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Abstract: The design methodologies and part shape algorithms for additive manufacturing (AM) are
rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing
of parts with enhanced performance in all major industrial sectors. The current trend for part design
is a computationally driven approach where the parts are algorithmically morphed to meet the
functional requirements with optimized performance in terms of material distribution. However,
the manufacturability restrictions of AM processes are not considered at the primary design phases
but at a later post-morphed stage of the part’s design. This paper proposes an AM design method to
ensure: (1) optimized material distribution based on the load case and (2) the part’s manufacturability.
The buildability restrictions from the direct energy deposition (DED) AM technology were used as
input to the AM shaping algorithm to grant high AM manufacturability. The first step of this work was
to define the term of AM manufacturability, its effect on AM production, and to propose a framework
to estimate the quantified value of AM manufacturability for the given part design. Moreover, an AM
design method is proposed, based on the developed internal stresses of the build volume for the load
case. Stress tensors are used for the determination of the build orientation and as input for the part
morphing. A top-down mesoscale geometric optimization is used to realize the AM part design.
The DED Design for Additive Manufacturing (DfAM) rules are used to delimitate the morphing of the
part, representing at the same time the freeform mindset of the AM technology. The morphed shape
of the part is optimized in terms of topology and AM manufacturability. The topology optimization
and AM manufacturability indicator (TMI) is introduced to screen the percentage of design elements
that serve topology optimization and the ones that serve AM manufacturability. In the end, a case
study for proof of concept is realized.

Keywords: additive manufacturing; manufacturability; DfAM; shape optimization; buildability
restrictions; DED AM; Directed Energy Deposition

1. Introduction

The definition of design methods varies across industries, from the design of ideas and concepts to
detailed technical and manufacturing drawings [1,2]. Mechanical design of parts and assemblies have
significantly progressed over the last 30 years from manual drawings to parametric computer-aided
design suites (CAD) that enable enhanced design functions [3,4]. Over the last decade, engineering
design has further evolved from a feature-based to a function-based mentality; parts are now morphed
based on their functional requirements and loading state [5]. With the conventional parametric
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design, the design engineer decides upon the most important features, generating the initial shape
of the design, and then further determines the exact dimensions for the part to perform the required
specifications [6–8]. With the algorithmic methods, the designer decides upon the morphing equation,
its parameters, and the specific space inside the build volume that the algorithm fills with structures of
material [9,10]. The existing design schools for designing a mechanically functional or non-functional
component are categorized in Table 1.

Table 1. Categorization of existing design schools and methods.

Computationally Aided Algorithmic/Computationally Driven

“the part morphing results from the designer’s
initiatives in the design domain”

“the part morphing results from the
designer’s algorithm”

Parametric/Computational Design [11] Generative Design [12,13]
Heuristic [14] Topology Optimization (TO) [15,16]

Hierarchical [17] Layout Optimization [18,19]

The algorithmic methods branch in two main and dissimilar subcategories, namely: topology
optimization and generative design. Both approaches start from the build volume and add or subtract
geometrical entities to morph the part, and both need the design engineer’s input at the end of the
design stage to determine which features and which design variant is to be manufactured. Therefore,
additional additive manufacturing (AM) buildability knowledge is required to choose the optimum
part variant at the end of the design process [3,20]. This feature and part variant selection is the first
point of the design process where manufacturability concerns begin to appear (see Table 2 Definition of
terms), as certain geometries and features can make the product’s manufacturing unviable with AM.

Table 2. Definition of terms.

Terms’ Definitions

AM Additive Manufacturing
DED Directed Energy Deposition
TO Topology Optimization

DfAM
Design for Additive Manufacturing; Extensive Design for Excellence (DFX)
frameworks for additive manufacturing that address the important AM design aspects
and design considerations [2,21,22].

Manufacturability The part’s ease to be manufactured and its design capacity for cost reduction [1,23–25].

AM Manufacturability
The part’s manufacturability when it is to be produced with an AM technology and the
degree of which its design utilizes the advantageous aspects of the AM technology and
abides to the buildability restrictions.

Algorithmic A process or set of rules to be followed in calculations or other problem-solving
operations, especially by a computer [26].

Algorithmic Design Any design method that implements an algorithmic approach to morph the part design
domain.

LMD-w Laser Metal Deposition-wire
FS Formula Student

SIMP Solid Isotropic Material with Penalization

The very specific goals of the current design optimization methods generate complex parts,
making it impossible to be realized with conventional manufacturing. The resulting parts are appealing
for additive manufacturing yet display low AM manufacturability. Modifications are then required
on a second design stage to address problematic aspects of the design and increase the part’s
manufacturability [27,28]. This additional design modification stage highlights the need for a design
method, where manufacturing specifications and the component’s functionality simultaneously act
to shape the design and optimize the AM process to make it economically viable [6,29]. Among the
different causes that can lead to a part’s manufacture failure or bottleneck the AM production line,
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the part design is a crucial factor (see Figure 1). The motivation of this work originates from the part’s
design importance for the AM uptake [30].
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Figure 1. Ishikawa diagram presenting the crucial factors that affect AM production and its industrial
uptake [31–33].

To meet the challenges associated with design optimization for additive manufacturability,
the authors propose a novel optimization method that simultaneously takes into account the structural
stress as well as additive manufacturability to form the part geometry. The resulting part is designed
from scratch based on its loading scenario. Therefore, predetermined part designs and geometries
with multiple fixed features and surfaces are not the focus of the proposed method.

2. Materials and Methods

2.1. Manufacturability for Additive Manufacturing

The initial step of developing an algorithm that optimally distributes material and abides by the
AM rules is to properly define the term manufacturability for the AM technologies to fully utilize their
advantageous freeform nature.

Manufacturability of an AM part is not a duality of can-or-cannot be manufactured. The design
aspects and features, that are manufacturable, vary across different AM technologies [21], due to their
different build mechanisms, yet the same objectives of reducing manufacturing costs and optimizing
the overall process remain. That is, the design efforts of alternations and adaptations for the specific
manufacturing technology can be screened from the AM manufacturability indicator (Figure 2).

The determination of the AM manufacturability at the part design level starts from the identification
of the part’s design aspects and their comparison with the AM technology’s capabilities [21,22].
This cross-check results in several features that are by definition non-feasible for manufacturing or
require support structures (e.g., out-of-limit overhanging geometries). The magnitude of the design
modifications required to correct the non-feasible to manufacturable features is the first leg of the part’s
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AM manufacturability. This subset also includes the extent of the required support structures to secure
the build while being manufactured.Designs 2020, 4, x FOR PEER REVIEW 4 of 17 
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The second leg refers to the post-processing load the part must go through to reach the desired
state and meet the user’s requirements. The post-processing workload can be reduced with properly
manufacturable designed features (e.g., overhanging geometries orientated within limits).

The framework to determine a part’s additive manufacturability is shown in Table 3.

Table 3. Framework of the AM manufacturability determination.

Determining AM Part’s Manufacturability

# Step Indicator

1. Part’s geometric features recognition. from CAD/.stl file
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3. Crosschecking design considerations with part
specifications. surface roughness, porosity
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The overall AM manufacturability indicator is not one-dimensional as it describes the easiness
of the design to be additively manufactured without alternations, the addition of support structures,
and the extent of the post-processing load that the part requires to meet its final requirements.
This affects the production performance and can be resolved with the implementation of direct energy
deposition (DED) Design for Additive Manufacturing (DfAM) rules to the part’s design (Figure 3).

2.2. Shape Optimization Method for the DED AM Process

This novel morphing method proposes a specific subtraction of finite design voxels to ensure
optimal AM manufacturability. A morphing method is proposed to achieve shape optimization
and AM manufacturability is checked by reducing the complexity of the additively manufactured
part (Figure 4).
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2.2.1. Stress Analysis of the Build Envelope

The first step of the shape optimization method is to determine the stress that is developed within
the part’s material. The loading scenario and boundary conditions are initially applied, and stress
is calculated for the entire build envelope. The computation of the internal stress is of dual purpose:
First, the magnitude of the stress tensors determines which elements are candidates for subtraction.
Second, the direction of the stress tensors will be used to decide the part’s build orientation. As the
part is morphed, the new resulting domain is further analyzed.

2.2.2. Build Orientation

The next step in the proposed method is to orient the part inside the build chamber. A multi-criterion
build orientation tool to weigh all the part’s design considerations [21] is something that has been
researched and attempted, yet with no converging solution [34]. The design consideration accounted
for in this step is to optimize the structural performance. The metal direct energy deposition AM
technologies manufacture components that have different mechanical properties along different
axes within the part’s material. These deviations originate from the metallurgical material forming
process (e.g., fusion, sintering, melting) and the fundamental layering nature of AM. Up to 300%
difference between vertical and horizontal orientations have been reported for mechanical properties
of tensile strength and strength to fatigue due to the AM material anisotropy [35–37]. Although
numerous compensatory post treatment techniques exist that resolve anisotropy and microscopic
defects, such as polishing or hot isostatic pressing of the Ti-6Al-4V parts [38], the industry’s direction
towards medium to large, as-manufactured metal components, calls for this anticipation of material
anisotropy. The material anisotropy is managed by vertically aligning the stress tensors—developed
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from the external loads applied on the building envelope—with the additive manufacturing building
vector (perpendicular to the building layer). Manufacturing with this orientation secures that the
maximum stresses are received by the AM material’s best directional strength. The internal material’s
anisotropic strength comes from the fundamental build nature of the AM technologies and the micro
and mesoscale imperfections imposed to the final part [29,39] (Figure 5).
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The second leg of this step is to grant some flexibility to the algorithm when geometric features
come as a pre-fixed specification of the part. It is an allowed orientation rotation margin and it aims to
avoid excessive generation of support structures. The allowance margin refers to the limit of degrees
the optimum build orientation can deviate from, so that an overhanging surface can be manufactured
without supports. Figure 6A shows an overhanging feature, where the slope of its surface makes it
un-manufacturable given the orientation and the objective to manufacture without support structures.
That is, the part can be rotated within the allowed orientation margin in order to orient this feature,
relevant to the AM build vector, to make it manufacturable, as shown in Figure 6B. The extent of
the orientation rotation margin is determined each time by the objectives of the design engineer and
the production’s needs [40]. This is to anticipate the scenarios where the balance between structural
performance and the addition of supports shifts.Designs 2020, 4, x FOR PEER REVIEW 7 of 17 
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2.2.3. Top-Down Mesoscale Geometric Optimization Abiding to AM Manufacturability Rules

Following the definition of the build orientation comes the material removal based on the loading
state. A top-down layer scanning direction is followed. A voxel is removed from the matrix when both
cases are valid:

(i) The load is below the stress threshold;
(ii) The resulting geometry abides by the DfAM rules.

For demonstration purposes, three major DfAM rules were chosen based on the freeform fabrication
mentality of the metal direct energy deposition (DED) technology [34] (Figure 7). Depending on the
specific AM technique, the equivalent buildability restrictions are to be considered.Designs 2020, 4, x FOR PEER REVIEW 8 of 17 
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Figure 7. Accounted DfAM rules that will morph the part’s shape.

The first DfAM rule is highly targeted to increase the part’s AM manufacturability. The contact
length of the base layer performs crucial functions for the entire DED build as thermal and mechanical
stresses can be concentrated or diffused if chosen properly. The part’s height to contact length ratio is
introduced to monitor and define the above need through a geometric feature. This ratio is defined in
Equation (1) and illustrated in Figure 8.

HB =
Total_Part_Height

Base_Contact_Length
(1)
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The nature of the function between the contact length of the current layer being built and the
previous one dictates the required height–base (HB) ratio for the optimum part’s manufacturing.
This is due to the structural and thermal phenomena that are being developed [41]. Oblong geometries
(high HB ratio) tend to increase the difficulty of controlling the part’s manufacturing as they have low
heat convection and are prone to cracking and detachment from the build bed. The target HB ratio and
its margin are further quantified with more thermodynamic insight into the status of the AM process’s
nature and the part to be realized [42,43].

Following with the overhanging DfAM rules, the shape optimization algorithm scans the building
envelope with the top-down direction, deriving the elements’ load status from the stress analysis and
determining the candidate for extraction elements. Next, the algorithm also checks if the remaining
geometry creates features that abide by the aforementioned DfAM rules. If the candidate for extraction
element does not contradict any rule, its material is removed from the geometry, and the morphing
continues. The elements’ possible status is presented in Table 4.

Table 4. Definition of voxels’ status.

Design Element’s Status

1 Stressed element that needs to be part of the mass domain
0 Non-stressed element

0C Non-stressed element candidate for extraction
1C Non-stressed element that was added to the mass domain to secure manufacturability

The first iteration of the shape optimizer starts from the last (Nth) layer of the previously oriented
build envelope. At this point, the only factors morphing the part are the targeted HB ratio and the
elements that are loaded (Figure 9). The elements that will remain from the first iteration should
provide sufficient contact length. The loaded element gets a value of 1 and the rest of the elements
in the same layer the value of 0C. The DfAM rules are checked and the candidate elements that are
needed to secure the AM manufacturability change their status from 0C to 1C to provide sufficient
contact length and not over the limit overhangs.
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The current domain consists of elements with values of 0, 0C (material is subtracted), and 1,
1C (material remains). The algorithm runs again for the next layers and shapes the design domain
resulting in the part shown in Figure 10.
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Figure 10. Final shape of the part’s domain.

When all the layers and their elements have been calculated, the morphed shape contains elements
of 0 and 1, 1C; where 0 is elements empty of material and 1, 1C elements with material. The 1C elements
do not represent the optimal material distribution; however, they increase the AM manufacturability
of the part. In contrast to conventional topology optimization, the final part’s geometry contains low
stressed elements so that the resulting shape has optimized AM manufacturability. This is at the
expense of minimized weight. To create a clear picture of the elements that serve topology optimization
and the ones that serve AM manufacturability the following indicator is introduced:

TMI =
No(elements_value_1)

No(elements_value_1C) + No(elements_value_1)
(2)

The summarized method’s flowchart is presented in Figure 11.
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3. Results

Case Study

To validate the proposed method, a case study was implemented. A simplified two-dimensional
(2D) cross-section of a part under load is morphed. The part dimensions and the load scenario were
derived from a similar formula student component [3]. Simplifications were required to adapt the
component for the needs of this work. The resulted part from the proposed AM shape method,
to be produced with an LMD-w technology, is significantly different from the original FS part that
was produced with conventional machining. A two-dimensional domain of 20 × 30 elements with a
load case of Fx = 10 N and Fy = −7.5 N was used. The cross-section dimensions are 100 × 150 mm.
The point load is applied at the bottom left of the rectangular domain and remains at these geometrical
coordinates as the part’s shape starts to morph (Figure 12). The meshing of the domain was chosen to
be quadrilateral and rough for better visualization and short computational iterations.
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The first step is the computation of the internal stresses for the entire build envelope. The stress
distribution in the building envelope shows high- and low-stress areas on its elements (Figure 13A).
Setting a threshold and filtering the stressed voxels, the design domain takes the dual 0 or 1 shape
form, as seen in Figure 13B.
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Figure 13. (A) Build envelope developed stresses. (B) Threshold filtered stress domain.

The next step is orient the stress and build vectors. The element characterization and extraction
followed the above mentality of the DfAM rules from the DED buildability restrictions. The material of
a voxel is removed if it is below the stress threshold and the resulted geometry abides by the buildability
restrictions of the DED AM technology. The HB ratio was set to 2.5 in order to provide sufficient
clamping area for the base plate of the machine. The resulting part shape is shown in Figure 14.
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Figure 14. (A) AM shaped part and (B) developed stresses.

To screen the status of the voxels that serve topology and the ones that serve AM manufacturability
the topology optimization and AM manufacturability indicator (TMI) was calculated. The surface areas
were used as input in Equation (1). The part has a Value_1_area of 10,285.2 mm2 and a Value_1C_area
of 1523.4 mm2. This result of the TMI was 0.871 or 87.1%. This value shows the material sacrifice
for AM manufacturability against topology. In this particular case, it can be seen that the added
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material serving the AM manufacturability is far less than the material used for the part to receive
the developed stresses. The differentiating areas in the parts cross-section morphing can be seen
in Figure 15. The geometric features that were created differently from the AM shape optimization
algorithm were the overhangs in the lower left and upper right corners.

Following a topology optimization (TO) method such as SIMP, these two areas would result in
overhanging features with an overall decreased AM manufacturability for the part. Instead, the 0C
design voxels in these areas changed their status to 1C, and the overhanging features resulted in design
features that are within the manufacturing abilities of the DED technology.
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To investigate the effect in the stress magnitude and distribution, a second analysis was performed
between the AM part and a part that was morphed only from TO using SIMP parameters. The finite
element analysis of these two parts can be seen in Figure 16.
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The maximum developed stress in the AM shaped part was 2.11 MPa and at the TO part was
2.02 MPa. The 4% difference of the maximum developed stress of the AM part compared to the TO
part was located in the voxels of the edge where the load is applied. The added material in the AM
part caused a different stress distribution and thus stress magnitude within the design domain.

4. Discussion

The proposed AM design method is a morphing algorithm that at the early design stages
compensates for both optimal material distribution and best manufacturability for the AM parts.

The resulting part geometry shares commonalities with the SIMP method, which offers optimum
material distribution. This AM shape optimization method, however, addresses the AM manufacturability
simultaneously with the early part shaping instead of addressing it at a post-design stage that follows
the topology optimization [43,44].

The extent of which the part design sacrifices material distribution for the AM manufacturability
is a design parameter, and subject to the method’s margin limits (Section 2.2.2. Build Orientation) and
the selected DfAM rules. It is case dependent and varies according to the input of the design engineer
and the needs of the part production. There are cases where material distribution outweighs the
post-processing workload of the support removal procedures thus providing higher design freedom
against the AM buildability considerations. The proposed performance indicator (TMI) screens this
material sacrifice between topology optimization and AM manufacturability.

The differentiating aspects of this method, compared to the previously proposed ones, can be seen
in the second and third steps of its summary:

1. The design domain’s stresses are determined;
2. The voxels are characterized layer by layer with a top-down scan of the domain;
3. Material is subtracted until a topology is optimized and AM manufacturable part is generated.

The resulting geometry, from the case study, has an additional 12.9% of overall material to secure
best AM manufacturability and a 4% difference in the stress development. The small differences
originate from the fact that the general shape of the part is imposed by the topology mentality and
goals, but the geometric features and their details are imposed from the DfAM rules.
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5. Conclusions

It was found that the proposed AM shape optimization method carries similarities with existing
topology optimization methods. The distinguishing difference of this work is that the shape morphing
of the part initiates and progresses with the AM buildability constraints addressed in parallel with the
material optimization.

As for future work, the proposed shape method is to be expanded in the third dimension and the
iterative steps and the characterization of the design elements are to be integrated into an automated
design tool. Some of the design steps of this method will transition from the 2D domain to the 3D
equivalent property; for instance, the HB ratio will have the base surface as input instead of the base
length. Other steps were proven to be more complex to their three-dimensional implementation such
as the overhang feature recognition, where a rotating scan around the build vector is required in order
to extrapolate from the part’s cross-section to its volume.

The AM design discipline is nowadays in the spotlight of the AM industry as the part’s design
importance extends beyond the functioning performance of the engineered component. An AM shape
optimization tool will establish effectiveness and efficiency in the AM design process, resulting in part
designs that also have high performance in their AM production.
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