
designs

Article

Fighting CPS Complexity by Component-Based
Software Development of Multi-Mode Systems

Hang Yin 1,* and Hans Hansson 2,†

1 Zenuity, Lindholmspiren 2, 417 56 Gothenburg, Sweden
2 School of Innovation, Design and Engineering, Mälardalen University, Högskoleplan 1, 722 20 Västerås,

Sweden; hans.hansson@mdh.se
* Correspondence: hang.yin@zenuity.com; Tel.: +46-765-836-887
† Current address: Lindholmspiren 2, 417 56 Gothenburg, Sweden.

Received: 7 October 2018; Accepted: 18 October 2018; Published: 22 October 2018
����������
�������

Abstract: Growing software complexity is an increasing challenge for the software development
of modern cyber-physical systems. A classical strategy for taming this complexity is to partition
system behaviors into different operational modes specified at design time. Such a multi-mode
system can change behavior by switching between modes at run-time. A complementary approach
for reducing software complexity is provided by component-based software engineering (CBSE),
which reduces complexity by building systems from composable, reusable and independently
developed software components. CBSE and the multi-mode approach are fundamentally conflicting
in that component-based development conceptually is a bottom-up approach, whereas partitioning
systems into operational modes is a top-down approach with its starting point from a system-wide
perspective. In this article, we show that it is possible to combine and integrate these two
fundamentally conflicting approaches. The key to simultaneously benefiting from the advantages of
both approaches lies in the introduction of a hierarchical mode concept that provides a conceptual
linkage between the bottom-up component-based approach and system level modes. As a result,
systems including modes can be developed from reusable mode-aware components. The conceptual
drawback of the approach—the need for extensive message exchange between components to
coordinate mode-switches—is eliminated by an algorithm that collapses the component hierarchy
and thereby eliminates the need for inter-component coordination. As this algorithm is used from
the design to implementation level (“compilation”), the CBSE design flexibility can be combined
with efficiently implemented mode handling, thereby providing the complexity reduction of both
approaches, without inducing any additional design or run-time costs. At the more specific level, this
article presents (1) a mode mapping mechanism that formally specifies the mode relation between
composable multi-mode components and (2) a mode transformation technique that transforms
component modes to system-wide modes to achieve efficient implementation.

Keywords: component-based software engineering; mode; mode-switch

1. Introduction

Growing software complexity is posing a challenge for the design of cyber-physical systems
(CPS) [1]. Complexity related to CPS software is multifaceted, including specific requirements related
to extra functional properties such as functional safety, resilience and timeliness. There is additionally a
trade-off between the different aspects of complexity, e.g., added complexity at design-time can reduce
complexity at run-time and vice versa. A key issue in making such trade-offs is the risk implied by
different choices; and risks have to be balanced against benefits. For companies, this is a reality even
for safety-critical systems regulated by safety standards. As a result, to maximize business benefits,

Designs 2018, 2, 39; doi:10.3390/designs2040039 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
https://orcid.org/0000-0003-1067-583X
https://orcid.org/0000-0002-7235-6888
http://dx.doi.org/10.3390/designs2040039
http://www.mdpi.com/journal/designs
http://www.mdpi.com/2411-9660/2/4/39?type=check_update&version=2

Designs 2018, 2, 39 2 of 22

it is standard practice for many companies to make a minimal, but sufficient, effort to comply with
applicable regulation.

At the technological level, there are approaches developed to reduce complexity throughout the
system life-cycle. Combining such approaches can potentially reduce the overall life-cycle complexity,
but approaches are not always compatible, and each of them introduces both benefits and costs.
This article presents the integration of two such approaches: multi-mode systems and component-based
software engineering, which both provide composability, but are targeting different life-cycle phases.
A specific challenge in combining the two is that they are conceptually incompatible, in the sense
that component-based development is a bottom-up approach, whereas partitioning systems into
operational modes is a top-down approach with its starting point from a system-wide perspective.
Still, we are able to successfully integrate them in a single framework of multi-mode components,
thereby providing the combined benefits of both, while being able to reduce costs to acceptable levels.
These approaches, introduced below, are primarily focusing on the design, configuration and run-time
phases of the system life-cycle, although they do have important implications also for the maintenance
phase. Furthermore, other dimensions of complexity are affected by the considered technologies,
including organizational complexity, as both component-based software engineering (CBSE) and the
multi-mode approach provide a basis not only for system partitioning, but also for partitioning of
the design activities, implying that the distribution of the design tasks to different departments or
even different organizations are facilitated. A further implication of the enabled partitioning and
inherent clearly-defined interfaces is that the approaches could scale also to systems-of-systems (SoS),
e.g., different components or modes can correspond to different systems in an SoS.

1.1. Multi-Mode Systems

A common practice to manage software complexity is to partition system behaviors into different
mutually-exclusive operational modes so that each mode corresponds to a specific system behavior.
A multi-mode system [2] changes behavior by switching modes. A typical example is the control
software of an airplane, which runs in different modes such as taking off, flight and landing.
Multi-mode systems have also been motivated by many other reasons:

1. Faster development: system behavior for different modes can be designed and tested in parallel.
2. Diversified functionalities due to multiple modes.
3. Enable adaptivity by mode-switch.
4. Efficient resource usage: optimized resource reservation for each mode instead of fixed

resource reservation.
5. Fault tolerance: safety-critical systems can switch to a safe mode in case of a fault.
6. Extensibility and scalability: it is flexible to add new modes and integrate them with an

existing system.

1.2. Component-Based Software Engineering

As a complementary approach to multi-mode systems, CBSE [3] advocates the reuse of
independently developed software components as a promising technique for the development of
complex software systems. The success of CBSE has been evidenced by a variety of component models
proposed both in industry and academia [4,5]. CBSE suggests software modularity and reusability
to facilitate the development of high-quality software. For instance, different functional modules or
even subsystems of the control software of an airplane can be encapsulated into reusable software
components that can be reused multiple times for the same system or for other systems in the same
software product line.

Applying CBSE in multi-mode systems or the other way around has been a largely unexplored
research area, possibly because multi-mode systems and CBSE are fundamentally conflicting in
the sense that the former traditionally is a top-down approach, whereas the latter is a bottom-up
approach. Despite this apparent conflict, our research goal in this article is to combine these

Designs 2018, 2, 39 3 of 22

approaches and benefit from the advantages of both multi-mode systems and CBSE. Hence, we propose
component-based software development of multi-mode systems, characterized by the independent
development and reuse of multi-mode components (i.e., components that can run in multiple modes).

1.3. A Guiding Example

As a guiding example, consider a proof-of-concept healthcare monitoring system. The system
consists of two subsystems: a data acquisition subsystem and a monitoring subsystem. The data
acquisition subsystem uses cameras and microphones to collect video and audio data from a ward
or a private home. Video and audio data are separately encoded and encrypted before transmission.
The monitoring subsystem decrypts and decodes data that it receives and reports them to the health
center. The monitoring subsystem also includes an alarm that is triggered when the person being
monitored encounters a dangerous situation, such as falling or suffering from a heart attack.

Our focus is on the software architecture of the monitoring subsystem (MoS), which is composed
of multi-mode components. Figure 1 illustrates the component hierarchy of the system on the left and
component connections on the right. The system can be considered as a top-level component MoS
with three subcomponents: DaD for data decryption, the multimedia decoder MuD and EvA for event
analysis. Due to the tree structure of the component hierarchy, DaD, MuD and EvA are also called
the children of MoS, which consequently is their parent. The system can run in two different modes:
regular monitoring mode (denoted as Rm) and attention mode (denoted as Att).

Figure 1. The architectural model of a multi-mode system built from multi-mode components.

The default mode of MoS is Rm when nothing special happens. To save resource in this mode,
a fast video encoding/decoding algorithm can be selected and only low resolution video is transmitted
to keep low CPU and bandwidth usage. Shown in Figure 1, small squares denote the input and output
ports of a component, while each arrow that connects two ports denotes the data flow. Basically,
each component has input data coming from its input ports, processes the data and provides output
data at its output ports. Such a pipes and filters architectural style is fairly common for multimedia

Designs 2018, 2, 39 4 of 22

applications. The video data are first decrypted by DaD and subsequently decoded by MuD, which
sends the decoded video data to the display in the health center. Represented by the dimmed color,
EvA is deactivated when MoS runs in Rm. Meanwhile, DaD runs in a regular mode R1 and MuD
runs in a regular decoding mode Rd. MuD has three subcomponents: VAE for video/audio extraction,
a video decoder, ViD, and an audio decoder, AuD. ViD is the only activated subcomponent running in
a regular video decoding mode Rvd as MuD runs in Rd. VAE and AuD are deactivated as shown in
Figure 1 because no audio data are transmitted.

When the data acquisition subsystem detects an accident, both subsystems will switch to an
attention mode Att to raise the attention of the health center. The network load is increased due to
transmission of video data with higher quality and audio data. Component EvA becomes activated
running in a regular mode R2, to analyze the detected event and trigger an alarm when necessary.
MuD starts to run in enhanced decoding mode Ed, where all its subcomponents (VAE, ViD, AuD) are
activated and a different video encoding/decoding algorithm is used to support higher resolution
video. VAE runs in a regular mode R3 to separate decrypted video and audio data and send them to
ViD and AuD, respectively. Represented by grey color in Figure 1, ViD runs in an enhanced video
decoding mode Evd with a different video decoding algorithm for high quality video. AuD runs in a
regular audio decoding mode Rad. In the case of poor network condition, MuD switches to a degraded
QoS mode Dq, where the transmission of audio data is terminated to keep video quality, which is
considered to be more important. Therefore, AuD becomes deactivated.

We distinguish two types of components in the monitoring subsystem: primitive components
and composite components. DaD, EvA, VAE, ViD and AuD are primitive components, which are
directly implemented by code, while MoS and MuD are composite components composed by other
components. What makes this system distinctive compared with traditional component-based systems
is its constitution of multi-mode components, i.e., components that can run in different modes at
run-time. The system in Figure 1 indicates a clear mapping between the modes of different components.
Such a mapping is summarized in Table 1, where modes in the same column are mapped to each
other for the composite components MoS and MuD. For instance, when MoS runs in mode Att, DaD
must run in R1, MuD can run in either Ed or Dq and EvA must run in R2. Even already, this simple
example signifies the power of building multi-mode systems with multi-mode components, which has
the potential to enrich system architectural variability at all levels. Since multi-mode components still
comply with component-based development, the overall software design complexity is decoupled
into building multi-mode components at different levels, thereby making the growing software
complexity manageable.

Table 1. Mode mappings.

(a) Mode Mapping of MoS (b) Mode Mapping of MuD

Component Modes Component Modes

MoS Rm Att MuD Rd Ed Dq
DaD R1 VAE Deactivated R3
MuD Rd Ed Dq ViD Rvd Evd
EvA Deactivated R2 AuD Deactivated Rad Deactivated

1.4. Contributions

In achieving component-based software development of multi-mode systems, this article includes
two key contributions. First, we propose a formal mode mapping description in the form of mode
mapping automata (MMA) that specifies how the modes of a composite component are mapped to the
modes of its subcomponents. The MMA presented in this article partially builds on the MMA initially
proposed in [6], which is here substantially refined and extended. Mode mapping elegantly links
modes and software component reuse. The hierarchical composition of multi-mode components easily

Designs 2018, 2, 39 5 of 22

allows one to build multi-mode systems with multi-mode behaviors at various levels. A potential
drawback of this approach is the run-time overhead due to inter-component communication for
coordination of the mode-switches of different components. To eliminate this run-time drawback,
while still being able to design systems from reusable multi-mode components, we introduce a mode
transformation technique as our second contribution. This technique transforms component modes to
system-wide modes to optimize the implementation. This is obtained by flattening the hierarchical
structure of component modes mapped at different levels. Mode transformation can be included in the
mapping from the design to implementation level (“compilation”), after the mode mappings of all
composite components in a system have been specified. An initial version of the mode transformation
technique is presented in [7].

The rest of this article is structured as follows: Section 2 elaborates on the composition of multi-mode
components and the mode mapping mechanism. Section 3 presents the mode transformation technique.
Related work is reviewed in Section 4. Finally, Section 5 concludes the article and discusses some
future work.

2. The Composition of Multi-Mode Components

As an essential step in the composition of multi-mode components, mode mapping unambiguously
specifies the mode relation between different multi-mode components at design time. This section
highlights the essential properties of multi-mode components and the motivation of mode mapping,
followed by a thorough explanation of MMA, i.e., a formal description of mode mapping.

2.1. Multi-Mode Components and Mode Mapping

A multi-mode component supports multiple modes and has a unique configuration defined
for each mode. Figure 2 illustrates the key properties of a reusable multi-mode component.
The configuration for each mode relies on various factors. For instance, a multi-mode primitive
component may have different mode-specific behaviors for different modes; while a multi-mode
composite component may have a different set of subcomponents activated depending on its mode.

Figure 2. The illustration of a multi-mode component.

A multi-mode component can switch between certain modes at run-time, either on its own
initiative or as the result of a request by another component. A mode-switch leads to the reconfiguration
of the component by changing its configuration in the current mode to a new configuration in the target
mode. A local mode-switch manager is used to handle the mode-switch of a multi-mode component.
By having such a mode-switch manager in each component, a multi-mode component is able to
exchange mode information with its parent and subcomponents via dedicated mode-switch ports
(the blue ports in Figure 2) during a mode-switch, even without knowing the global mode information.
These mode-switch ports do not deal with input or output data going through the component.
Instead, they are only used for mode-switch coordination between a composite component and its

Designs 2018, 2, 39 6 of 22

subcomponents. Therefore, each mode-switch port is bidirectional, which allows mode-switch signals
to be transmitted in both directions. For instance, in the guiding example presented in Section 1.3,
when an accident is detected, MoS will switch from Rm to Att. Meanwhile, the mode-switch manager
of MoS will send a signal to its subcomponents DaD, MuD and EvA, requesting them to switch
mode based on the mode mapping defined in Table 1 (a). The mode-switch managers of different
components are jointly responsible for propagating a mode-switch event to the affected components,
keeping mode consistency between components and coordinating the mode-switches of different
components. Designing the mode-switch manager is out of the scope of this article. We have previously
developed distributed mode-switch algorithms [8,9] running in the mode-switch manager for the
cooperative mode-switch of different components. Here, our focus is on mode mapping, also shown
in Figure 2.

Since we assume that multi-mode components are independently developed, they typically
support different numbers of modes and name them differently. It is necessary to specify the relation
between the modes of different components at design-time without ambiguity. Such a specification
is called mode mapping. To ensure reusability, the mode mapping must never violate the
following principles:

• A primitive component only knows own mode’s information such as supported modes, initial
mode and the current mode of itself.

• A composite component knows the mode information of itself and its immediate subcomponents.

The principles imply that mode mapping should be managed by each composite component,
not by its subcomponents. A primitive component requires no mode mapping. The mode mapping
defined in Table 1 is simple and intuitive; however, it is incapable of showing the initial mode of each
component, which component initiates a mode-switch and the exact mode-switch of each individual
component due to a mode-switch event. For example, when MoS switches from Rm to Att, according to
Table 1 (a), MuD may switch to either Ed or Dq. Such non-determinism can be eliminated by specifying
either Ed or Dq as the default new mode of MuD for this particular mode-switch scenario. To be able
to formally specify all types of mode mapping rules, we propose a more powerful representation:
the mode mapping automata.

2.2. Mode Mapping Automata

Let c be a composite component with SCc being the set of subcomponents of c and Pc being the
parent of c. When c is running in one of its supported modes, it should always know its current mode
and the current modes of all ci ∈ SCc by its mode mapping. Moreover, whenever the mode-switch
manager of c notices the mode-switch of ci ∈ SCc ∪ {c}, it will refer to the mode mapping, which
should tell which other components among SCc ∪{c} \ {ci} should also switch mode as a consequence,
as well as the new modes of these components.

The complete mode mapping of c can be formally presented by a set of MMA, which consists of
one mode mapping automaton of c (denoted as MMAs

c) and one MMA of each subcomponent ci ∈ SCc

(denoted as MMAc
ci

). Here, we call MMAs
c a self-MMA and MMAc

ci
a child MMA.

As an example, Figure 3 presents the set of MMA of the component MuD in Figure 1, including
a self-MMA (MMAs

MuD) and three child MMA (MMAc
VAE, MMAc

ViD and MMAc
AuD). These MMA are

hierarchically organized in the same way as the corresponding components. Each MMA can receive
and emit internal or external signals. Internal signals are used to synchronize the pair of the self-MMA
and its child MMA while external signals interact with its local mode-switch manager for requesting
and returning mode mapping results.

Designs 2018, 2, 39 7 of 22

Figure 3. The role of the mode mapping of MuD at run-time. MMA, mode mapping automata.

An external signal indicates that a component is requested to switch to a particular mode. We use
x.E(y) to denote an external signal asking MMAx, which is either a self-MMA or a child MMA,
to switch to mode y. An internal signal is sent either from a self-MMA to a child MMA or from a
child MMA to the self-MMA. A self-MMA only sends an internal signal to a child MMA if the current
mode-switch event requires the mode-switch of the corresponding subcomponent. The self-MMA
decides the new mode of this subcomponent. We use x.I(y) to denote an internal signal emitted by
a self-MMA to the child MMA MMAc

x, asking the subcomponent x to switch to mode y. A child MMA
can also send an internal signal to the self-MMA. This implies that the corresponding subcomponent is
requesting a mode-switch. Since mode mapping is always determined by the self-MMA, the internal
signal from a child MMA only needs to contain the current mode and new mode of the corresponding
subcomponent. We use x.I(z→ y) to denote an internal signal emitted by a child MMA MMAc

x that
requests to switch mode from z to y. Note that z must be present in this internal signal, as x.I(z→ y)
and x.I(z′ → y) are two different mode-switch scenarios, which may lead to different mode mappings.

A self- or child MMA can be formally defined as follows:

Definition 1. MMA: An MMA is defined as a tuple:

〈S , s0,SI , T 〉

where S is a set of states; s0 ∈ S is the initial state; SI = I ∪ E (I ∩ E = ∅) is a set of signals received
or emitted during a state transition, with I as the set of internal signals and E as the set of external signals;
T ⊆ S × SI × 2SI × S is a set of transitions of the MMA.

We use a state machine for the graphical representation of an MMA, where each state is one mode
and each transition is a result of mode-switch. Ordinary states are marked by a circle, while the initial
state is marked by a double circle. If the MMA is a self-MMA of c, then each state corresponds to a
mode of c. If the MMA is a child MMA of c associated with ci ∈ SCc, then each state corresponds to a
mode of ci or the deactivated status of ci, if ci can be deactivated, denoted as D. When a composite

Designs 2018, 2, 39 8 of 22

component is deactivated, then all its enclosed components must also be deactivated. A transition

t ∈ T is represented by an arrow from a state s to a state s′, denoted as s In/Out−−−−→ s′, where In/Out is
the label of the transition. “In” is an external/internal signal as the input that triggers the transition.
“Out” is a set of external/internal signals as the output of the transition.

Figure 4 depicts MMAs
MuD, i.e., the self-MMA of MuD of the guiding example. Three states are

included in this MMA, implying that MuD can run in three modes. The state transitions of MMAs
MuD

and the corresponding child MMA MMAc
VAE, MMAc

ViD and MMAc
AuD (Figure 5) are manually specified

to determine the mode mapping of MuD. As an example for demonstrating MMA synchronization,

the top left transition of MMAs
MuD, Rd

MuD.E(Ed)/{VAE.I(R3),ViD.I(Evd),AuD.I(Rad)}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ed, implies that MuD
requests a mode-switch to Ed, consequently requiring its subcomponents VAE, ViD and AuD to switch
to modes R3, Evd and Rad, respectively. Figure 5 shows that this transition of MMAs

MuD is synchronized

with three transitions of the child MMA: D
VAE.I(R3)/{VAE.E(R3)}−−−−−−−−−−−−−→ R3, Rvd

ViD.I(Evd)/{ViD.E(Evd)}−−−−−−−−−−−−−−→ Evd,

D
AuD.I(Rad)/{AuD.E(Rad)}−−−−−−−−−−−−−−−→ Rad.

Figure 4. The self-mode mapping automaton of MuD.

Figure 5. The child mode mapping automata of MuD.

2.3. MMA Composition

The internal synchronization between a set of MMA of a composite component is actually invisible
to the mode-switch manager of the composite component. What the mode-switch manager sees is the
composition of these MMA. MMA composition is achieved by merging a set of MMA into a single MMA
without internal signals. For instance, based on the set of MMA of MuD depicted in Figures 4 and 5,

Designs 2018, 2, 39 9 of 22

the composed MMA is illustrated in Figure 6. After MMA composition, the mode mapping of
MuD is defined by a single MMA, where each state represents a mode combination between MuD
and its subcomponents, i.e., s1 = (Rd, D, Rvd, D), s2 = (Ed, R3, Evd, Rad) and s3 = (Dq, R3, Evd, D).
All internal signals are eliminated. This composed MMA is the actual MMA referenced by the
mode-switch manager of MuD, since the mode-switch manager does not care about the internal
synchronization of a set of MMA. However, the composed MMA can be much more complex than any
single MMA before the composition. Instead of specifying mode-switch directly with the composed
MMA, it is much easier to design mode mapping with a self-MMA and the child MMA first and then
compose them. The synchronization semantics of a set of MMA and the formal definition of MMA
composition can be found in the extended technical report [10].

Figure 6. MMA composition for MuD.

2.4. Mode Mapping Verification

A crucial issue in designing mode mapping with MMA is ensuring the correctness of the
mode mapping, i.e., for each input external signal from the mode-switch manager, the set of MMA
should produce the expected set of external signals as the output back to the mode-switch manager.
For instance, failing to synchronize an internal signal will never yield a mode mapping result.

The mode mapping of a composite component specified by MMA can be easily verified by
model checking. We use the model checker UPPAAL [11] for mode mapping verification. Since
UPPAAL is a convenient tool for modeling and verifying concurrent state transition systems, it is fairly
straightforward to graphically model a set of MMA in UPPAAL. Using UPPAAL, we have modeled (the
UPPAAL model is available at http://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1244506&
dswid=1426) the mode mapping of MuD specified by the set of MMA in Figures 4 and 5.

The behaviors of the local mode-switch manager of MuD, the self-MMA of MuD and the child
MMA of its subcomponents are modeled as separate automata in UPPAAL. For instance, Figure 7
showcases three typical UPPAAL models for the mode-switch manager of MuD, MMAc

VAE and
MMAs

MuD. Each mode of a component is represented by a state in these UPPAAL models (e.g., mode_R3
represents mode R3 in Figure 7b). These models also contain committed states marked with “C” in
a circle, which are intermediate states during a mode-switch. External and internal signals are
simulated as channels synchronized between multiple UPPAAL models. For example, VAE_I[R3]!
denotes the internal signal VAE.I(R3) emitted by MMAs

MuD, while VAE_I[R3]? denotes the same signal
VAE.I(R3)received by MMAc

VAE. The UPPAAL model of MMAs
MuD in Figure 7c is consistent with

MMAs
MuD in Figure 4. The reason why the UPPAAL model contains one or more intermediate states

for each mode-switch is that receiving and sending each signal needs to be modeled sequentially
in UPPAAL. This essentially does not change the execution semantics, as all intermediate states
are committed states, whose incoming and outgoing transitions are performed as a single atomic
transaction. In addition, shown in Figure 7a, the mode-switch manager of MuD consists of two
states. InitialS is the initial state, where the mode-switch manager can send an external signal to
MMAs

MuD and switch to the state ModeSwitching. Meanwhile, a Boolean variable switching is set to

http://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1244506&dswid=1426
http://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1244506&dswid=1426

Designs 2018, 2, 39 10 of 22

true, indicating an ongoing mode-switch. Depending on the current mode of MuD and the new mode
indicated by the external signal from the mode-switch manager, there are four possible events, leading
to different transitions among these components: (1) k1: MuD requests to switch from Rd to Ed; (2)
k2: MuD requests to switch from Ed to Rd; (3) k3: MuD requests to switch from Ed to Dq; (4) k4: MuD
requests to switch from Dq to Ed. Each event ID is assigned to a variable eventID as shown in Figure 7c.

(a) (b)

(c)

Figure 7. UPPAALmodels of the mode mapping of MuD. (a) UPPAAL model for the mode-switch
manager of MuD. (b) UPPAAL model for the child MMA of VAE. (c) UPPAAL model for the self-MMA
of MuD.

Based on the UPPAAL models, we can verify that the set of MMA of MuD satisfies the
expected constraints by checking properties formulated in the UPPAAL query language, which
is a subset of timed computation tree logic [12]. The following are four types of properties addressing
different constraints:

P1. A[] not deadlock: The complete set of UPPAAL models is deadlock-free. This is not directly
related to mode mapping, but it is a fundamental property that we expect the model to satisfy.

P2. E<> sMMA_MuD.mode_Ed: It is possible for MuD to run in mode Ed. This property should be
verified for all the modes of MuD and its subcomponents.

P3. A[] (sMMA_MuD.mode_Rd and !ModeSwitchManager.switching) imply (cMMA_VAE.mode_D and
cMMA_ViD.mode_Rvd and cMMA_AuD.mode_D): When MuD runs in Rd, its subcomponents
VAE and AuD must be deactivated, while the other subcomponent ViD must run in Rvd.
This property should be verified for all possible mode combinations between MuD and its
subcomponents according to the mode mapping table in Table 1.

P4. (ModeSwitchManager.switching and eventID==k1)–>(sMMA_MuD.mode_Ed and cMMA_VAE.mode_R3
and cMMA_ViD.mode_Evd and cMMA_AuD.mode_Rad): An external signal requesting MuD to

Designs 2018, 2, 39 11 of 22

switch from Rd to Ed will make VAE, ViD and AuD switch to R3, Evd and Rad, respectively.
This property should be verified for all possible events from k1–k4.

All these properties are satisfied with verification time less than 4 ms. Furthermore, our UPPAAL
models can be used as a common template for modeling any other mode mapping specified
by MMA. Due to the graphical resemblance between an MMA and the corresponding UPPAAL
model, it is possible to generate UPPAAL models from MMA described by a graphical or textual
domain-specific language.

3. Mode Transformation

Our previous research results [9] show that the mode-switch of a multi-mode component
may lead to mode-switches of other multi-mode components in the same system, and it is not
trivial to coordinate the mode-switches of different components at run-time. The local mode-switch
manager of each component needs to run delicate algorithms to communicate with the parent and
subcomponents of the component via dedicated mode-switch ports to switch mode cooperatively.
Such inter-component communication incurs run-time computation overhead and mode-switch latency.
For instance, when MoS in the healthcare monitoring system triggers a mode-switch from Rm to Att,
the mode-switch event is first propagated from MoS to MuD and EvA, and MuD subsequently
propagates the mode-switch event to VAE, ViD and AuD. Further, more handshake messages are
exchanged between these components to keep mode consistency. The communication overhead grows
as the component hierarchy becomes more complex.

The purpose of mode transformation is to eliminate the need for the mode-switch coordination
among different multi-mode components by a centralized mode management, and thereby achieve
better run-time performance, provided that (1) all components are deployed on the same hardware
platform and (2) the mode information of each component is globally accessible. Illustrated in
Figure 8, mode transformation transfers the responsibility of mode-switch handling from the local
mode-switch manager of each component to a single global mode-switch manager. As a result of
mode transformation, each multi-mode component becomes unaware of modes. Instead, a global
mode transition graph is generated for the global mode-switch manager to handle mode-switch at the
system level.

Figure 8. The overview of mode transformation.

Our mode transformation process includes two sequential steps. First, given the mode mappings
of all composite components, we construct an intermediate representation, a mode combination tree
(MCT), where all the possible system modes are identified. In the second step, based on a list of
possible mode-switch events defined in the system, we add transitions between the identified system
modes to construct the mode transition graph. The two steps are further explained in the following
subsections separately.

Designs 2018, 2, 39 12 of 22

3.1. Construction of the Mode Combination Tree

The aim of constructing the MCT is to identify all the system modes. LetMc denote the set of
supported modes of a component c and D denote the current mode of a deactivated component. Then,
we define system modes as follows:

Definition 2. System modes based on component modes: For a system composed by a set of components
C = {c1, c2, · · · , cn} (n ∈ N), the set of system modes is defined asMs ⊆ ×

i∈[1,n]
{Mci ∪ {D}}. Each system

mode m ∈ Ms is a mode combination of all components.

By Definition 2, each system mode m = (mc1 , mc2 , · · · , mcn), where mci ∈ Mci ∪ {D} for i ∈ [1, n].
In order to indicate more explicitly the relationship between ci and mci , we shall hereafter use an
alternative expression to represent a system mode: m = {(ci, mci)|i ∈ [1, n]}, where mci ∈ Mci ∪ {D}.
Using the same formalism, an MCT is defined as follows:

Definition 3. Mode combination tree: An MCT is a tree with a set of nodesN = {N0,N1, · · · ,Nn} (n ∈ N),
where N0 = ∅ is the root node, and each other node Ni = {(cj, mcj)|j ∈ [1, k], k ∈ N} (i ∈ [1, n]), where for
all j, mcj ∈ Mcj ∪ {D} and all cj have the same depth level in the system component hierarchy.

By Definition 3, each non-root node of an MCT provides a mode combination of components with
the same depth level. A typical outlook of MCT is displayed in Figure 9, while the construction of the
MCT will be further explained later.

A few more notations and concepts need to be introduced before the formal description of the
MCT construction process. First, we introduce the valid local mode combination (LMC) of a composite
component c, which is a feasible combination of a mode of c and the modes of all its subcomponents
as per the local mode mapping of c. To define the valid LMC of a composite component formally,
let PC and CC be the set of primitive components and composite components in a system, respectively.
Let Top be the component at the top of the component hierarchy in a system. For each c ∈ CC, a valid
LMC of c is formally defined as follows:

Definition 4. Valid local mode combination: For c ∈ CC with SCc = {c1
i , · · · , cn

i } (n ∈ N), we call the
set Vc = {(c, mc), (c1

i , mc1
i
), · · · , (cn

i , mcn
i
)} a valid LMC of c, where mc ∈ Mc ∪ {D} and ∀k ∈ [1, n],

mk
ci
∈ Mck

i
∪ {D}, if (mc, mc1

i
, · · · , mcn

i
) is a state of the composed MMA of c.

Note that each element in Vc is a pair (x, y), where x ∈ SCc ∪ {c} and y ∈ Mx ∪
{D}. For instance, the mode mapping of MoS in Table 1 (a) implies three valid LMCs of MoS:
(1) {(MoS, Rm), (DaD, R1), (MuD, Rd), (EvA, D)}; (2) {(MoS, Att), (DaD, R1), (MuD, Ed), (EvA, R2)};
(3) {(MoS, Att), (DaD, R1), (MuD, Dq), (EvA, R2)}.

Based on Definition 4, we further introduce the valid LMC concerning a specific mode of a
composite component c, which is a feasible combination of the modes of all subcomponents of c as
per the local mode mapping of c when c is running in a particular mode. A formal definition is given
as follows:

Definition 5. Valid LMC concerning a specific mode: For c ∈ CC with SCc = {c1
i , · · · , cn

i } (n ∈ N), if when
c is running in mc, and ∀ck

i ∈ SCc (k ∈ [1, n]), ∃mck
i

such that {(c, mc), (c1
i , mc1

i
), · · · , (cn

i , mcn
i
)} is a valid

LMC of c, then the set Vc,mc = {(c1
i , mc1

i
), · · · , (cn

i , mcn
i
)} is a valid LMC of c for mc.

Depending on the mode mapping of c, multiple valid LMCs of c may exist for mc. Let Wc,mc

be the set of all valid LMCs of c ∈ CC for mc. Each element in Wc,mc is a set Vc,mc . The total
number of all valid LMCs of c for mc is |Wc,mc |. For instance, according to Table 1 (a),

Designs 2018, 2, 39 13 of 22

WMoS,Att = {V1
MoS,Att,V2

MoS,Att}, where V1
MoS,Att = {(DaD, R1), (MuD, Ed), (EvA, R2)} and V2

MoS,Att =

{(DaD, R1), (MuD, Dq), (EvA, R2)}. By traversing the states of the composed MMA of c containing
mc, it is easy to automatically generateWc,mc .

Next, we introduce an important operator for combining different valid LMCs:

Definition 6. Valid LMC operation: Consider two sets of valid LMCs W1 = {V1,V2, · · · ,Vm}
andW2 = {Vk+1,Vk+2, · · · ,Vk+n}, where m, n, k ∈ N and k ≥ m. Let ⊕ be an operator such that
W1 ⊕W2 = {Vi ∪ Vk+j|i ∈ [1, m], j ∈ [1, n]}. In addition, for each l ∈ N, W1 ⊕W2 ⊕ · · · ⊕ Wl can
be represented as

⊕
o∈[1,l]

Wo.

For the sake of clarity, let us clarify the⊕ operator using a small example. SupposeW1 = {V1,V2}
where V1 = {(a, m1

a), (b, m1
b)} and V2 = {(a, m2

a), (b, m2
b)}; and W2 = {V3,V4} where V3 =

{(c, m1
c), (d, m1

d)} and V4 = {(c, m2
c), (d, m2

d)}. Then,

W1 ⊕W2 ={V1 ∪ V3,V1 ∪ V4,V2 ∪ V3,V2 ∪ V4}
={{(a, m1

a), (b, m1
b), (c, m1

c), (d, m1
d)},

{(a, m1
a), (b, m1

b), (c, m2
c), (d, m2

d)},
{(a, m2

a), (b, m2
b), (c, m1

c), (d, m1
d)},

{(a, m2
a), (b, m2

b), (c, m2
c), (d, m2

d)}}

Given the mode mappings of all composite components, the MCT of the system can be constructed
by creating nodes top-down from the root node. For each node N of an MCT, let dN be its depth level
and λN be the number of new nodes created from this node. We use Ni � Nj to denote that a new

node Ni is created from on old node Nj. Moreover, letMTop = {m1
T , m2

T , · · · , m
|MTop|
T } be the set of

supported modes of Top. The MCT is constructed by the following steps:

1. From N0, create λN0 = |MTop| new nodes, such that for each new node Ni � N0, Ni =

{(Top, mi
T)} (i ∈ [1, |MTop|]).

2. From each Ni = {(Top, mi
T)} (i ∈ [1, |MTop|]), create λNi = |WTop,mi

T
| new nodes, such that

for each N ′ � Ni, N ′ ∈ WTop,mi
T
. Moreover, if λNi > 1, then for each N ′,N ′′ � Ni, we have

N ′ 6= N ′′.
3. For each node N = {(c1, mc1), (c2, mc2), · · · , (cn, mcn)} (n ∈ N) with dN ≥ 2, if ∀i ∈ [1, n],

ci ∈ PC, then N is marked as a leaf node, and no new node is created from N . Otherwise, if
∃i ∈ [1, n] such that ci ∈ CC, then create λN = ∏

i∈[1,n],
ci∈CC

|Wci ,mci
| new nodes, such that for each

N ′ � N , N ′ ∈ ⊕
i∈[1,n],
ci∈CC

Wci ,mci
. Moreover, if λN > 1, then for each N ′,N ′′ � N , we have

N ′ 6= N ′′.
4. Repeat Step 3 until all branches of the MCT have reached the leaf node.

The MCT construction process is implemented as Algorithm 1, which is a recursive function
constructMCT(N , dN) that has two input parameters: N is the node currently being explored and dN
is the depth level of N . Initially, N = ∅ and dN = 0. We assume that Top must have subcomponents.
Otherwise, Top itself will be the entire system, and mode transformation will be meaningless. Moreover,
for each component c running in mode m, we assume thatWc,m is an indexed set such thatWc,m[i]
represents the i-th element ofWc,m.

Designs 2018, 2, 39 14 of 22

Algorithm 1 constructMCT(N , dN).
1: if dN = 0 then

2: λN := |MTop|;
3: for i from 1 to λN do

4: Ni := {(Top, mi
T)};

5: constructMCT(Ni, 1);
6: end for
7: end if
8: if dN = 1 then

9: {(Top, m)} := N ;
10: DeriveWTop,m;
11: λN := |WTop,m|;
12: for i from 1 to λN do

13: constructMCT(WTop,m[i], 2);
14: end for
15: end if
16: if dN ≥ 2 then

17: {(c1, mc1), (c2, mc2), · · · , (cn, mcn)} := N ;
18: if ∀i ∈ [1, n] : ci ∈ PC then

19: return ;
20: else

21: DeriveW :=
⊕

i∈[1,n],
ci∈CC

Wci ,mci
;

22: λN := ∏
i∈[1,n],
ci∈CC

|Wci ,mci
|;

23: for i from 1 to λN do

24: constructMCT(W [i], dN + 1);
25: end for
26: end if
27: end if

Once the MCT is constructed, the system modes can be derived as the set of paths from the root
node to the leaf nodes of the MCT. The total number of system modes is equal to the total number of
leaf nodes of the MCT. Among the system modes, the initial system mode can be recognized based on
the specification of the initial modes of all components.

As an example, Figure 9 illustrates the MCT of the monitoring subsystem introduced in Section 1.
The MCT consists of nine nodes N0–N8 with four depth levels. Represented by the respective paths of
the MCT, one of the three identified system modes is:

m1 =N0 ∪N1 ∪N3 ∪N6

={(MoS, Rm), (DaD, R1), (MuD, Rd), (EvA, D), (VAE, D), (ViD, Rvd), (AuD, D)}
m2 =N0 ∪N2 ∪N4 ∪N7

={(MoS, Att), (DaD, R1), (MuD, Ed), (EvA, R2), (VAE, R3), (ViD, Evd), (AuD, Rad)}
m3 =N0 ∪N2 ∪N5 ∪N8

={(MoS, Att), (DaD, R1), (MuD, Dq), (EvA, R2), (VAE, R3), (ViD, Evd), (AuD, D)}

Assuming that the monitoring subsystem starts with mode Rm, m1 is the initial system mode
after mode transformation. Figure 10 shows the configurations of the three system modes based on the
component connections in Figure 1.

Designs 2018, 2, 39 15 of 22

Figure 9. The mode combination tree of the monitoring subsystem.

Figure 10. The configurations of different system modes after mode transformation.

The complexity of an MCT depends on the structure of the component hierarchy, the number
of modes of each component and the mode mappings in the involved components. The worst-case
combination of factors, such as the number of components and the number of component modes, may
lead to a huge number of system modes, increasing the overhead exponentially. However, in practice,
the expected number of system modes should be limited. If mode transformation becomes intractable
due to extreme computation overhead, this would imply that the system is too complex to adopt
centralized mode management. Then, it may be more suitable to go for distributed mode management
without mode transformation, although the run-time overhead for the required message exchange
may be substantial if the component hierarchy is deep. Alternatively, a better solution could be partial
mode transformation, i.e., performing mode transformation within one or more composite components
instead of the entire system. Our mode transformation technique is flexible enough to support partial
mode transformation at any component level. Furthermore, we expect noticeably different behaviors
in different modes. Depending on the application, it could be more efficient to merge several modes

Designs 2018, 2, 39 16 of 22

with similar global configurations into a single mode. The criteria for merging system modes are
application-dependent and out of the scope of this article. Nevertheless, we believe that it is possible
to partially automate the merging of system modes in a later optimization phase by certain application
independent merging rules.

3.2. Deriving the Mode Transition Graph

The constructed MCT identifies system mode, which is subsequently used to derive the mode
transition graph on top of these system modes based on the definition of mode-switch events.
We assume that a mode-switch event is triggered by a component c requesting to switch mode
from m1

c to m2
c , denoted as c : m1

c → m2
c . The triggering of each mode-switch event may lead to the

mode-switches of some other components in the same system. For a system with a set of identified
system modes M = {m1, m2, · · · , mn} (n ∈ N), a mode-switch is a transition from mold to mnew,
where mold, mnew ∈ M and mold 6= mnew. A mode transition graph contains all the possible transitions
between these system modes and associates each transition with the corresponding mode-switch event.
Similar to an MMA, each state of a mode transition graph can be graphically represented by a circle,
with the initial state being marked by a double circle. A graphical illustration of the mode transition
graph can be found in Figure 11.

Figure 11. Deriving the mode transition graph of the monitoring subsystem. CTM, component
target mode.

The key issue of deriving the mode transition graph is to identify the system modes mold and mnew

for each mode-switch event for which a system mode-switch is possible. Consider a mode-switch event
k identified as c : m1

c → m2
c . The only condition satisfying the triggering of k is that the triggering source

c is currently running in mode m1
c . For each k, mold can be easily identified as long as (c, m1

c) ∈ mold.
Note that more than one system mode could be identified as mold. Depending on the current system
mode, a mode-switch event may enable different transitions.

In contrast to mold, only one system mode can be the mnew for each mode-switch event k.
The identification of mnew for k is more difficult because it depends not only on m2

c , but also on
the target modes of the other components. We identify the mnew for each mode-switch event with
the assistance of a component target mode (CTM) table. A CTM table is a table with n1 rows and n2

Designs 2018, 2, 39 17 of 22

columns, where n1 is the number of components of a system and n2 is the number of mode-switch
events. An example of a CTM table is shown above the mode transition graph in Figure 11. In the CTM
table, each row is associated with a component, each column is associated with a mode-switch event
and each cell contains the target mode mc of the corresponding component c for the corresponding
mode-switch event k. The cell with X indicates that mc is independent of k, i.e., k does not lead to the
mode-switch of c.

A CTM table can be automatically constructed offline based on the list of mode-switch events and
the mode mapping of each composite component. Let mk

c be the target mode of c for k in a CTM table.
Taking advantage of the CTM table, the new system mode mnew for each mode-switch event k can be
identified as follows: For each system mode m = {(ci, mci)|i ∈ [1, n], n ∈ N}, if ∀i where mk

ci
6= X in

the CTM table (i.e., k leads to the mode-switch of ci to a new mode mk
ci

), we have mci = mk
ci

, then m is
the mnew for k. Algorithm 2 describes the process of building the mode transition graph, with a search
space of O(|M| · |K|).

Algorithm 2 constructMTG(C,M,K).
1: C = {c1, · · · , co} (o ∈ N); {The set of all components}
2: M = {m1, · · · , mn} (n ∈ N); {The set of identified system modes}
3: K = {k1, · · · , kl} (l ∈ N); {The set of all mode-switch events}
4: for all ki ∈ K where k ∈ [1, l] and ki = c : m1

c → m2
c do

5: if ∃mj ∈ M s.t. (∀cp ∈ C and mki
ci 6= X, (cp, mki

cp) ∈ mj) then

6: mnew = mj;
7: for all mj ∈ M do

8: if (c, m1
c) ∈ mj then

9: addTransition(mj, mnew, ki); {Add a transition from mj to mnew labeled with ki}
10: end if
11: end for
12: end if
13: end for

Figure 11 presents the workflow for deriving the mode transition graph of the monitoring
subsystem. The CTM table is derived based on two inputs: (1) the mode mapping of composite
components MoS and MuD specified by MMA and (2) the possible mode-switch events. For this
example, four mode-switch events, from k1–k4, are specified at design time. k1 and k2 are triggered by
MoS for switching between modes Rm and Att, while k3 and k4 are triggered by MuD for switching
between modes Ed and Dq. The target modes of all components in the monitoring subsystem for all
mode-switch events are listed in the CTM table. Previously, the MCT in Figure 9 has identified three
system modes m1 (the initial mode), m2 and m3. The CTM table additionally adds transitions between
the system modes based on each possible mode-switch event, thereby yielding the mode transition
graph. The mode transition graph helps the global mode-switch manager to keep track of the current
system mode and makes the system switch to the right target mode when a mode-switch is triggered.

After mode transformation, local mode-switch managers are replaced with a single global
mode-switch manager, whose complexity is much lower than each local mode-switch manager.
A local mode-switch manager needs complex algorithms [9] to coordinate mode-switches between a
composite component and its subcomponents, such as checking component states before mode-switch
is performed, handling multiple concurrent mode-switch events triggered by different components
and handling emergency mode-switch events, which are more critical than regular mode-switch
events. By contrast, the global mode-switch manager only takes care of system mode based on a single
CTM table.

Mode transformation assumes no dynamic change of modes or mode mappings at any level.
If there is a need to change the mode of a component or its mode mapping (e.g., adding new
modes, removing modes, changing mode names), then mode transformation must be applied again
from scratch. The chain effect of such a change must be considered when it is propagated to other

Designs 2018, 2, 39 18 of 22

components. The change of mode mapping of one component may entail the change of mode mapping
of its parent component and subcomponents. The architecture designer should decide how to update
the MMA of components impacted by a change. Mode transformation can always be automated in the
same way once all MMA are in place.

A potential drawback of mode transformation is the loss of potential concurrency between
local mode managers. If multiple mode-switch events are triggered concurrently and affect disjoint
sets of components, distributed mode management before mode transformation allows that these
mode-switch events can be handled concurrently, whereas different mode-switch events have to
be sequentially handled by the global mode-switch manager. Nonetheless, the centralized mode
management after mode transformation eliminates inter-component communication, which is a
complex process [9]. Hence, mode transformation is still more likely to yield a faster mode-switch.

The correctness of the two steps of mode transformation has been verified by manual theorem
proving. All the detailed theorems and proofs can be found in the extended technical report [10].

3.3. Concrete Implementation of Mode Transformation

A prototype tool MCORE [13], the Multi-mode COmponent Reuse Environment, has been
developed to support the modeling of multi-mode systems with multi-mode components by
integrating mode mapping and mode transformation. Compared with other component-based
development tools, a distinguishing feature of MCORE is the reuse of multi-mode software components.
As far as we know, MCORE is the first (and possibly only) tool for building multi-mode systems
with multi-mode components. MCORE can be potentially used as a preprocessor for Rubus
ICE [14], which is an IDEfor the Rubus component model [15] developed by Arcticus Systems
(http://www.arcticus-systems.com/). As an industrial component model, Rubus is targeting the
component-based development of vehicular systems. Rubus supports multi-mode systems; however,
modes can only be specified at the system level, and the reuse of multi-mode components is not
supported. This limitation can be alleviated by MCORE. The system model built by multi-mode
components in MCORE is in compliance with the Rubus component model after mode transformation.
Hence, the system model designed in MCORE can be imported to Rubus ICE for further analysis,
test and code generation.

4. Related Work

The extended MECHATRONICUML [16,17] (EUML) allows the hierarchical composition of
reconfigurable components, which are comparable to our multi-mode components. EUML introduces
an additional reconfiguration port for each component, which resembles the dedicated mode-switch
ports of a multi-mode component. In EUML, the reconfiguration of a composite component is
handled by two dedicated subcomponents, which play similar roles as the local mode-switch
manager of a multi-mode component. Unlike our approach, EUML does not pre-define component
configurations at design-time, thus allowing more flexible reconfiguration at run-time. Compared
with such reconfigurable systems, multi-mode systems built by multi-mode components are more
predictable due to static configurations specified at design-time.

Pop et al. proposed an Oracle-based approach [18] that also supports the reuse of multi-mode
components. Component behaviors are abstracted into a global property network. Component
mode is treated as a property dependent on other property values. The change of one property is
propagated throughout the property network, potentially leading to the change of other properties. At
the end of propagation, component modes are updated top-down. Similar to our mode transformation,
a finite-state machine called Oracle is offline constructed to guarantee a predictable update time of the
property network. The mapping between component modes is however not systematically specified
in the Oracle-based approach.

Weimer et al. proposed a set of input-output blocks for building multi-mode systems [19].
Each multi-mode component contains a set of mode blocks (MBs), while each MB includes all

http://www.arcticus-systems.com/

Designs 2018, 2, 39 19 of 22

the components used for the corresponding mode. The mode-switch of a component is achieved
by switching the currently selected MB controlled by a supervisor block (SB). These blocks were
implemented in Simulink [20]. Another work similar to this is the mode-oriented design [21] in
Gaspard2 [22]. A multi-mode component is represented by a macro component, which consists of a
state graph component and one or more mode-switch components. A mode-switch component plays
the same role as the MB in [19]. Both approaches in [19,21] use completely different components for
different modes, whereas in our approach, it is possible to share some components and connections in
different modes. Hence, our approach is more suitable for the reuse of multi-mode components.

Mode-switch has been addressed in a number of component models, e.g., SaveCCM [23],
COMDES-II [24] and MyCCM-HI [25], to name a few. There are also some other component models that
have been commercialized, e.g., Koala [26] (targeting consumer electronics) and Rubus [15] (targeting
ground vehicles). These component models have different notions of mode-switch handling. Koala and
SaveCCM both use a special connector switch to achieve the structural diversity of a component. switch
selects outgoing connections based on input data. In COMDES-II, a state-machine component switches
component configurations in different modes. Rubus only considers system-level mode, which is in
line with our system mode after mode transformation. MyCCM-HI supports mode-aware components
whose mode-switch is controlled by a mode automaton associated with each component. Another
component model supporting component reconfiguration is Fractal [27]. Each Fractal component has a
membrane (a container for local controllers) that is able to control the reconfiguration of the component.

Mode-switch has also been covered by some programming and specification languages, such as
AADL [28], Giotto [29], TDL [30], the extended Darwin [31] and mode-automata [32]. In AADL,
component mode-switch is represented by a state machine, including states, transitions and
input/output event ports used for mode-switch triggering. Both Giotto and TDL are time-triggered
languages for embedded programming, which require periodic checking of conditions to decide
whether to trigger a mode-switch or not. The extended Darwin [31] extends the existing Architecture
Description Language Darwin [33] by incorporating the notion of mode. The mode of a composite
component is directly related to the modes of its subcomponents. Yet, the mapping between modes is
unclear in [31]. Mode-automata is a programming model supporting the description of running modes
of reactive systems. The behavior of a system is a sequence of modes, each of which corresponds to a
collection of execution states. Our MMA differs from mode-automata in the sense that mode-automata
specifies the hierarchical structure of system-wide modes, whereas MMA specifies the local mode
mapping within composite components.

Dynamic software product lines (DSPL) [34], which originates from the conventional software
product lines (SPL) [35] for producing a family of software systems, is an emerging technique for
developing adaptive systems. Different systems configured from the same SPL share certain common
features, whereas the SPL uses variation points to distinguish the unique features of each system.
DSPL allows the binding of variation points at run-time so that a system can dynamically change
configurations on the fly to accommodate the changing environment. DSPL is becoming more
adaptive [36]; however, to the best of our knowledge, DSPL only considers global system configurations
without considering reuse of adaptive software components.

Different types of automata have been proposed for component-based systems and multi-mode
systems. For instance, constraint automata [37] is used to model the functional coordination of
components, thereby enabling the formal verification of coordination mechanisms. Besides, multi-mode
automata [38] is intended for compositional analysis of multi-mode real-time systems. The MMA
presented in this article serves as a formalism for a unique and dedicated purpose: mode mapping,
which to our knowledge has not been addressed by other existing automata.

Criado et al. [39] proposed a method for an adaptive component-based architecture using model
transformation. Software architecture can be dynamically constructed based on transformation rules
defined in a repository. Their proposal was applied to component-based GUIs for web applications.
Compared to our approach, their adaptation runs at the system level only.

Designs 2018, 2, 39 20 of 22

5. Conclusions and Future Work

Partitioning system behaviors into modes and component-based software engineering are both
successful software development methods to tame the growing software complexity of modern
cyber-physical systems (CPS). It is still an under-researched area to combine both methods, due to
their conflicting natures: multi-mode systems are built top-down, while component-based systems
are built bottom-up. In this article, we combine the advantages of both methods and propose
the component-based software development of multi-mode systems, characterized by the reuse
of multi-mode components, i.e., components that can run in different modes and switch mode guided
by a local mode-switch manager. We specify the local mode mapping of each composite component by
mode mapping automata. Mode mapping is then complemented by a mode transformation technique
that transforms component modes to system modes for centralized mode management to improve
the mode-switch performance, since the transformation eliminates the need for inter-component
communication to coordinate a mode-switch at run-time, thereby reducing mode-switch overhead
and shortening mode-switch time. Mode transformation is an optional and flexible process that can
be taken for the entire system if the mode information of all components is globally accessible and
all software components are deployed on the same hardware platform, or within certain composite
components instead of the entire system. It can even be performed iteratively. For instance, in scenarios
where systems are built from composite components provided by different vendors that do not want
to reveal the internal structure of their components to the integrator, each vendor could apply mode
transformation on the level of their respective composite component, and the integrator could then
compose the resulting mode-mappings to a system-wide centralized mode management.

The healthcare monitoring system introduced in this article is only a proof-of-concept guiding
example. In future work, our software development approach should be further evaluated, and before
being deployed, its applicability and concrete implementation should be explored in more substantial
real-world systems. Moreover, some remaining efforts need to be invested to complete the development
of our prototype tool MCORE fully and its integration in the commercial tool Rubus ICE developed by
Arcticus Systems. This will allow us to develop reusable multi-mode software components in MCORE
as a preprocessor of Rubus ICE, perform mode transformation therein and then export the system
model with global system modes to Rubus ICE for further analysis, test and code generation. Still, the
actual effects in terms of resulting improvements, additional and/or reduced efforts, improved quality,
etc., throughout the life-cycle of a CPS require empirical evidence much beyond what is presented in
this article.

At a more general level, this article presents essential bricks and related glue for a small part of
the wall needed to tame the complexity of CPS-related development and life-cycle challenges to a level
that allows future deployment of the many technical solutions required to address several of the key
challenges of modern society successfully. Many more bricks are however needed, as well as the glue
that enables their successful composition.

Author Contributions: methodology, H.H. (Hang Yin); validation, H.H. (Hang Yin); formal analysis,
H.H. (Hang Yin); writing—original draft preparation, H.H. (Hang Yin); writing—review and editing,
H.H. (Hans Hansson); supervision, H.H. (Hans Hansson); project administration, H.H. (Hans Hansson).

Funding: This work was funded by the Swedish Research Council via the framework project ARROWS
(ref. 90447401) and Mälardalen University

Acknowledgments: The authors would like to thank Arcticus Systems for discussions and support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution.
In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736.

Designs 2018, 2, 39 21 of 22

2. Degani, A.; Kirlik, A. Modes in human-automation interaction: Initial observations about a modeling
approach. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
Vancover, BC, Canada, 22–25 October 1995; pp. 3443–3450.

3. Crnković, I.; Larsson, M. Building Reliable Component-Based Software Systems; Artech House: Norwood,
MA, USA, 2002.

4. Crnković, I.; Sentilles, S.; Vulgarakis, A.; Chaudron, M.R.V. A Classification Framework for Software
Component Models. IEEE Trans. Softw. Eng. 2011, 37, 593–615. [CrossRef]

5. Pop, T.; Hnětynka, P.; Hošek, P.; Malohlava, M.; Bureš, T. Comparison of component frameworks for
real-time embedded systems. Knowl. Inf. Syst. 2013, 1–44. [CrossRef]

6. Yin, H.; Hansson, H. A mode mapping mechanism for component-based multi-mode systems.
In Proceedings of the 4th Workshop on Compositional Theory and Technology for Real-Time Embedded
Systems, Vienna, Austria, 29 November–2 December 2011; pp. 38–45.

7. Yin, H.; Hansson, H. Flexible and efficient reuse of multi-mode components for building multi-mode
systems. In Proceedings of the 14th International Conference on Software Reuse, Miami, FL, USA,
4–6 January 2015; pp. 237–252.

8. Yin, H.; Hansson, H. Handling multiple mode-switch scenarios in component-based multi-mode systems.
In Proceedings of the 20th Asia-Pacific Software Engineering Conference, Ratchathewi, Bangkok, Thailand,
2–5 December 2013; pp. 404–413.

9. Yin, H.; Hansson, H. Handling emergency mode-switch for component-based systems. In Proceedings of
the 21st Asia-Pacific Software Engineering Conference, Jeju, Korea, 1–4 December 2014; pp. 158–165.

10. Yin, H.; Hansson, H.; Orlando, D.; Miscia, F.; Marco, S.D. Component-Based Software Development of
Multi-Mode Systems—An Extended Report; Technical Report MDH-MRTC-312/2016-1-SE; Mälardalen
University: Västerås, Sweden, 2016.

11. Larsen, K.G.; Pettersson, P.; Yi, W. UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1997, 1, 134–152.
[CrossRef]

12. Alur, R.; Courcoubetis, C.; Dill, D. Model-checking for real-time systems. In Proceedings of the 5th Annual
IEEE Symposium on Logic in Computer Science, Philadelphia, PA, USA, 4–7 June 1990; pp. 414–425.

13. Miscia, F. Design and Implementation of the MCORE IDE: A Multi-Mode COmponent Reuse Environment.
Master’s Thesis, University of L’Aquila, L’Aquila, Italy, 2015.

14. Systems, A. Rubus ICE. Available online: https://www.arcticus-systems.com/products/ (accessed on
20 October 2018).

15. Hänninen, K.; Mäki-Turja, J.; Nolin, M.; Lindberg, M.; Lundbäck, J.; Lundbäck, K. The Rubus component
model for resource constrained real-time systems. In Proceedings of the 3rd International Symposium on
Industrial Embedded Systems, La Grande Motte, France, 11–13 June 2008; pp. 177–183.

16. Schubert, D.; Heinzemann, C.; Gerking, C. Towards Safe Execution of Reconfigurations in Cyber-Physical
Systems. In Proceedings of the 2016 19th International ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE), Venice, Italy, 5–8 April 2016; pp. 33–38.

17. Heinzemann, C.; Becker, S.; Volk, A. Transactional Execution of Hierarchical Reconfigurations in
Cyber-Physical Systems. Softw. Syst. Model. 2017. [CrossRef]

18. Pop, T.; Plasil, F.; Outly, M.; Malohlava, M.; Bures, T. Property networks allowing oracle-based mode-change
propagation in hierarchical components. In Proceedings of the 15th International ACM SIGSOFT Symposium
on Component Based Software Engineering, Bertinoro, Italy, 25–28 June 2012; pp. 93–102.

19. Weimer, J.E.; Krogh, B.H. Hierarchical Modeling of Mode-Switching Systems. In Proceedings of the 2007
Summer Computer Simulation Conference, San Diego, CA, USA, 15–18 July 2007; pp. 567–574.

20. MathWorks. Simulink. Available online: http://se.mathworks.com/products/simulink/ (accessed on
20 October 2018).

21. Quadri, I.R.; Gamatié, A.; Boulet, P.; Dekeyser, J.L. Modeling of Configurations for Embedded System
Implementations in MARTE. In Proceedings of the 1st Workshop on Model Based Engineering for
Embedded Systems Design, Dresden, Germany, 12 March 2010.

22. Gamatié, A.; Beux, S.L.; Piel, E.; Etien, A.; Atitallah, R.B.; Marquet, P.; Dekeyser, J.L. A Model Driven Design
Framework for High Performance Embedded Systems; Technical Report RR-6614; Institut National de Recherche
en Informatique et Automatique: Rocquencourt, France, 2008.

http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1007/s10115-013-0627-9
http://dx.doi.org/10.1007/s100090050010
https://www.arcticus-systems.com/products/
http://dx.doi.org/10.1007/s10270-017-0583-z
http://se.mathworks.com/products/simulink/

Designs 2018, 2, 39 22 of 22

23. Hansson, H.; Åkerholm, M.; Crnković, I.; Törngren, M. SaveCCM—A component model for safety-critical
real-time systems. In Proceedings of the Euromicro Conference, Special Session on Component Models for
Dependable Systems, Rennes, France, 31 August–3 September 2004; pp. 627–635.

24. Ke, X.; Sierszecki, K.; Angelov, C. COMDES-II: A Component-Based Framework for Generative
Development of Distributed Real-Time Control Systems. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea,
21–24 August 2007; pp. 199–208.

25. Borde, E.; Haïk, G.; Pautet, L. Mode-based reconfiguration of critical software component architectures.
In Proceedings of the Conference on Design, Automation and Test in Europe, Nice, France, 20–24 April 2009;
pp. 1160–1165.

26. Ommering, R.V.; Linden, F.V.D.; Kramer, J.; Magee, J. The Koala component model for consumer electronics
software. Computer 2000, 33, 78–85. [CrossRef]

27. Bennour, B.; Henrio, L.; Rivera, M. A reconfiguration framework for distributed components. In Proceedings
of the 2009 ESEC/FSE Workshop on Software Integration and Evolution, Amsterdam, The Netherlands,
25 August 2009; pp. 49–56.

28. Feiler, P.H.; Gluch, D.P.; Hudak, J.J. The Architecture Analysis & Design Language (AADL): An Introduction;
Technical Report CMU/SEI-2006-TN-011; Software Engineering Institute: Pittsburgh, PA, USA, 2006.

29. Henzinger, T.A.; Horowitz, B.; Kirsch, C.M. Giotto: A time-triggered language for embedded programming.
Proc. IEEE 2003, 91, 84–99. [CrossRef]

30. Templ, J. TDL Specification and Report; Technical Report; Department of Computer Science, University of
Salzburg: Salzburg, Austria, 2003.

31. Hirsch, D.; Kramer, J.; Magee, J.; Uchitel, S. Modes for software architectures. In Proceedings of the 3rd
European Conference on Software Architecture, Nantes, France, 4–5 September 2006; pp. 113–126.

32. Maraninchi, F.; Rémond, Y. Mode-Automata: About Modes and States for Reactive Systems. In Proceedings
of the European Symposium on Programming, Lisbon, Portugal, 28 March–4 April 998; pp. 185–199.

33. Magee, J.; Dulay, N.; Eisenbach, S.; Kramer, J. Specifying Distributed Software Architectures. In Proceedings
of the 5th European Software Engineering Conference, Sitges, Spain, 25–28 September 1995; pp. 137–153.

34. Capilla, R.; Bosch, J.; Trinidad, P.; Ruiz-Cortés, A.; Hinchey, M. An overview of Dynamic Software Product
Line architectures and techniques: Observations from research and industry. J. Syst. Softw. 2014, 91, 3–23.
[CrossRef]

35. Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns; Addison-Wesley: Boston, MA,
USA, 2001.

36. Sharifloo, A.M.; Metzger, A.; Quinton, C.; Baresi, L.; Pohl, K. Learning and Evolution in Dynamic Software
Product Lines. In Proceedings of the 11th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, Austin, TX, USA, 14–22 May 2016; pp. 158–164.

37. Baier, C.; Sirjani, M.; Arbab, F.; Rutten, J. Modeling component connectors in Reo by constraint automata.
Sci. Comput. Program. 2006, 61, 75–113. [CrossRef]

38. Phan, L.T.X.; Lee, I.; Sokolsky, O. Compositional Analysis of Multi-mode Systems. In Proceedings of the
22nd Euromicro Conference on Real-Time Systems, Brussels, Belgium, 6–9 July 2010; pp. 197–206.

39. Criado, J.; Rodríguez-Gracia, D.; Iribarne, L.; Padilla, N. Toward the adaptation of component-based
architectures by model transformation: Behind smart user interfaces. Softw. Pract. Exp. 2015, 45, 1677–1718.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/2.825699
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1016/j.jss.2013.12.038
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1002/spe.2306
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multi-Mode Systems
	Component-Based Software Engineering
	A Guiding Example
	Contributions

	The Composition of Multi-Mode Components
	Multi-Mode Components and Mode Mapping
	Mode Mapping Automata
	MMA Composition
	Mode Mapping Verification

	Mode Transformation
	Construction of the Mode Combination Tree
	Deriving the Mode Transition Graph
	Concrete Implementation of Mode Transformation

	Related Work
	Conclusions and Future Work
	References

