robots regularly communicate their data to each other to synchronize.

Seng et al. [25] offer an algorithm that can move a swarm of mobile robots while
retaining their formation. It is divided into two stages: the first allows the swarm to
maintain the formation without the robots exchanging information with each other, and
the second involves the planning of the trajectories of the different robots. Each of them
can perform collision avoidance by their own means, but an algorithm has been added to
keep the formation of the swarm. One robot is considered the leader, while the others are
to follow it and maintain the formation. Experimentations were conducted to validate the
method. This gives a good result and a very high robot placement accuracy.

5.3.2. Discussion

A comparison of the previous algorithms is given in Table 6. There are a few algorithms
for decentralized and distributed mobile robots swarm. This is due to the fact that most
robots perform the same task within the swarm. The two algorithms presented differ
from this case since the robots have two different behaviors: leaders (father/mother) and
followers (son/daughter). This leads to a few contexts for use in real life especially because
of the difficulty in implementing the system, including disturbances from the environment.
The robots are autonomous in their movement as long as the target is indicated for the
swarm.

Table 6. Comparison of the different algorithms for decentralized and distributed swarm.

Skills Hattori et al. [20] Seng et al. [25]

Swarm with leader X X
Local communication between robots X X

Motion in outdoor environment
Static obstacle avoidance X X

Dynamic obstacles avoidance
Control of the swarm form X

Map of the environment X
Storing the different motion

Different types of robots used
Simulated

Real-life experience X X
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6. Conclusions and Future Works

Through this survey, we were able to present the different types of physical support
for interacting with a swarm of robots and detail the operation of existing algorithms for
moving them into an open and crowded space.

First of all, we saw the different advantages and disadvantages of human-swarm
interaction media. The choice of an interacting medium depends above all on the intended
use of the swarm in order to facilitate the operator’s control of the swarm. It also revealed
that the autonomy of the swarm was more or less affected; it could not obtain a complete
autonomy because the operator must always give an objective to be attained. The various
types of algorithms existing for the path planning and navigation are presented in this
literature review. The realized taxonomy allows seeing certain peculiarities of the function-
ing of the algorithms. Additionally, it is necessary to choose the algorithms according to
the action that the swarm wants to make. It is noticed that there is lack of distributed and
decentralized swarm. It could be due to the fact that it is still difficult to design algorithms
for this application.

Future work may have several lines of research. First, the operator should be allowed
to send implicit orders to the swarm via a chosen interaction medium. The operator
would do his job and the swarm would all understand the action. Then it would be fully
self-sustaining. Second, research can be carried out on the swarms of decentralized and
distributed mobile robots. As we have seen, little research has been done in this area,
and there is limited research on possible applications. The main interest of this research
would be to design a swarm capable of performing and distributing tasks to its robots in
autonomous ways, while controlling its formation and trajectory planning.
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