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Abstract: The figure of Leonardo da Vinci has been extensively studied. In fact, the Leonardiana
Library brings together tens of thousands of titles on Leonardo and his work. During the second half
of the 20th century, various treaties were published focusing on Leonardo’s activity as an engineer,
and more recently, an increasing number of scientific articles that focus on certain aspects of the prolific
work of the genius such as construction, mechanics, strength of materials, etc. have been published.
This article analyses the main contributions of the Tuscan genius in the field of design focusing
on his processes for generating new solutions, his developments regarding graphic representation
techniques, his improvements in plotting and measuring instruments, and how some of his devices
were implemented and continue to maintain their usefulness.
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1. Introduction

Leonardo (Vinci 1452–Amboise 1519), although better known as an artist and painter, was a
multidisciplinary genius capable of standing out in most areas of knowledge; engineering, architecture,
zoology, medicine, botany, etc. Even music did not escape his voracious interest in dominating
everything known.

In the field of product engineering, he was capable of designing or projecting ships with armoured
hulls and moved by paddles, movable bridges, bronze sculptures over 7 m high, diving suits and
submarines, bicycles, self-propelled vehicles predecessors of the automobile, musical instruments, etc.,
even humanoid automatons. In the architecture and civil engineering field, he designed fortresses and
defences for cities, sanitation channels, diversions of rivers, and even projected an “ideal city”.

Only a few of those designs or projects were actually executed back then, so some of his
contemporaries did not take several of his works seriously. For this reason, a large number of them
stayed in what we now call the Conceptual Design phase, others reached Preliminary Design, while only
a few reached the Detailed Design phase, using the usual nomenclature in the technical systems design
literature [1].

Today, the bridge that Leonardo designed conceptually in 1502 for the Ottoman Sultan Beyazid II
in the Golden Horn (Istanbul) is a similar reality in the city of Aas (Norway). The 7.30 m tall Sforcesco
Horse, which he designed in detail, can be seen in the square of the Milan racecourse (“Il Cavallo”),
and in the city of Grand Rapids, Michigan (“American Horse”). His detailed design of the Paddle Boat
was copied and materialised in the 18th century by Engineer Robert Fulton on his steamboats. For all
this, Leonardo should be considered a visionary designer ahead of his time.

This article aims to answer the following questions. What did Leonardo contribute to the design
methods and tools of his time beyond the achievements represented in his works? Or being more
specific, what were the sources of inspiration for the generation of new solutions to the objects designed
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by Leonardo, to what extent did his designs rely on pre-existing knowledge, and how did he use
experimentation to improve them? What improvements did it make in terms of the way of representing
these objects and in the drawing and measurement tools he developed?

2. Materials and Methods

Leonardo was and is known as one of the best painters of all time, although as a result
of the rediscovery and study in detail of his great manuscript production, which comprises 23
notebooks, most of them in the 19th century (Codex Atlanticus, Arundel Codex, Leicester Codex,
French manuscripts A-M-12 volumes-, Forster Codex-3 volumes-, Codex of the “Flight of Birds” or
the Turin Codex, Codex Trivulziano and Windsor Royal Collection Manuscripts) and others in the
middle of the 20th century (Madrid Codices I and II) [2–6], has gained fame in other disciplines such
as engineering, urban planning, anatomy, botany, or even as a scientist and inventor.

As a result of the studies published by the French art historian and curator of the Louvre museum,
Charles Ravaisson-Mollien (1848–1919), “Les Manuscrites de Léonard de Vinci” (1881–1891) [7],
a new interest has arisen in the scientific-technical work of Leonardo. Since then, countless scientists
and science historians have studied many of the different aspects of Leonardo’s scientific-technical
work [8,9].

According to the researcher in physics at the University of California at Berkeley Fritjof Capra
(Vienna, 1939) “Good designers are capable of systematic thinking and synthesis. They excel in
visualising things, in organising known elements into new configurations, in creating new relationships;
and they are able to transmit these mental processes in the form of drawings almost as quickly as they
occur. Leonardo, of course, had all these capabilities to a very high degree. Furthermore, he had a
mysterious natural talent for perceiving and solving technical problems—another key characteristic of
a good designer—to the point that, in his case, it was almost second nature” [10].

3. Leonardo Designer

3.1. Design, Engineering and Engineering Design

According to Braha and Maimon, “Design as problem-solving is a natural and the most ubiquitous
of human activities” [11]. Design begins with the acknowledgment of needs and dissatisfaction with the
current state of affairs, and realization that some action must take place in order to solve the problem.

USA’s Accreditation Board for Engineering and Technology (ABET) defines Engineering Design
“as a process of devising a system, component, or process to meet desired needs and specifications
within constraints. It is an iterative, creative, decision-making process in which the basic sciences,
mathematics, and engineering sciences are applied to convert resources into solutions. Engineering
sciences are based on mathematics and basic sciences but require further knowledge to apply the
creativity needed to solve engineering problems. These studies provide a bridge between mathematics
and basic sciences on the one hand and engineering practice on the other” [12].

Under these premises, there is no doubt that Leonardo was, among other things, a prolific and
multifaceted designer, both in the fields of engineering and architecture and in industrial design [9,13].
Although modest, he was also very conscious of being special, and it is not by accident that the general
public remembers him and not the names of his contemporaries [14].

As stated by Blessing [15], design is a complex activity, involving artefacts, people, tools, processes,
organisations and the micro- and macro-economic environment (market, legislation, society) in
which it takes place. According to Nigel Cross [16], “any identifiable way of working, within the
context of designing, can be considered to be a design method. Design methods can, therefore,
be any procedures, techniques, aids or ‘tools’ for designing”.

From these definitions, it is interesting to highlight the importance of methods, devices, instruments,
and tools for designing artefacts, since these concepts will be used frequently in this work. To ensure
proper use of terminology relating to technical methods and design tools, the following definitions are
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attached, selected from the different options provided by the Oxford Dictionary and the Merrian-Webster
Dictionary. An artifact is usually a simple object showing human workmanship or modification as
distinguished from a natural object. A device is a piece of equipment or a mechanism designed to serve
a special purpose or perform a special function. A technique is a way of carrying out a particular task,
especially the execution or performance of an artistic work or a scientific procedure. A tool is a device
or implement, especially one held in the hand, used to carry out a particular function. An instrument
is a tool or device used for a particular task, especially for specialist or scientific work.

3.2. Design Approaches in Leonardo. From Nature Observation to Analogies

In technical systems projects (equipment, machines, artefacts, etc.), because they are
considered complex, the parts cannot be designed individually without taking into account the
influence of other parts in their surroundings; that is, they are systemic. Therefore, it is necessary to
observe the relationship of each of the parts with the whole, that is, the overall objective to be achieved
(target system), as well as the relationship between them. Hence the convenience, when studying
the object, to consider its division into subsystems and components, taking advantage of areas with less
interference. That is, they must be studied at the same time with an interdisciplinary vision, at least in
the initial stages.

Leonardo was not only able to create complex systems such as clocks, mechanisms, and machines,
but also by taking advantage of the knowledge gained in all these fields, and in that of human
physiognomy (acquired as a young man in the workshop of the Florentine sculptor and painter Andrea
Verrocchio) and forensic anatomy (carried out with Marcantonio della Torre, professor of anatomy at
the University of Pavia), he relates them all and observes them from a global and interdependence
perspective. Thus, he identifies the human body as a complex system (he considers that this is how
Nature works) and is able to extrapolate this metabolic and organic knowledge to his designs. He even
projects and operates a humanoid automaton.

Thus, his work constitutes a clear precursor of current design strategies, starting from the
consideration of its object as a global and interdependent system. And also, of the principles of
sustainable or ecological design, aware of the influences on the climate, the landscape, the living
beings and the whole of Nature. In relation to this, he writes: “An invention will be never found,
more beautiful, simpler, or more economical than those of nature, since nothing is lacking in its
inventions and nothing is superfluous”; “The world is ruled, not by God, but by the incessant creativity
of nature” [17]. Leonardo admired and mastered geometry, but for him the complexity of nature
could not be reduced to figures and mechanical analysis. His special attention to qualities, dynamism,
and overall view is an essential part of his science, present today in current systemic approaches and in
the complexity theory [18].

Martin Kemp, professor of Art History at Oxford University and one of the highest authorities
alive on Leonardo’s science and art, considers that Leonardo is the father of Topology. He also
emphasizes that “analogy” is the main technique used by Leonardo to explain the behaviour of things.
Nature displays its functions and human ingenuity must imitate them, but all things designed (devices,
elements, machines) must follow the “Necessity Principle” as Nature does, where all designed forms
perform some function: although wood exists, “Nature has not created bows to shoot arrows” [19].

The use of analogies was also a technique used by Leonardo in many of his projects. In the
manuscripts of Figure 1, he analyses the movement of a human arm under stress, draws it, and generates
an artificial mechanism that emulates it. A clear analogy is given between Nature, which was its main
source of inspiration, and the projected machine. This mechanism is supposed to have been used in
the construction of his “Automata” project.
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Figure 1. Study of mechanisms for the arm of an automaton. Madrid Codex I, f. 90 v, 91 r. National
Library of Spain [4]. Note: f. is the abbreviation for sheet (foglio); r is the abbreviation of front (recto)
and v is short for reverse (verso).

He also made analogies for his devices with which he intended to make man fly, assimilating the
wings of his prototypes to those of his detailed “Studies on the flight of birds” existing in the Codex of
Turin, as well as of bats.

3.3. Leonardo’s Design Principles from the Point of View of Current Design Theories

In the evolution of design theories in the last 50 years, it is possible to highlight the influence of
the Systems Theory, the scientific method, and the use of analogies, as well as other projective methods
and techniques. The next section includes the analysis of the way in which Leonardo already applied
the scientific method and the systemic approach in his work, while considering environmental factors,
introducing ecological and ergonomic principles.

According to the Technical Systems Theory [20], objects, artefacts or products are seen as
technical systems that transform energy, material, and information. The functional behaviour of a
technical system is fully determined by physical principles and can be described by physical laws.
The engineering design problem is to find and define the geometry and materials of the system in such
a way that the required prescribed physical behaviour is realised in the most effective and efficient way.

Taking this approach, the conclusion that the form (of the artefact) is created to fulfill a function,
that is, the function creates the organ, can also be derived from the statement of the principle of
necessity observed in nature by Leonardo. This approach can be observed in the current engineering
design proposals. For example, the Standard VDI 2221 [21] structures the design process in 7 steps,
generating the Function Structure in the second stage, while the Module structure is generated
in the fourth. The Theory of Technical Systems proposes a design process in 5 steps (Purpose,
Process Model, Function Model, Organ Model and Component Model) [22]. Suh’s Axiomatic
Design [23,24] sees designing as a mapping process from the “functional space” into the “physical
space”, or, more specifically: mapping a given set of functional requirements (FRs, “what we want
to achieve”) into a defined set of design parameters (DPs, description of “how we want to achieve
it”) [20].

According to Professor Plinio Innocenci, “sometimes Leonardo seems to approach the modern
concept of design. However, we must not make the mistake of using a contemporary point of view to
define an artist-engineer who lived 500 years ago. Leonardo is still the son of his time, and he is not
the only one to use technical design, and perhaps he is not even the best. Some projects by Francesco
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di Giorgio or Bonaccorso Ghiberti reach a level of technical precision that rivals that of Leonardo.
However, his machine repertoire represents something unique and, in this sense, extremely original
for the variety of solutions and innovations” [25].

He obviously was not the only engineer of his time, but he was the best and exceeded by far the
achievements of his contemporaries and predecessors. For example, he improved Roberto Valturio’s
(1405–1475, Rimini) and Francesco di Giorgio Martini’s (1439–1501, Siena) machine designs and the
hydraulic contraptions of Mariano di Iacopo’s (1382–1453, Siena), known as “Il Taccola”. He also
complemented and surpassed Brunelleschi’s crane designs for his project for the diversion of the
Arno River. In fact, in his technical designs more than 500 years ago, he already included most of the
documents which make up a Project. According to Sara Taglialagamba, [26], the definition “Leonardo
industrial designer” was first introduced by Carlo Pedretti in his book Leonardo Architetto [27].

3.4. Leonardo and the Scientific Method

The influence of Leonardo da Vinci’s work in the history of science is of fundamental
importance [28,29]. Although he obviously learned from his predecessors, his contributions to scientific
development have not been established until recently.

In the architectural field, Filippo Brunelleschi (1377–1446) and his disciple Leon Alberti (1404–1472)
influenced his work. In the mechanical field, it has been established that he read Ponderibus’s Tratactus
and the Treatise on Weights by Biagio Pelacani, also known as Blasius de Parma (1365–1416). He was
also influenced by the school of Giordano de Nemore and by Albert of Saxony (1320–1390), to whom we
owe a theory of weight which influenced the development of mechanics by solving many difficulties
of Aristotelian physics.

His friend, the mathematician, philosopher and professor at the University of Pavia, Facio Cardano
(1444–1524), gave him access to the treatise “Perspectiva Communis” by the theologian, professor at
the University of Oxford and archbishop, Jhon Peckham (1220/1225–1290), while in optics and
mathematics he studied the texts of the Polish friar, theologian, and mathematician Witelo (Erazm Ciolek)
(1230–1280/1290) and of the Arab physicist, astronomer, and mathematician Alhacen (Ibn Al-Haitam)
(965–1040) [30,31].

The scientific method is based on observing a phenomenon, developing hypotheses, and carrying
out the corresponding experiments to confirm or discard said hypothesis. If the experiments confirm
the hypotheses, the link of certainty (law) is established, and if they do not confirm it, it returns to
the beginning. Leonardo, as its precursor, did it in a similar way, opting in his investigations for the
experimental or investigatory system of Aristotelian roots. Thus, he writes: “Mathematics gives us
the supreme certainty”; “No human investigation can be called true science if it does not go through
mathematical proof” or “no certainty exists where any of the mathematical sciences or those connected
with them cannot be applied” [32].

Or also [17]: “Before proceeding with an investigation, I will do some experiment, because my
intention is to invoke the experience first and then demonstrate, with reasoning, why such experience
must operate in such a way.”

“And this is the true rule according to which observers of natural effects must proceed. As much
as nature begins with reason and ends in experience, we must follow the opposite course, that is, begin,
as I said before, with experience, and with it investigate the reason.”

“Experience is never wrong, only your judgements are wrong, promising strange results to
personal experimentation” [28].

Thus, for example, he was concerned with the strength of beams and made mathematical
formulations about their bending strength. He managed to define laws, although imperfect,
regarding beams’ elastic line for different sections (for square, horizontal and end-supported beams),
coming to observe that the strength varies in relation to the square of its length.

Unlike most of those who later came to be at the forefront of the construction of the scientific
method (Galileo, Descartes, Newton, and Leibniz), Leonardo da Vinci was not a mathematician.
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He took mathematics classes with Luca Pacioli [29]; however, his relationship with mathematics
was mainly based on geometry, due to his great interest in studying the laws of linear perspective.
Leonardo would use abstraction by replacing time with a succession of drawings, each representing a
certain instant.

Soledad Álvarez, Professor of Art History at the University of Oviedo stated that “The multifaceted
and masterful creative activity of Leonardo is the origin of the scientific illustration in which image
outweighs theoretical reflection in thoroughness and accuracy” [33].

3.5. The Scientific Method in Action: Tests and Experiments

For his projects and designs, Leonardo needed to know the efforts that both the material meant
to be used and the human resources employed could make. For this reason, he carries out his own
studies on strength of materials and human nature. Thus, he studies the buckling behaviour in beams
as loads are applied at their centre. He also does it with ropes and cables when they are subjected to
stresses, both directly and through pulleys [34]. He also studies friction between different bodies and
on rolling elements on different surfaces. All this to establish possible transferable estimates after each
of his projects.

The Madrid Codices I and II (Figure 2) are respectively entitled “Treatise on Static and Mechanics”
and “Treatise on Fortification, Static and Geometry” [35]. Among Manuscripts at the French Institute
in Paris, Manuscript “E” is a treatise on physics and mechanics, and Manuscript “M” is one on
geometry. In the London Forster Codex, there are themes of geometry, hydraulics, and physics. Finally,
the Codex Atlanticus (Ambrosian Library of Milan) also has pages with topics of mechanics, physics,
and mathematics.
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Although his studies in mechanics have some errors, he is also recognised for some contributions
to the science and strength of materials, such as being the first one to draw the catenary and propose
its study using a discrete model still in use today [36].

4. Contributions to Graphic Representation Techniques for Design

In the words of the writers and historians Luca Antoccia and Carlo Pedretti, “Leonardo can boast
of having had an indisputable primacy, which places him at the head of the beginnings of modern
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scientific illustration. Indeed, no one before him had been able to expose a complex technical project so
effectively in a drawing” [37].

How, 500 years ago, did Leonardo da Vinci manage to carry out such high-quality technical
designs and to formulate his conceptual models solely through drawing? Leonardo took advantage
of his great knowledge in drawing and painting, together with his spectacular creative capacity,
to generate an important contribution of graphic techniques that can be used in technical designs.

This section will discuss three of the main contributions to graphical representation techniques
developed by Leonardo da Vinci, explosion diagrams, charts of route families, path diagrams, and bird’s
eye maps.

4.1. Explosion or Exploded Diagrams

This object representation technique has been very useful for understanding the conformation
and operation of machines and products. But it was not until the middle of the 20th century that the
term emerged as a three-dimensional (isometric) illustration that shows the coupling relationship of
parts, subsets, and large assemblies. It can also show the assembly or disassembly sequence of the
detailed parts. It is still widely used today to capture joint interior views of drawings of mechanisms,
mechanical or electrical elements, etc. Three-dimensional views and animation are the new heirs of
this technique.

Leonardo, who dissected both human bodies (in his facet as an anatomist), and machines and
artefacts (in his engineering facet) into individual parts, needed to represent them through separate
parts, but without losing sight of the whole. For this purpose, he used this technique, together with the
identification and description of the parts through letters and short texts close to the views, which is
why he can be considered the precursor of the use of explosion diagrams for anatomical studies and,
together with the Italian engineer Mariano di Jacopo “Il Taccola”, for machines and artefacts.

As an example, in the Codex Atlanticus, f. 30 v at the Ambrosian Library of Milan, he draws his
assembled machine (argano) in perspective (Figure 3), and to its right he decomposes it in detail, also in
a perspective view, as if it had “exploded” but so that although the mechanisms are already separate,
they retain their overall vision. Thus, it does not require any explanation for its construction or to
understand its operation.
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(b) Model at the Museum of Science and Technology of Milan [39].

It is a machine for lifting weights composed of a mechanism for alternating movement from a
crank, produced by a human being, which is converted to a continuous movement so that it lifts a
weight steadily. The machine invented by Leonardo has as its main drive a mechanism that today
would be called mechanical hammers.
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4.2. Diagrams or Charts of Route Families

He is also a pioneer in making use of what are now called route family graphics, valid to represent
a parameter or a variable that varies only depending on another single variable.

Leonardo estimated that the increase or decrease in force or natural “potenze” follows a pyramidal
law; that is, an arithmetic proportion (he extended his Pyramidal Law of Optics to stresses, which he
assimilated to the inclined plane or wedge-shaped triangle, as well as to pressure in his hydraulic
studies). He stated that force increases with speed and decreases with distance, while weight
and percussion increase proportionally with speed. For him, his Pyramidal Law represented a
universal constant.

In his studies of screw fasteners, to justify their development, he also assimilates them to an
inclined plane, and he explains its relationship with helical development in an existing diagram in the
Madrid Codex I, f. 86 v at the National Library of Spain (Figure 4).
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He also studies the phenomenon of pressure in different cases: in open watercourses, as in his
design of the irrigation channel to San Cristofano, existing in the Codex Atlanticus f. 1097 r at the
Ambrosiana Library of Milan (1509); in the reach of water jets, as can be seen in the detail of the Madrid
Codex I, f. 134 v, at the National Library of Spain (Figure 5), where the “pyramidal” consideration of
the phenomenon is observed again (the distance or reach of the jet decreases by increasing its height);
or in closed pressure vessels, in his study of the reach of pressurised water in Manuscript C, c. 7 r, at
the French Institute in Paris (France).
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Likewise, he can be considered a pioneer in the use of diagrams in a circular arrangement, using a
simile of the string diagrams, in order to show functional relationships between different parts of the
drawing, such as force lines. For example, Leonardo estimated that the force needed to overcome the
inclined planes followed an arithmetic ratio, so in one of his traction studies, to calculate the necessary
traction force in a bullock cart in relation to the diameter of the car wheels, he expresses the growth of
the wheel using a concentric circular drawing and relates it to the lateral pyramid of the effort that
the oxen must make (Codex Atlanticus f. 561 v, at the Ambrosiana Library of Milan). He also uses
similar circular diagrams for his studies of mechanics and optics in the Arundel Codex, f. 93 r at the
British Library in London, which records a ratio between a degree of momentum and its corresponding
degree of percussion in Florentine units of measure.

4.3. Bird’s-Eye Maps

Leonardo is also the author of several plans and maps, especially of cities and land linked to
Tuscany and, to a lesser extent, to the Papal States of that time. He developed them during his second
Florentine period (1500–1506), at the beginning of which he served César Borgia (Rome 1475–Viana
1507), who appointed him architect and general engineer of the papal dominions. “We order and
command that the bearer of this, our well-loved and very exalted architect and general engineer
Leonardo da Vinci, who we have commissioned the inspection of the squares and fortresses of our
states, be given the help required in each case or that in his judgement he deems necessary” [32].
At his service, he carried out studies of fortifications and cities and accompanied him in his military
campaigns on Romagna.

During the government (Signorina) of the city of Florence, Leonardo was chosen to write the
project for the diversion of the Arno river so that Florence would have direct access to the sea, without
going through Pisa, its enemy city. The promoter of the idea had been Nicolas Machiavelli (Florence
1469–1527) in 1503, as secretary of the Florentine Chancellery. It was in this project that Leonardo
acted the longest as a cartographer/topographer, producing magnificent plans and maps with detail
and precision like no one else had ever achieved before. Most of them are found in the Royal Library
of Windsor, in the Design and Prints Cabinet of the Uffizi Gallery in Florence, and in the Leonardo
Museum, in Vinci.
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He also studied and improved the perspective technique, so that together with his mastery of
drawing and colour, he was able to generate views from the sky of the areas and highlight whatever he
wanted at any time in an exceptional way (Figure 6). Until the “Quattroccento”, and even much later,
slopes were represented as simple “molehills” (e.g., the Map of the “Trasimeno” Lake or “di Perugia”
from 1600, by the Italian cartographer and mathematician Giovanni Antonio Magini (1555–1617),
almost 100 years after Leonardo’s).
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Leonardo overcomes all this and uses contour shading and his “chiaroscuro” technique to achieve
greater objectivity in the representation of the territory. In addition, he used the distortion of scales
technique in the appropriate areas to highlight what he considered necessary (watercourses, cities,
mountains and valleys, etc.). The combination of all these techniques shows maps with an exceptional
finish for those who see them, with an adequate sense of depth, size, or comparative distance in
relation to the rest of the drawing, making Leonardo the precursor of “bird’s-eye view” plans and
maps, when it was not possible to view places from the air.

4.4. Contribution of This Techniques to the Practice of Design

Plans, along with models and prototypes, are the most important form of communication in design
practice. As seen in the three techniques presented, Leonardo takes advantage of his creative ingenuity,
his mastery of drawing and painting, and his exceptionally advanced knowledge of geometry and
perspective to innovate in the techniques of graphic representation with highly accurate diagrams,
graphs, charts and plans, and impressive graphic quality.

In this regard, the Director of the Institute and Museum for the History of Science in Florence,
Paolo Galluzi, states: “The objective pursued by Leonardo is to provide a precise and absolutely clear
representation of the structure and operation of extremely complex mechanisms, using a series of
graphic resources (plan and elevation views, transparency views, component views, simulation of
kinematic chains, use of “chiaroscuro” to underline the surfaces in contact, schematization of the lines
of force, etc.) that nobody before he had organically conceived and, above all, consciously applied to a
communication project related to the horizon of technology” [33].

5. Contributions to Design Tools and Instruments

Project theorists emphasise the importance of the instruments and tools applicable to it, thus the
so-called systemic ones such as Hubka and Eder in their “Theory of Technical Systems” [22] specify
the need to be knowledgeable of the instruments that can be used to design, while the non-systemic
ones such as Gómez-Senent classify the Operating Instruments as a fundamental dimension of the
Project/Design [41].

Leonardo contributed innovations such as the improvement of the adjustable opening compass,
the creation of a parabolic compass as the first generation of ellipsographs, the improvement of the
prospectograph, his odometer, or his darkroom.
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5.1. The Compasses

Since ancient times, the compass has been an important design instrument both for the generation of
circumferences, as well as for obtaining the bisectors of angles, the drawing of perpendicular and parallel
lines, the comparison between measurements, and even has been used in proportional calculation.

The Greeks already considered it as the most elegant and extremely simple construction tool,
not only due to its application area is design, but also for mathematics, astronomy, navigation,
topography, military use, etc. It has also been widely used as an indicative representation element of
science and art.

A large number of special compasses were created in the Renaissance, with specific functions such
as the generation of ellipses, parables, etc. Leonardo is no stranger to it; he designed various compass
models both for conventional use with an adjustable opening, as well as other more complex ones
suitable for drawing conical curves such as ellipses (the so-called ellipsograph), or parables (parabolic
compass). He also designed moving centre reduction compasses and even created a compass for
epicycloid curves.

As a true example of the Renaissance and as a humanist, he assimilated man as the centre of
the universe, and as a great lover of nature, he studied its proportions and established their ideal,
generating around 1492 his famous “Vitruvian Man” (in honor of the brilliant Roman architect) or of the
“divine proportions” (existing in the Accademia Gallery, Venice). In his attached text he writes: “ . . . if
a man lies on his back, with his hands and feet extended, and places the end of a compass on his navel,
the fingers and toes will touch the circumference of the circle that we thus draw” [42].

His compass models (Figure 7) are reflected in several of his codices and manuscripts, some with
exceptional detail that would allow their construction and use.
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5.2. The Prospectograph

The Italian architect León Battista Alberti (1404–1472) already mentioned the use of this instrument
in some of his works [46], but Leonardo is the first to draw it in detail in his Codex Atlanticus in
f. 5 r (1480–1482) and describe its use. Even Leonardo himself is drawn using his veil prospectograph,
drawing an armillary sphere (Figure 8).
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Figure 8. Enlarged detail of the prospectograph being used by Leonardo. Codex Atlanticus f. 5 r [47].

Leonardo distinguishes and uses two kinds of prospectographs: the veiled and the glass one.
For the one with a veil, already named by Alberti, the observed image is drawn directly with some
staining element (e.g., bitumen) and is later transferred to paper. The other, the glass one, is based
on the representation on glass of the external reality maintaining a fixed point of view; it is the one
that uses a window full of grids (also known as Leonardo’s Window), where the designer observes
the object through the scope of the prospectograph and transfers them to his paper, where there are
also grids similar to those of the window (this model is the one that Albert Dürer (1471–1528) later
popularised in Germany).

From the study and analysis of the drawings thus made, the principles governing the representation
in a conical perspective were subsequently established.

5.3. Odometer and Pedometer

An odometer is a device that indicates the distance travelled by the person, or by the vehicle that
has it incorporated (from the Greek “hodo” = road and “metron” = measurement). It is the precursor
of the distance indicators and tachographs of today’s vehicles. Initially of mechanical constitution,
today they are electronic.

The Greek mathematician, engineer, and astronomer Archimedes of Syracuse (287 BC–212 BC)
is credited with the possible invention of this instrument. Later, the Roman architect and engineer
Vitruvio (80≈70 BC–15 BC) mentions it again in his treatise “De Architectura”. It seems that its first use
was made by the engineer and mathematician Herón de Alejandría (1st–75th century), by incorporating
gears into the carriage wheels in order to know the distance travelled by them. However, it was not
until the Renaissance that Leonardo described its construction and characteristics, being the first to
draw it to detail.

Leonardo, in 1502 (first Roman stage), was commissioned by César Borgia (son of Pope Alexander
VI) when he was named “architect and general engineer of the Papal dominions”, to establish defences
and improvements in the fortifications of the Pope “Borgia” dominions. To do this, he needed to carry
out large longitudinal measurements, for which he devised several automated length measurement
machines. On folio 1b r (around 1504) of the Codex Atlanticus at the Ambrosian Library in Milan
(Figure 9), two odometers and a pedometer are drawn in detail.
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Figure 9. (a) Study ot two odometers. Codex Atlanticus, f. 1b r, [48]; (b) Odometer model at the
National Museum of Science and Technology of Milan [49].

The trolley-shaped odometer measured lengths with the units established at the time (“braccias”),
while the pedometer measured it with the equivalence to “steps” of the person driving it.

In Leonardo’s Odometer, the cogwheel was “designed to advance one tooth every 10 bracces
travelled (about 6 m), until, when reaching sixteen hundred meters (one mile), a pebble fell audibly
into a metal container” [10]. For each turn of the large central wheel, one tooth of the lateral cogwheel
was advanced vertically; once the total turn of the latter had been exhausted, another upper horizontal
wheel was already activated, which had incorporated small balls or round stones in its upper part,
and one of them was dropped into a box located in the lower part of the trolley. It was enough to count
the number of balls that had fallen to know the length travelled.

5.4. Contribution of this Tools to the Practice of Design

Designers need tools that allow them to trace their plans and drawings with precision; they need
tools to transfer to said plans the existing reality on which the designed object is going to be inserted;
they need tools so that the designed object, the artifact, is brought to life, and built to the correct
dimensions. Leonardo was not just satisfied with proposing innovative designs and leaving them at a
conceptual level; he wanted to put them into practice, materialize them, and build them.

The tools that Leonardo refined contributed to improving the detailed design of the designed
objects, as well as being the perfect complement to take advantage of the advances in graphic
representation techniques shown in the previous section.

6. Discussion on the Functional Feasibility of His Designs

A large number of the devices, machines, and mechanisms designed by Leonardo Da Vinci, and
represented in his nearly 7000 preserved manuscript folios, only reached the level of conceptual design.
For this reason, Leonardo’s activities as an engineer have become particularly famous through a series
of models whose construction began in Milan in the 1930s [33]. Although the accuracy of some of the
reconstructions has since been questioned, and his famous war machines were perhaps the area where
he was least innovative, his contribution lay not so much in the gadgets as in his new ways of drawing
them and his methodical approach to their underlying principles.

It is also important to note that Leonardo’s designs of mechanisms and devices were based on
in-depth study and experimentation on the statics of the rigid solid. He studied the deflection of
bent beams subjected to different loads applied at different positions, trying to correlate stress and
deformation, also dealing with compound stresses, in terms of normal stress or bending. In order to
carry out these theoretical studies and characterise the strength of the materials, he designed machines
to perform tensile tests (Codex Atlanticus f. 82 r) and also for repeated impact tests (Codex Atlanticus
f. 21 r) [50].
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On the other hand, most of Leonardo’s scientific-technical projects, due to the technological
limitations of his time, never materialised, and none of them last to this day. For this reason, there is
controversy over whether they could be put into practice with current instruments and materials, and,
during the last decades, different researchers have tried to demonstrate the feasibility and benefits of
his designs, some of which are analysed in this section.

Leonardo da Vinci carried out an enormous number of designs and projects, but to maintain
coherence with the previous sections, when analysing examples of the functional feasibility of
Leonardo’s designs, artifacts linked to the material execution of construction projects have been chosen;
that is, tools that can be used in the works that Leonardo designed and/or carried out, such as the crank
lift, the hammer for piling, and the mechanical jacks. The self-propelled vehicle has also been included
due to the absolute originality of this design.

6.1. The Manual or Crank Lift

Leonardo designed important works that required large land movements and lifting loads, so
he designed several machines and tools to facilitate these tasks. The Madrid Codex I, f. 9 r, at the
National Library of Spain contains the design of a device suitable to act as a lift or manual elevator for
loads (Figure 10). It works by means of a crank, which moves a worm screw that makes the gear rims
and inner nuts turn, through which the “pull” rope or cable slides. As the lifting screw prevents the
mechanism from turning in both directions, it allows for safe load raising or lowering. Furthermore,
with proper multiplication, it allows movement with very little effort.

As proof of his mastery in weightlifting, the Milanese painter and historian Giovanni Paolo
Lomazzo (Milan 1538–1600) stated in 1590: “And he showed the art of lifting weights with ease [with
his books], of which all of Europe is full and are held in high esteem among experts, because they
consider that no more can be done than what he has already done” [51]. In fact, practically the same
design continues to be used today in construction sites for lifting loads or even for people-carrying
scaffolding in façade work.
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6.2. The Hammer for Piling

Piling machines serve to insert precast wooden, concrete, or metal elements into the ground, in the
form of a post or column. Its function is to prepare foundations in terrains that are unsuitable for
building. Said elements, called “piles”, are usually “driven” into the ground by “hammer” blows,
so that the element descends penetrating the ground until reaching the designed depth.

In the Codex Atlanticus, f. 785 (around 1500) (Figure 11), Leonardo draws his machine for driving
logs into the terrain that he intended to use in his project to divert the Arno river in Florence. It consists
of a device that lifted a weight in a guided way using pulleys and cranks so that it hit the log with the
highest possible force. The crank pulley ratio enabled the repetition of the operation. The essence of
this way of working has not changed to this day compared to Leonardo’s design, except for the power
source used for weightlifting.Designs 2020, 4, x FOR PEER REVIEW 15 of 20 

  

(a) (b) 
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6.3. The Mechanical Jacks

Leonardo states in his Notebooks: “Mechanics is the paradise for mathematical sciences, because
with it mathematics bear fruit”. A great connoisseur of physics, mechanics, metallurgy and the
operating principles of machine elements, he uses this knowledge to develop several machine tools.
Among them, he designs at least three different mechanical jacks.

The ratchet jack consists of holding a vertical fixed rack and makes the gear system rise or fall
with the weight by turning a crank. The adequate reduction ratio between wheel and pinion will
reduce the effort required to lift weights. Leonardo includes it in his Codex Atlanticus, f. 0998 r, at the
Ambrosiana Library of Milan (Figure 12a). Both in electromechanical workshops and in jacks to change
wheels in vehicles, this mechanism is still used today.
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Figure 12. (a) Detail of the Codex Atlanticus, f. 0998 r, Ambrosian Library of Milan, [55]; (b) detail
of the Madrid Codex I, f. 34 r, National Library of Spain [4]; (c) detail of the Madrid Codex I, f. 26 r,
National Library of Spain [4].

The spindle jack uses a screw-nut mechanism that allows the displacement of the former by
making a rotating movement over it while keeping the nut fixed. In this way, a circular movement
is transformed into a rectilinear one. It is simple and safe, but slow to operate, since with one turn
of the screw it only moves forward the length of the thread pitch. In the Codex Atlanticus f. 0138 r,
at the Ambrosiana Library of Milan, he describes the design of a mechanical jack for lifting or dragging
cannons, as well as another similar device for fixed dragging of loads, both using the spindle system.
This type of jack is still common in both the metal mechanic and construction sectors.

The screw jack with anti-friction bearing incorporates a kind of rotating toothed ball bearing,
between the fixed support platform and the rotating upper toothed disc. In addition, it incorporates a
lateral crank to facilitate rotation. Due to the presence of the ball bearing and a tooth sprocket on its
upper part, the device works more easily and with less effort. It is included in the Madrid Codex I
f. 34 r (Figure 12b) and f26 r (Figure 12c) at the National Library of Spain. This solution from Leonardo
continues to be used today by tool manufacturing companies for mechanical workshops.

6.4. The First Self-Propelled Vehicle

Thoroughly knowledgeable about the elements of machines (his Madrid Codex I, entitled “Treatise
on Static and Mechanics”, from 1493, can be considered the most complete treatise on Mechanics
of the Renaissance), Leonardo designed the first self-propelled vehicle known in history. He takes
advantage of the force on two previously loaded spiral winding springs, enclosed in drum-shaped
compartments, which transfer their power to two wheels. In the Codex Atlanticus, f. 812 r (1478–1480)
at the Ambrosiana Library of Milan (Figure 13), he establishes his project with two views: one plan
view, representing springs, gears, crossbows, etc., and another in perspective, where he adds the idea
of a possible steering system. Consisting of a small supplementary wheel coupled to its rear part and a
stem accessible from above the vehicle, it would act as a steering wheel to be oriented at convenience,
or through previous programming. For the latter, he used “eccentrics” in different ways, incorporated
into the rotary axes. Depending on the shape of the “eccentrics” initially introduced, the direction of
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the vehicle will change. It also incorporates two adjustable front leaf springs that can act as a control
for the gears that interconnect the power springs with the wheels to control the speed of the vehicle.
Finally, it incorporates a wooden stem that acts as a general brake by remote control, acting on the teeth
of the gears or horizontal wheels, preventing movement towards the rear vertical wheels, ensuring that
power is not transmitted to the wheels even in the event that the springs are loaded. A ring acting on
the stem and through a rope removed it from a distance, allowing the vehicle to move. In the lower
part of the manuscript, the supplementary part that acted as an initial brake operated from a distance
by means of a rope is represented.
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Used as a theatrical machine that moved by itself, in both straight and curved directions, he made
an impression at the court parties of the Duke of Milan Ludovico Sforza (Vigevano 1452–Loches 1508),
and later at the French court of King Francis I (Cognac, 1494–Rambouillet, 1547).

In 2004, after several studies carried out in the Science History Museum in Florence, directed by
Italian historians and researchers Paolo Galluzzi (Florencia 1942–) and Carlo Pedretti (Bolonia
1928–Lamporecchio 2018), with the clarifying contributions from the American robotics professor
Mark Elling Rosheim, who digitalised all the necessary parts, it was possible to put into operation the
automobile, giving actual feasibility to the solution that Leonardo projected more than 500 years ago.

7. Conclusions

The figure of Leonardo da Vinci grows as we look deeper into his work. He was a master of
painting, delved into physics and anatomy, designed military and industrial machines, designed
buildings and planned cities, and left a huge written work. However, the way in which he protected or
concealed his findings and the fragmentation, and even loss of his written work caused by his heirs,
along with many of his innovations being too advanced for his time, led to the opinion that much of
Leonardo’s scientific-technical work was speculative.

In this paper, some of the main contributions of Leonardo da Vinci in the field of object and artifact
design have been analysed. After reviewing Leonardo’s main codices and manuscripts regarding the
design of instruments and machines, and mentioning some of the main scholars of his work, it focuses
on analysing the foundations on which he supported his work as a designer.

In the third section, from a conceptual approach, the principles of generating solutions most used
by Leonardo have been studied; inspiration by nature, the organic vision of mechanisms, analysis to
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decompose problems and synthesis for the integration of the designed object, the analogies with
pre-existing designs, and the economy in the design by suppressing the superfluous. After that,
these design approaches have been correlated with some of the existing theories that propose the
design of technical systems as a scientific discipline. Afterwards, it has been analysed how Leonardo
applied the principles of observation and experimentation to obtain the physical laws necessary to
determine the mechanical and structural resistance of the designs developed by him.

In the following sections, a more applied approach has been adopted, and we have studied how
Leonardo made contributions in the techniques of graphic representation (new exploded diagrams,
family charts and bird’s-eye maps) and the instruments that he created or improved to increase the
precision in the plot (compasses), in the visualization and representation of objects in perspective
(prospectograph) and the measurement tools (odometer and pedometer).

Finally, we have presented the development of equipment and technical devices (the crank lift,
hammer for piling, mechanical jacks, and even the first self-propelled vehicle), many of them designed
to improve the effectiveness and efficiency of the projects in which Leonardo was involved.

All these advances that he made in techniques, instruments, and tools allowed his designs to be
better than those of his contemporaries, and many of them could not be materialized at the time for
lack of technology and adequate materials.

There is no doubt that technological development (materials, their processing, construction and
manufacturing technologies, etc.) makes it possible to make reality what was considered impossible in
the 15th century, and therefore many of the designs generated by the prodigious mind of Leonardo
were unviable in his time. However, section six has shown how some of his proposals for machines,
mechanisms, and instruments were put into practice and continue to be used today, while other designs
have only been executed more recently as proof of his vision and resourcefulness.

Thus, the opinion of the university professor, art critic and director of the “Museo Ideale Leonardo
da Vinci”, Alessandro Vezzosi (Italy, 1950), is reinforced. He states: “Da Vinci’s work is unmatched in
the history of scientific and technological illustration, not only for his way of exposing procedures
without endless and boring demonstrations, but also as a work of art, the creation of the designer” [28].

Author Contributions: Investigation, E.C.-M.; Conceptualization, E.C.-M., P.F.-G., S.F.C.-R.; Project administration,
S.F.C.-R.; Supervision, S.F.C.-R.; Validation, P.F.-G.; Visualization, P.F.-G.; Writing—original draft, E.C.-M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.H. Engineering Design, A Systematic Approach, 3rd ed.; Springer:
London, UK, 2007.

2. Da Vinci, L. Codex Atlanticus; Biblioteca Ambrosiana: Milan, Italy; Available online: http://www.leonardo-
ambrosiana.it/en/il-codice-atlantico/ (accessed on 4 May 2020).

3. Da Vinci, L. Arundel Codex; British Library: London, UK; Available online: http://www.bl.uk/manuscripts/
FullDisplay.aspx?ref=Arundel_MS_263 (accessed on 8 May 2020).

4. Da Vinci, L. Madrid Codices. Biblioteca Nacional de España (National Library of Spain): Madrid, Spain;
Available online: http://leonardo.bne.es/index.html (accessed on 15 May 2020).

5. Da Vinci, L. Windsor Royal Collection Manuscripts; Royal Library of Windsor: Windsor, UK; pp. 1478–1518.
Available online: https://www.royalcollection.org.uk/collection (accessed on 8 May 2020).

6. Da Vinci, L. Paris Manuscripts; Institut de France; pp. 1487–1492. Available online: https://archive.org/details/
lesmanuscritsdel00leonuoft (accessed on 12 May 2020).

7. Ravaisson-Mollien, C. Les Manuscrit de Léonard de Vinci; The Warburg Institute: Paris, France, 1881.
8. Galluzzi, P. Renaissance Engineers: From Brunelleschi to Leonardo da Vinci; Giunti Editore: Firenze, Italy, 1996.
9. Pedretti, C. Leonardo: Le Macchine; Giunti Editore: Firenze; Italy, 1999.
10. Capra, F. The Science of Leonardo; Doubleday: New York, NY, USA, 2007.

http://www.leonardo-ambrosiana.it/en/il-codice-atlantico/
http://www.leonardo-ambrosiana.it/en/il-codice-atlantico/
http://www.bl.uk/manuscripts/FullDisplay.aspx?ref=Arundel_MS_263
http://www.bl.uk/manuscripts/FullDisplay.aspx?ref=Arundel_MS_263
http://leonardo.bne.es/index.html
https://www.royalcollection.org.uk/collection
https://archive.org/details/lesmanuscritsdel00leonuoft
https://archive.org/details/lesmanuscritsdel00leonuoft


Designs 2020, 4, 38 19 of 20

11. Braha, D.; Maimon, O. The Design Process: Properties, Paradigms, and Structure. IEEE Trans. Syst. Man
Cybern. Part A Syst. Hum. 1997, 27, 146–166. [CrossRef]

12. Accreditation Board for Engineering and Technology (ABET). Criteria for Accrediting Engineering
Programs, 2019–2020. Available online: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-
accrediting-engineering-programs-2019-2020/#definitions (accessed on 28 July 2020).

13. Taglialagamba, S. Machines et ornament chez Léonard. In Cahier de l’Ornament; Caye, P., Solinas, F., Eds.; De
Luca Editori d’Arte: Roma, Italy, 2016.

14. Veltman, K.H. Leonardo da Vinci: A review. Leonardo 2008, 41, 381–388. [CrossRef]
15. Blessing, L. What is this thing called Design Research? In Proceedings of ICED 03, Research for Practice; Design

Society: Stockholm, Sweden, 2003.
16. Cross, N. Engineering Design Methods, Strategies for Product Design; John Wiley and Sons: Chichester, UK, 2000.
17. García de Zuñiga, E. Leonardo da Vinci. Aforismos; Espasa Calpe S.A.: Madrid, Spain, 2005.
18. Pigem, J. Leonardo da Vinci, El visionario de la ciencia. In Historia—National Greografic; RBA: Barcelona, Spain, 2013.
19. Kemp, M. Leonardo; Oxford University Press: Oxford, UK, 2004.
20. Weber, C. Theory of Technical Systems (TTS)—Its role for design theory and methodology and challenges in

the future. In Proceedings of AEDS Workshop at Pilsen; AEDS Workshop: Pilsen, Czech Republic, 2008.
21. Verein Deutscher Ingenieure (VDI). VDI-Guideline 2221: Systematic Approach to the Design of Technical Systems

and Products, English version of [VDI 2221]; VDI: Düsseldorf, Germany, 1987.
22. Hubka, V.; Eder, W.E. Design Science, Introduction to the Needs, Scope and Organization of Engineering Design

Knowledge; Springer: London, UK, 1996.
23. Suh, N.P. The Principles of Design; Oxford University Press: New York, NY, USA, 1990.
24. Suh, N.P. Axiomatic Design; Oxford University Press: New York, NY, USA, 1990.
25. Innocenzi, P. Leonardo and the Design of Machines. In Proceedings of the 2nd International and Interdisciplinary

Conference on Image and Imagination (IMG 2019); Advances in Intelligent Systems and Computing; Springer:
Cham, Switzerland, 2020; Volume 1140, pp. 36–46. [CrossRef]

26. Taglialagamba, S. Leonardo “designer” alla corte di Milano. Ordine, Bellezza e Invenzione. Art Doss.
2015, 1, 60–65.

27. Pedretti, C. Leonardo Architetto; Mondadori Electa: Milano, Italy, 1981; pp. 324–344.
28. Vezzosi, A. Leonardo Da Vinci, Ciencia y Arte Del Universo; Blume: Barcelona, Spain, 2011.
29. Oliveira, A.R.E. The Mechanical Sciences in Leonardo da Vinci’s Work. Adv. Hist. Stud. 2019, 8, 215–238.

[CrossRef]
30. Pedretti, C. Leonardo da Vinci (Leonardo: Art and Science); TAJ Books: Surrey, UK, 2004.
31. Laurenza, D.; Taddei, M.; Zanon, E. Atlas Ilustrado de las Máquinas de Leonardo; Introduction by Paolo Galluzi;

Susaeta Ediciones: Madrid, Spain, 2006.
32. Nicholl, C. Leonardo da Vinci: Flights of the Mind; Penguin Books: London, UK, 2005.
33. Gancedo, C. Once Maquinas e Ingenios de Leonardo Da Vinci interpretados por Carlos Gancedo; Introduction by

Soledad Álvarez; Fundación Museo Evaristo Valle: Gijón, Spain, 2011.
34. Jaramillo, H.E. Un análisis de la Resistencia de Materiales a partir de los postulados de “Consideraciones

y Demostraciones Matemáticas sobre dos Nuevas Ciencias” de Galileo Galilei. Lámpsakos 2011, 5, 53–59.
[CrossRef]

35. Galluzzi, P. The strange vicissitudes of Leonardo’s manuscripts. In The UNESCO Courier: A Window Open on
the World; Unesco: Paris, France, 1974; pp. 4–8. Available online: https://en.unesco.org/courier/octobre-1974/

strange-vicissitudes-leonardo-s-manuscripts (accessed on 2 August 2020).
36. Truesdell, C. Ensayos de la Historia de la Mecánica; Editorial Tecnos: Madrid, Spain, 1975.
37. Antoccia, L.; Chastel, A.; Chianchi, M.; Galluzi, P.; Laurenza, D.; Papa, R.; Pedretti, C. Leonardo, Arte e Scienza;

Giunti Editore: Firenze, Italy, 2000.
38. Reciprocating machine for weight lifting (Argano), Codex Atlanticus f. 30 v, (1478–1480). Available online:

https://commons.wikimedia.org/wiki/File:Reproduction_of_page_from_notebook_of_Leonardo_da_Vinci_
showing_a_geared_device_assembled_and_disassembled_LCCN2006681098.jpg (accessed on 10 May 2020).

39. Model at the Museum of Science and Technology of Milan. Available online: https://commons.wikimedia.
org/wiki/File:Argano_sollevatore_pesi_Leonardo_Museo_scienza_e_tecnologia_Milano.jpg (accessed on
10 May 2020).

http://dx.doi.org/10.1109/3468.554679
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#definitions
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#definitions
http://dx.doi.org/10.1162/leon.2008.41.4.381
http://dx.doi.org/10.1007/978-3-030-41018-6_5
http://dx.doi.org/10.4236/ahs.2019.85016
http://dx.doi.org/10.21501/21454086.819
https://en.unesco.org/courier/octobre-1974/strange-vicissitudes-leonardo-s-manuscripts
https://en.unesco.org/courier/octobre-1974/strange-vicissitudes-leonardo-s-manuscripts
https://commons.wikimedia.org/wiki/File:Reproduction_of_page_from_notebook_of_Leonardo_da_Vinci_showing_a_geared_device_assembled_and_disassembled_LCCN2006681098.jpg
https://commons.wikimedia.org/wiki/File:Reproduction_of_page_from_notebook_of_Leonardo_da_Vinci_showing_a_geared_device_assembled_and_disassembled_LCCN2006681098.jpg
https://commons.wikimedia.org/wiki/File:Argano_sollevatore_pesi_Leonardo_Museo_scienza_e_tecnologia_Milano.jpg
https://commons.wikimedia.org/wiki/File:Argano_sollevatore_pesi_Leonardo_Museo_scienza_e_tecnologia_Milano.jpg


Designs 2020, 4, 38 20 of 20

40. Map of the Val di Chiana, Royal Collection, RLW 12278, (1502–1504). Available online: https://commons.
wikimedia.org/wiki/File:Val_di_Chiana.jpg (accessed on 8 May 2020).

41. Gómez-Senent, E.; Santamarina, J.L.; Chiner, M.; Aragonés-Beltrán, P.; Capuz-Rizo, S. The design dimensions,
a design theory proposal. In Proceedings of the International Conference on Engineering Design ICED 97; ICED:
Tampere, Finland, 1997.

42. Ricart, J.; González, A.; Tello, A.; Ribot, S.; Miralles, C.; Catazine, S.; Soriano, J.; del Vado, C. Grandes Maestros
de la Pintura; Sol 90 S.L.: Barcelona, Spain, 2006.

43. Reproduction of a compass designed by Leonardo. Available online: https://commons.wikimedia.org/wiki/
File:Compas_Léonard_de_Vinci.JPG (accessed on 8 May 2020).

44. Proportional or reduction compass. Forster Codex I f. 45 (1485). Available online: https://commons.
wikimedia.org/wiki/File:Reduction_Compass_Leonardo.jpg (accessed on 8 May 2020).

45. Parabolic Compass. Codex Atlanticus f. 1093 r. Available online: https://upload.wikimedia.org/wikipedia/

commons/archive/0/03/20171027130237%21Leonardo_parabolic_compass.JPG (accessed on 8 May 2020).
46. Taglialagamba, S. Leonardo and Arquitecture; CB Edizioni: Poggio a Caiano, Italy, 2012.
47. Detail of the Codex Atlanticus f. 5 r. Enlarged detail of the prospectograph being used by Leonardo. Available

online: https://commons.wikimedia.org/wiki/File:Codice_Atlantico_-_Perspectograph.jpg (accessed on
8 May 2020).

48. Study ot two odometers. Codex Atlanticus, f. 1b r. Available online: https://commons.wikimedia.org/wiki/
File:Odomètre-Léonard.jpg (accessed on 10 May 2020).

49. Odometer model. Museo Nazionale della Scienza e della Tecnologia Leonardo da Vinci. (National
Museum of Science and Technology of Milan). Available online: https://commons.wikimedia.org/wiki/File:
Odometro_a_carriola_-_Museo_scienza_tecnologia_Milano_09908_01.jpg (accessed on 10 May 2020).

50. Pugno, N.M. The commemoration of Leonardo da Vinci. Meccanica 2019, 54, 2317–2324. [CrossRef]
51. Orlando, E.; Cinotti, M.; Rizzati, M.L. Leonardo. Colección de Grandes Maestros del Arte; Marin:

Barcelona, Spain, 1977.
52. Study for the mechanism of a manual lift (1495–1497), Madrid Codex I, f. 9 r. Available online: https:

//commons.wikimedia.org/wiki/File:Ascenceur_à_manivelle-Léonard.jpg (accessed on 10 May 2020).
53. Study of a piling machine. Codex Atlanticus, f 785, Ambrosian Library of Milan. Available online:

https://commons.wikimedia.org/wiki/File:Sonnette-Léonard.jpg (accessed on 10 May 2020).
54. Model of Leonardo’s pile machine, at the National Museum of Science and Technology of Milan. Available

online: https://commons.wikimedia.org/wiki/File:Battipalo_-_Museo_scienza_tecnologia_Milano_00040_
01.jpg (accessed on 10 May 2020).

55. Detail of a mechanical jack, Codex Atlanticus, f. 0998 r, Ambrosian Library of Milan. Available online:
https://commons.wikimedia.org/wiki/File:Cric-Léonard.jpg (accessed on 15 May 2020).

56. Manuscript of the self-propelled vehicle, Codex Atlanticus, f. 812 r (1478-1480), Ambrosiana Library of
Milan. Available online: https://commons.wikimedia.org/wiki/File:Leonardo_da_vinci,_Automobile.jpg
(accessed on 15 May 2020).

57. Model of the self-propelled vehicle, at the National Museum of Science and Technology of Milan. Available
online: https://commons.wikimedia.org/wiki/File:Carro_semovente_-_Museo_scienza_tecnologia_Milano_
09082_02.jpg (accessed on 15 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://commons.wikimedia.org/wiki/File:Val_di_Chiana.jpg
https://commons.wikimedia.org/wiki/File:Val_di_Chiana.jpg
https://commons.wikimedia.org/wiki/File:Compas_L�onard_de_Vinci.JPG
https://commons.wikimedia.org/wiki/File:Compas_L�onard_de_Vinci.JPG
https://commons.wikimedia.org/wiki/File:Reduction_Compass_Leonardo.jpg
https://commons.wikimedia.org/wiki/File:Reduction_Compass_Leonardo.jpg
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20171027130237%21Leonardo_parabolic_compass.JPG
https://upload.wikimedia.org/wikipedia/commons/archive/0/03/20171027130237%21Leonardo_parabolic_compass.JPG
https://commons.wikimedia.org/wiki/File:Codice_Atlantico_-_Perspectograph.jpg
https://commons.wikimedia.org/wiki/File:Odom�tre-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Odom�tre-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Odometro_a_carriola_-_Museo_scienza_tecnologia_Milano_09908_01.jpg
https://commons.wikimedia.org/wiki/File:Odometro_a_carriola_-_Museo_scienza_tecnologia_Milano_09908_01.jpg
http://dx.doi.org/10.1007/s11012-019-01099-9
https://commons.wikimedia.org/wiki/File:Ascenceur_�_manivelle-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Ascenceur_�_manivelle-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Sonnette-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Battipalo_-_Museo_scienza_tecnologia_Milano_00040_01.jpg
https://commons.wikimedia.org/wiki/File:Battipalo_-_Museo_scienza_tecnologia_Milano_00040_01.jpg
https://commons.wikimedia.org/wiki/File:Cric-L�onard.jpg
https://commons.wikimedia.org/wiki/File:Leonardo_da_vinci,_Automobile.jpg
https://commons.wikimedia.org/wiki/File:Carro_semovente_-_Museo_scienza_tecnologia_Milano_09082_02.jpg
https://commons.wikimedia.org/wiki/File:Carro_semovente_-_Museo_scienza_tecnologia_Milano_09082_02.jpg
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Leonardo Designer 
	Design, Engineering and Engineering Design 
	Design Approaches in Leonardo. From Nature Observation to Analogies 
	Leonardo’s Design Principles from the Point of View of Current Design Theories 
	Leonardo and the Scientific Method 
	The Scientific Method in Action: Tests and Experiments 

	Contributions to Graphic Representation Techniques for Design 
	Explosion or Exploded Diagrams 
	Diagrams or Charts of Route Families 
	Bird’s-Eye Maps 
	Contribution of This Techniques to the Practice of Design 

	Contributions to Design Tools and Instruments 
	The Compasses 
	The Prospectograph 
	Odometer and Pedometer 
	Contribution of this Tools to the Practice of Design 

	Discussion on the Functional Feasibility of His Designs 
	The Manual or Crank Lift 
	The Hammer for Piling 
	The Mechanical Jacks 
	The First Self-Propelled Vehicle 

	Conclusions 
	References

