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Abstract: The paper describes the use of a single-phase three-stage solid-state transformer in networks
with non-sinusoidal voltages in order to improve the quality of electricity. An active-inductive load
was chosen as the load. The solid-state transformer was simulated by the Matlab/Simulink software.
Its performance was analyzed and the parameters for optimal performance were specified. The voltage
and current graphs on the load and their spectral analysis are given. Total harmonic distortion
was evaluated for current and voltage. As a comparison, the operation of a classic transformer
was simulated. Modeling shows that solid-state transformer copes with improving the quality of
electricity better than a classical transformer. In addition to improving the quality of the load current,
the solid-state transformer protects the consumer from overvoltage, voltage dips, and other transient
phenomena, due to the accumulated supply of electricity in the capacitors of the DC-Bus.
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1. Introduction

Transformers are widely used in power supply systems, carrying out AC voltage conversion and
galvanic isolation. Recently, the use of smart grids has become more frequent. They differ from classical
electric grids in that they include their own sources of energy generation and in critical situations are
able to provide power to particularly responsible consumers. Large power plants and autonomous
diesel–electric units, as well as high-capacity batteries, wind power stations, solar panels, hydrogen
fuel cells, etc., can act as sources of electricity. The difficulty in using various sources in smart grids is
the coordination of different voltage levels, which is exacerbated by the fact that the portion of the
electricity is produced or stored in DC networks, and the other portion—in AC networks. A classic
transformer provides direct conversion with very limited changes or improvements, so if there is any
voltage asymmetry, voltage dips or frequency changes at the transformer input, the output voltage
will have the same drawbacks. In addition, in order to work with direct current or alternating current
networks of a different frequency, classical transformers require the use of additional equipment
(inverters, rectifiers, frequency converters) [1,2].

These shortcomings can be eliminated by using solid-state transformers (SSTs) in smart power
supply grids, which allow one to control the flow of electricity and improve its quality (reduce voltage
dips and power surges, compensate reactive power without using any additional compensator).
In addition, SSTs are smaller and make it easy to match direct and alternating currents of different
voltage levels.

Designs 2020, 4, 35; doi:10.3390/designs4030035 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
https://orcid.org/0000-0001-6902-245X
https://orcid.org/0000-0001-5702-3260
http://www.mdpi.com/2411-9660/4/3/35?type=check_update&version=1
http://dx.doi.org/10.3390/designs4030035
http://www.mdpi.com/journal/designs


Designs 2020, 4, 35 2 of 10

2. Scientific Significance of the Issue with a Brief Literature Review

Thanks to technological progress in power electronics, the use of solid-state devices has become
promising for improving the quality and reliability of power supply in both transmission and
distribution power systems. Recently, there has been an increase in the number of designs and in
the studies related to the development of smart grids that combine the production of energy using
renewable sources, batteries or other emergency power storage systems, the distribution of active
and reactive components of power and the feasibility of continuous operation to maintain higher
power quality [3,4]. The integration of various types of energy allows optimizing the operation of
the entire energy system as a whole. For example, representative energy conversion technologies,
such as energy storage technologies, can temporarily convert excess thermal/electrical energy into
chemical/mechanical energy and deliver it when the system is low on energy [5].

SSTs are actively studied all over the world diversely, i.e., the transfer of electricity from an
electric power source to a consumer [6], galvanic isolation (separation) between a power source
and a consumer [7], improving the quality of electric power [8], matching DC and AC networks [9],
developing smart grids with diverse sources of electricity of various capacities, such as solar panels,
wind generators, diesel generator sets, batteries, fuel cells and others [10], creating more portable and
mobile power conversion plants compared to existing ones that are especially relevant for autonomous
airborne, surface [11–13] and underwater [14] vehicles, for electric traction systems [15], automatic
compensation of reactive power in AC microgrids without using any additional compensator [16],
connection to the energy storage system which allows operation as an uninterruptible power supply [17],
active filtering and the protection of electrical equipment on the network side/on the consumer side [18].

SSTs have the potential to provide extra benefits compared to a traditional transformer in terms
of power quality and controllability such as output voltage control, reactive power compensation,
voltage regulation (flicker compensation), and power factor correction [19]. With the use of advanced
control strategies, other functions can be realized; for instance, SSTs can function as a unified power
quality conditioner [20]. There is a large amount of literature regarding SSTs and their applications,
however they can be still considered as a young technology. The article [21] provides a list of the most
pressing issues for SSTs, such as: capability of real-time communication among different SSTs within a
network, the control of hybrid (DC and AC) power flow in complex networks, four wire distribution
networks, modulation schemes and topologies of SSTs to achieve a small footprint and high efficiency,
protections and reliability of SSTs, fault ride through the capability of SSTs, and economic viability
such as the lifetime cost analysis of SSTs versus conventional transformers. Despite a large number of
problems and raw technology, SSTs can be used now with limited functionality. An example of this is
the use of SSTs to improve the quality and reliability of transmitted electricity. This issue is especially
relevant for the private sector, where stress can sag at peak moments of consumption.

3. SST Architecture

There are a number of topologies for SSTs that allow one to apply them for specific purposes
with the highest efficiency and reasonable cost. Available topologies can be divided into following
three types:

• Single stage [6,22,23];
• Two stage [24,25];
• Three stage [9,21,26–30].

The single-stage SST topology uses an AC–AC full bridge converter which converts the low
frequency AC input to a high-frequency one which is then stepped down using a high frequency (HF)
transformer. The output of HF transformer is further converted to power frequency using another
converter. The major disadvantage of the topology is the absence of a DC link which limits the
functionality of the SST.
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The two-stage topology uses an AC–DC dual active bridge with a pulse-width modulation
(PWM) inverter. The SST with two-stage topology avails a DC low-voltage link which can be used
for the integration of distributed energy resources. This topology results in higher efficiency with a
zero-voltage switching strategy. However, this type of converter suffers from the problem of high
ripple current and the high sensitivity of active power flow on leakage inductance.

The three-stage SST topology comprises of a PWM rectifier, a DC–DC dual active bridge and
a PWM inverter. This topology requires switching between two alternative control schemes for
power flow in either direction. A more detailed comparison of various SST topologies is presented
in [6,21,27,28]. It was the three-stage SST that became the most popular [28].

4. Results

Let us now evaluate how the three-stage SST will increase the quality of electricity with a high
non-sinusoidality of the input voltage. The load is active-inductive in nature: R = 100 Ω, L = 1 mH.

Let us set the input voltage as

U1(t) = 311sin(314t) + 50sin(942t + 20◦) + 25sin(2199t + 50◦), (1)

Internal impedance is assumed to be 0.1 Ω and 20 µH. In the case of direct power supply from
this voltage source, the current will repeat the form of voltage. The input non-sinusoidal voltage will
create a non-sinusoidal load current, which will create additional losses resulting in economic damage.
Usually, for the sake of safety, the source of electricity and the load are separated by galvanic isolation.
This case will be considered further.

The main factors that affect power quality include:

(1) Total harmonic distortion (THD, %);
(2) Voltage deviation index (TVD, %);
(3) The range of voltage change (∆VLR, %);
(4) Amount of voltage ripples (ψ, %);
(5) Voltage non-sinusoidality coefficient (kU, %);
(6) Coefficient of the n-th harmonic component of the voltage of odd (even) order (kU(n), %);
(7) Negative sequence voltage ratio (k2U, %);
(8) Zero sequence voltage ratio (k0U, %);
(9) Duration of the power failure (ACF, s);
(10) Impulse voltage (Uimp, kV);
(11) Frequency deviation (∆f, Hz);

SST allows one to adjust the magnitude of the voltage and frequency, being determined by the
reliability of the control system. Therefore, from all indicators of the quality of electricity, we chose
only total harmonic distortion.

4.1. Modeling a Circuit on a Classic Transformer

The model of a single-phase classical transformer implemented in Simulink is shown in Figure 1.
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Figure 1. Simulink model of the single-phase classical transformer. 

Parameters of the classical transformer are as follows: 

• Nominal frequency 50 Hz; 
• Turns ratio 10/11; 
• Active resistance of primary winding 4 Ω; 
• Inductance of primary winding 63 mH; 
• Active resistance of secondary winding 4.5 Ω; 
• Inductance of secondary winding 72 mH; 
• Magnetization resistance 100 kΩ; 
• Magnetization inductance 3 H. 

The total harmonic distortion (THD) of voltage U1(t) is 18.04%. The total harmonic distortion of 
input current THDI1 = 8.25%. The difference in values is that the primary winding of the transformer 
has a reactance and smoothens the high-frequency voltage ripples. In the secondary winding, THDU2 
= 11.37%, THDI2 = 8.25%. Graphs of the input voltage and currents are presented in Figure 2a, where 
as the output voltage and current—in Figure 2b.  
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Figure 2. Modeling a circuit on a classic transformer: (a) the current and voltage on the primary 
winding of a classical transformer; and (b) the current and voltage on the load for a classical 
transformer. 

Let us evaluate the operation of the system during short-term power failure. The time of 
absence of voltage is three periods. The input current and voltage are shown in Figure 3a, the output 
current and voltage from a classic transformer are shown in Figure 3b. As can be seen from the 

Figure 1. Simulink model of the single-phase classical transformer.

Parameters of the classical transformer are as follows:

• Nominal frequency 50 Hz;
• Turns ratio 10/11;
• Active resistance of primary winding 4 Ω;
• Inductance of primary winding 63 mH;
• Active resistance of secondary winding 4.5 Ω;
• Inductance of secondary winding 72 mH;
• Magnetization resistance 100 kΩ;
• Magnetization inductance 3 H.

The total harmonic distortion (THD) of voltage U1(t) is 18.04%. The total harmonic distortion of
input current THDI1 = 8.25%. The difference in values is that the primary winding of the transformer
has a reactance and smoothens the high-frequency voltage ripples. In the secondary winding,
THDU2 = 11.37%, THDI2 = 8.25%. Graphs of the input voltage and currents are presented in Figure 2a,
where as the output voltage and current—in Figure 2b.
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Figure 2. Modeling a circuit on a classic transformer: (a) the current and voltage on the primary
winding of a classical transformer; and (b) the current and voltage on the load for a classical transformer.

Let us evaluate the operation of the system during short-term power failure. The time of absence
of voltage is three periods. The input current and voltage are shown in Figure 3a, the output current
and voltage from a classic transformer are shown in Figure 3b. As can be seen from the graphs, with the
disappearance of the voltage on the primary winding, the voltage on the secondary winding will
also disappear.



Designs 2020, 4, 35 5 of 10

Designs 2020, 4, x FOR PEER REVIEW 5 of 10 

 

graphs, with the disappearance of the voltage on the primary winding, the voltage on the secondary 
winding will also disappear. 

Time, s

Vo
lta

ge
, V

Cu
rr

en
t, 

A

Time, s

Vo
lta

ge
, V

Cu
rr

en
t, 

A

 
(a) (b) 

Figure 3. Modeling a circuit on a classic transformer: (a) the current and voltage on the primary 
winding of a classical transformer; and (b) the current and voltage on the load for a classical 
transformer. 

4.2. Modeling of the Circuit with a Single-Phase SST 

The single-phase SST model implemented in Simulink is shown in Figure 4. 

 
Figure 4. Simulink model of the single-phase solid-state transformer (SST). 

The voltage source U1 has an active-inductive nature of the internal resistance R1. Voltage is 
supplied to a controllable bridge rectifier assembled with V1–V4 thyristors. In order to prevent the 
distortion of the input voltage due to strong distortions of the consumed current in the thyristor 
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4.2. Modeling of the Circuit with a Single-Phase SST

The single-phase SST model implemented in Simulink is shown in Figure 4.
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Figure 4. Simulink model of the single-phase solid-state transformer (SST).

The voltage source U1 has an active-inductive nature of the internal resistance R1. Voltage is
supplied to a controllable bridge rectifier assembled with V1–V4 thyristors. In order to prevent the
distortion of the input voltage due to strong distortions of the consumed current in the thyristor
rectifier, it is possible to put a filter-compensating device at the SST input. The rectified voltage is
smoothed by the capacitor C and then goes to the dual active bridge, consisting of an inverter based on
insulated-gate bipolar transistor (IGBT) T1–T4, a high-frequency linear transformer and a rectifier based
on diodes D1–D4. The resulting voltage is smoothed by the capacitor C2 and fed to the full-bridge
converter, which converts to alternating voltage from direct voltage using PWM modulation. The main
disadvantage of a single-phase SST as compared to a three-phase SST is that the rectified voltage after
the first rectifier has a high ripple rate, i.e., the bulk capacitor must have a higher capacity in order
for the SST to perform properly. Given the high voltage and large capacitance, bulk capacitors are
large and expensive, which adversely affect the economic prospects of single-phase SSTs. In addition,
the main load of any transformer is active-inductive; therefore, the inductance of the high frequency
transformer in combination with the load inductance can create an oscillating circuit with capacitors,
thereby creating unnecessary losses for heating and possible overcurrent and overvoltage.

SST was used with a small power (500 W) for the clarity of its work. In the case of a low-impedance
load, the load inductance is usually large, which stretches the transients in time. Despite the fact that
the SST can be divided into relatively simple blocks, which are studied quite well, the design of the SST
is complicated by the fact that the SST does not work regardless of the load. Therefore, ensuring the
coordinated operation of the entire complex is the main obstacle to the widespread use of SSTs, and it
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is necessary to design a device for the given parameters. To assess the quality of electricity, we can do
this with an easily scalable model.

Consider the operation of a single-phase SST. The SST parameters are as follows:

• Capacitance for the first stage 10 mF;
• Nominal output frequency 50 Hz;
• Turns ratio 10/17;
• HF transformer frequency 1 kHz;
• Active resistance of primary winding 0.1 Ω;
• Inductance of primary winding 4 mH;
• Active resistance of secondary winding 0.15 Ω;
• Inductance of secondary winding 7 mH;
• Capacitance for the second stage 0.1 mF.

Let us analyze the values of the output current and voltage with SST: THDU2 = 77.03%,
THDI2 = 2.48%. As one can see, the THD current is much better than when using a classic transformer.
We can further improve the quality of the voltage by using harmonic filters, including passive ones.
This issue will not be considered, and in the future, only the SST will be considered in the article
without the use of input and output filters so that the comparison of SST and a classical transformer is
fair and does not depend on the type and parameters of low-pass filters. The cost of passive filters is
not high, so installing a filter will not greatly affect the total cost of work.

Waveform of the voltage and currents on the load are presented in Figure 5a. A comparison of the
average output voltage with the SST and the non-sinusoidal input is shown in Figure 5b. The THD
of the average voltage value is 1.7% and is associated with the fact that due to small ripples during
voltage rectification, distortion occurs during the formation of PWM modulation owing to the fact that
the amplitude of the modulated signal varies within insignificant limits.
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Figure 5. Modeling of the circuit with a single-phase SST: (a) SST-load current and voltage (green line
is the average voltage); (b) Comparison of input and average output voltage in the SST.

Figure 5b shows that the first wave of the output voltage has a smaller value than the subsequent
ones, which is due to the accumulation of energy in the SST reactive elements. The same elements
make SST less sensitive to sharp and high-speed surges both in the direction of increase and decrease.
The harmonic composition of the load voltage is shown in Figure 6a, and the harmonic composition of
the load current is shown in Figure 6b.



Designs 2020, 4, 35 7 of 10Designs 2020, 4, x FOR PEER REVIEW 7 of 10 

 

Fundamental  (50Hz) = 337.3,  Total  har moni c di stort ion =76.97% 

(a) 

Fundamental  (50Hz) = 3.218, Total  har moni c di stort ion =2.52% 

(b) 

Figure 6. Harmonic composition of the load: (a) voltage; and (b) current. 

The output voltage is modulated by means of a PWM Generator (2-Level), which generated 
pulses for a PWM-controlled 2-Level converter, using a carrier-based two-level PWM method. A 
sine wave with a frequency of 1000 Hz is supplied to the HF transformer. The carrier frequency of 
wiring the inverter of the second stage is 20 kHz. The PWM on the primary winding of the HF 
transformer and voltage on the secondary winding are shown in Figure 7. As can be seen, the 
voltage on the secondary winding is close to a sinusoid. 

Time, s Time, s

Vo
lta

ge
, V

Vo
lta

ge
, V

 
(a) (b) 

Figure 7. Voltages on the high frequency (HF) transformer: (a) the primary winding; and (b) the 
secondary winding. 

In addition to improving the quality of the current at the load, SST protects the consumer from 
overvoltage, voltage dips, and other transient phenomena due to the accumulated supply of 
electricity in reactive elements. Moreover, SST makes possible to connect DC sources with varying 
voltage (solar panels, wind power plants and other types of non-traditional power supply) to the 
network. It enables to achieve the flexibility and reliability of power supply, especially in local or 
independent smart grids or in systems with low power availability.  

In the case of using other modeling parameters (load power, voltage levels, load power factor, 
etc.) SST will work similarly. When using other parameters of the load and the transformer, 
conclusions about improving the quality of electricity are reached. For example, for a load of 5 kW, 
the THD of a classic transformer will be 7.42% versus 2.39% for an SST. 

Let us see how the SST behaves in the event that the voltage disappears for a short time. We 
take into account that there are no sources of electricity on the DC side, i.e., transient processes at the 
time of voltage shutdown will occur solely due to the accumulated energy in the reactive elements of 
the SST. Graphs of voltage and currents on the load are presented in Figure 8a. A comparison of the 
average output voltage with the SST and the non-sinusoidal input is shown in Figure 8b.  

Figure 8b shows that for three periods there was no voltage at the input of the SST, and the 
output voltage did not equal zero. The minimum value of the voltage at the SST output corresponds 
to the period following the moment the power was restored, which corresponds to the fourth period. 

Figure 6. Harmonic composition of the load: (a) voltage; and (b) current.

The output voltage is modulated by means of a PWM Generator (2-Level), which generated pulses
for a PWM-controlled 2-Level converter, using a carrier-based two-level PWM method. A sine wave
with a frequency of 1000 Hz is supplied to the HF transformer. The carrier frequency of wiring the
inverter of the second stage is 20 kHz. The PWM on the primary winding of the HF transformer and
voltage on the secondary winding are shown in Figure 7. As can be seen, the voltage on the secondary
winding is close to a sinusoid.
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Figure 7. Voltages on the high frequency (HF) transformer: (a) the primary winding; and (b) the
secondary winding.

In addition to improving the quality of the current at the load, SST protects the consumer from
overvoltage, voltage dips, and other transient phenomena due to the accumulated supply of electricity
in reactive elements. Moreover, SST makes possible to connect DC sources with varying voltage (solar
panels, wind power plants and other types of non-traditional power supply) to the network. It enables
to achieve the flexibility and reliability of power supply, especially in local or independent smart grids
or in systems with low power availability.

In the case of using other modeling parameters (load power, voltage levels, load power factor, etc.)
SST will work similarly. When using other parameters of the load and the transformer, conclusions
about improving the quality of electricity are reached. For example, for a load of 5 kW, the THD of a
classic transformer will be 7.42% versus 2.39% for an SST.

Let us see how the SST behaves in the event that the voltage disappears for a short time. We take
into account that there are no sources of electricity on the DC side, i.e., transient processes at the time of
voltage shutdown will occur solely due to the accumulated energy in the reactive elements of the SST.
Graphs of voltage and currents on the load are presented in Figure 8a. A comparison of the average
output voltage with the SST and the non-sinusoidal input is shown in Figure 8b.

Figure 8b shows that for three periods there was no voltage at the input of the SST, and the output
voltage did not equal zero. The minimum value of the voltage at the SST output corresponds to
the period following the moment the power was restored, which corresponds to the fourth period.
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The maximum subsidence voltage is 17.91%. In the second period, after power was restored, the voltage
at the SST output stabilized. Thereby, we can conclude that the use of SST ensured the reliable operation
of the load during the introduction/withdrawal of additional capacities with the provision of high
power quality. An additional element can be a rechargeable battery (less often a solar panel, a wind
generator, a fuel cell), which, together with the SST, will act as an uninterruptible power supply for a
predetermined time. However, the battery does not have to be connected to the SST direct current
line. If necessary, the battery can be put into operation in the event of a mains failure. Input time can
be calculated in a few tenths of a second, which is satisfactory for both electromagnetic switches and
solid-state switches.
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5. Conclusions

As a result of the simulation performed in Matlab/Simulink, the performance of a single-phase
SST at an input non-sinusoidal voltage showed that the SST improves the quality of the load current,
which can be controlled using total harmonic distortion. The results of modeling the converter circuit
by means of 500W-SST and a classical transformer are compared. The analysis showed a worse
performance of a classical transformer (THD is 8.25%) compared to SST (THD is 2.48%). When using
other parameters of the load and the transformer, conclusions about improving the quality of electricity
are reached. It is shown that with a voltage dip, the SST copes with changes in the input and can
maintain the output voltage until the input voltage is stabilized, or wait for the introduction of
alternative sources of electricity, for example, a battery.
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