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Abstract: Concerning the robust model predictive control (MPC) for constrained systems with
polytopic model characterization, some approaches have already been given in the literature.
One famous approach is an off-line MPC, which off-line finds a state-feedback law sequence with
corresponding ellipsoidal domains of attraction. Originally, each law in the sequence was calculated
by fixing the infinite horizon control moves as a single state feedback law. This paper optimizes the
feedback law in the larger ellipsoid, foreseeing that, if it is applied at the current instant, then better
feedback laws in the smaller ellipsoids will be applied at the following time. In this way, the new
approach achieves a larger domain of attraction and better control performance. A simulation
example shows the effectiveness of the new technique.
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1. Introduction

Model predictive control (MPC) has attracted considerable attention, since it is an effective control
algorithm to deal with multivariable constrained control problems. The nominal MPC for constrained
linear systems has been solved in systematic ways around 2000 [1,2]. Recently, some approaches
have been extended to distributed implementations [3,4]. Synthesizing robust MPC for constrained
uncertain systems has attracted great attention after the nominal MPC. This has become a significant
branch of MPC. The lack of robustness in MPC, based on a nominal model [5], calls for a robust MPC
technique based on uncertainty models. Up to now, robust MPC has been solved in several ways [6–8].
A good technique for robust MPC, however, requires not only guaranteed stability, but also low
computational burden, big (at least desired) domain of attraction, and low performance cost value [9].

The authors in [6] firstly solved a min-max optimization problem in an infinite horizon for
systems with polytopic description, by fixing the control moves as a state feedback law that
was on-line calculated. The authors in [9] off-line calculated a feedback law sequence with
corresponding ellipsoidal domains of attraction, and on-line interpolated the control law at each
sampling time applying this sequence. The computational burden is largely reduced. In addition,
nominal performance cost is used in [9] to the take place of the “worst-case” one so that feasibility can
be improved. A heuristic varying-horizon formulation is used and the feedback gains can be obtained
in a backward manner.

In this paper, the off-line technique in [9] is further studied. Originally, each off-line feedback
law was calculated where the infinite horizon control move was treated as a single state feedback law.
This paper, instead, optimizes the feedback law in the larger ellipsoid by considering that the feedback
laws in the smaller ellipsoids will be applied at the next time if it is applied at the current time. In a
sense, the new technique in this paper is equivalent to a varying-horizon MPC, i.e., the control horizon
(say M) gradually changes from M > 1 to M = 1, while the technique in [9] can be taken as a fixed
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horizon MPC with M = 1. Hence, the new technique achieves better control performance and can
control a wider class of systems, i.e., improve control performance and feasibility.

So far, the state feedback approach is popular in most of the robust MPC problem, and the full
state is assumed to be exactly measured to act as the initial condition for future predictions [10–14].
However, in many control problems, not all states can be measured exactly, and only the output
information is available for feedback. In this case, an output feedback RMPC design is necessary
(e.g., [3,15]). The output feedback MPC approach, parallel to that in [6], has been proposed in [16],
and the off-line robust MPC has been studied in [17]. The new approach in this paper may be applied
to improve the procedure in [17], which will be studied in the near future. Notation: The notations are
fairly standard. <n is the n-dimensional space of real valued vectors. W > 0 (W ≥ 0) means that W is
symmetric positive-definite (symmetric non-negative-definite). For a vector x and positive-definite
matrix W , ‖x‖2

W = xTWx. x(k + i|k) is the value of vector x at a future time k + i predicted at
time k. The symbol * induces a symmetric structure, e.g., when H and R are symmetric matrices,

then

[
H + S + ∗ ∗

T R

]
:=

[
H + S + ST TT

T R

]
.

2. Problem Statement

Consider the following time varying model:

x(k + 1) = A(k)x(k) + B(k)u(k) (1)

with input and state constraints, i.e.,

− u ≤ u(k + i) ≤ u, ∀i ≥ 0 (2a)

− ψ ≤ Ψx(k + i + 1) ≤ ψ, ∀i ≥ 0 (2b)

where u ∈ <m and x ∈ <n are input and measurable state, respectively; u := [u1, u2, · · · , um]
T ,

and ψ :=
[
ψ1, ψ2, · · · , ψq

]T
with ui > 0, i = 1 · · ·m and ψj > 0, j = 1 · · · q; 	 ∈ <q×n.

Input constraint is common in practice, which arises from physical and technological limitations.
It is well known that the negligence of control input constraints usually leads to limit cycles, parasitic
equilibrium points, or even causes instability. Moreover, we assume that [A(k)|B(k) ] ∈ Ω, ∀k ≥ 0,
where Ω = Co{A1|B1 , A2|B2 , · · · , AL|BL }, i.e., there exist L nonnegative coefficients ωl(k), l = 1 · · · L
such that

L

∑
l=1

ωl(k) = 1, [A(k)|B(k) ] =
L

∑
l=1

ωl(k)[Al |Bl ] (3)

A predictive controller is proposed to drive systems (1) and (2) to the origin (x, u) = (0, 0), and at
each time k, to solve the following optimization problem:

min
→
u (k)

max
[A(k+i)|B(k+i)]∈Ω,i≥0

J∞(k) =
∞

∑
i=0

[
‖ x(k + i|k)‖2

Q + ‖u(k + i|k)‖2
R

]
(4a)

The following constraints are imposed on Equation (4a):

x(k + i + 1|k) = A(k + i)x(k + i|k) + B(k + i)u(k + i|k), x(k|k) = x(k) (4b)

−u ≤ u(k + i
∣∣k) ≤ u, −ψ ≤ Ψx(k + i + 1

∣∣k) ≤ ψ (4c)

for all i ≥ 0. In (4), Q > 0 and R > 0 are weighting matrices and
→
u (k) =[

u (k|k) T , u (k + 1|k) T , u (k + 2|k) T , · · ·
]T

are the decision variables. At time k, u(k) = u(k|k) is
implemented and the optimization (4) is repeated at time k + 1.
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The authors in [9] simplified problem (4) by fixing
→
u (k) as a state feedback law, i.e.,

u(k + i|k) = F(k)x(k + i|k) , ∀i ≥ 0. Define a quadratic function

V(i, k) = x (k + i|k) T P(k)x(k + i
∣∣∣k), P(k) > 0, ∀k ≥ 0 (5)

with the robust stability constraint as follows:

V(i + 1, k)−V(i, k) ≤ −‖ x(k + i|k)‖2
Q − ‖u(k + i|k)‖2

R, ∀[A(k + i)
∣∣∣B(k + i)] ∈ Ω, i ≥ 0 (6)

For a stable closed-loop system, x(∞|k) = 0 and V(∞, k) = 0. Summing (6) from 0 to ∞ obtains

max
[A(k+i)|B(k+i)]∈Ω,i≥0

J∞(k) ≤ V(0, k) ≤ γ (7)

where γ > 0. Define Q = γP(k)−1 and F(k) = YQ−1, then Equations (4c), (6) and (7) are satisfied if[
1 ∗

x(k) Q

]
≥ 0, Q > 0 (8)


Q ∗ ∗ ∗

AlQ + BlY Q ∗ ∗
Q1/2Q 0 γI ∗
R1/2Y 0 0 γI

 ≥ 0, l = 1 · · · L (9)

[
Z Y

YT Q

]
≥ 0, Zjj ≤ u2

j , j = 1 · · ·m (10)

[
Q ∗

Ψ(AlQ + BlY) Γ

]
≥ 0, Γss ≤ ψ

2
s , l = 1 · · · L; s = 1 · · · q (11)

where Zjj (Γss) is the jth (sth) diagonal element of Z (Γ) [18]. In this way, problem (4) is approximated by

min
γ,Q,Y,Z,Γ

γ (12)

s.t. Equations (8)–(11).
The closed-loop system is exponentially stable if (12) is feasible at the initial time k = 0.
Based on [6], the authors in [9] off-line determined a look-up table of feedback laws with

corresponding ellipsoidal domains of attraction. The control law was determined on-line from
the look-up table. A linear interpolation of the two corresponding off-line feedback laws was
chosen when the state stayed between two ellipsoids and an additional condition was satisfied.
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Algorithm 1 The Basic Off-Line MPC [9]

1: Off-line, generate state points x1, x2, · · · , xN where xh−1,
2: h = N · · · 2 is nearer to the origin than xh.
3: Substitute x(k) in (8) by xh,
4: h = N · · · 1
5: Solve (12) to obtain Qh, Yh, γh,

6: The ellipsoids εh =
{

x ∈ <n
∣∣∣xTQ−1

h x ≤ 1
}

7: The feedback laws Fh = YhQ−1
h .

8: Take appropriate choices to ensure εh ⊃ εh−1, ∀h = N · · · 2.
9: On-line, if for each xh,
10: The following condition is satisfied:
11:

Q−1
h − (Al + Bl Fh−1)

TQ−1
h (Al + Bl Fh−1) > 0, l = 1, 2, · · · , L (13)

12: Then each time k adopt the following control law:
13:

F(k) =

{
F(αh(k)), x(k) ∈ εh, x(k) /∈ εh−1,

F1 x(k) ∈ ε1,
(14)

14: where F(αh(k)) = αh(k)Fh + (1− αh(k))Fh−1, x(k)T
[
αh(k)Q

−1
h + (1− αh(k))Q

−1
h−1

]
x(k) = 1 and

0 ≤ αh(k) ≤ 1.

Compared with [6], the on-line computational burden is reduced, but the optimization problem
gives worse control performance. In this paper, we propose a new algorithm with better control
performance and larger domains of attraction.

3. The Improved Off-Line Technique

In calculating Fh, Algorithm 1 does not consider Fi, ∀i < h. However, for smaller ellipsoids Fi,
∀i < h are better feedback laws than Fh. In the following, the selection of Q1, F1, γ1 is the same with
Algorithm 1, but a different technique is adopted in this paper to calculate Qh, Fh, γh, ∀h ≥ 2. For xh,
∀h ≥ 2, we choose Qh, Fh such that, for all x(k) ∈ εh, at the following time {Fh−1, · · · , F2, F1} is applied
and x(k + h− 1|k) ∈ ε1 .

3.1. Calculating Q2, F2

Define an optimization problem

min
u(k+i|k),i≥1

max
[A(k+i)|B(k+i)]∈Ω,i≥1

J2,tail(k) =
∞

∑
i=1

[
‖ x(k + i|k) ‖2

Q + ‖u(k + i|k) ‖2
R

]
, s.t. (4b), (4c) for all i ≥ 1 (15)

and solve this problem by
u(k + i|k) = F1x(k + i|k), ∀i ≥ 1 (16)

By analogy to Equation (7),

max
[A(k+i)|B(k+i)]∈Ω,i≥1

J2,tail(k) ≤ x (k + 1|k) T P1x(k + 1
∣∣∣∣k) ≤ γ1 (17)

where P1 = γ1Q−1
1 . In this way, problem (4a) is turned into min-max optimization of (also refer to [18])

J2(k) := J(k) = ‖x(k)‖2
Q + ‖u(k)‖2

R + ‖ x(k + 1|k)‖2
P1

(18)
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Solve u(k) by u(k) = F2x(k) and define

J2(k) = x(k)T
{
Q+ FT

2 RF2 + [A(k) + B(k)F2]
T P1[A(k) + B(k)F2]

}
x(k) ≤ γ2 (19)

Introduce a slack variable P2 such that

γ2 − xT
2 P2x2 ≥ 0 (20)

and
Q+ FT

2 RF2 + [A(k) + B(k)F2]
T P1[A(k) + B(k)F2] ≤ P2 (21)

Moreover, u(k) = F2x(k) should satisfy hard constraints

− u ≤ F2x(k) ≤ u, −ψ ≤ Ψ[A(k) + B(k)F2]x(k) ≤ ψ, ∀x(k) ∈ ε2 (22)

and terminal constraint
x(k + 1|k) ∈ ε1, ∀x(k) ∈ ε2 (23)

Equation (23) is equivalent to [A(k) + B(k)F2]
TQ−1

1 [A(k) + B(k)F2] ≤ Q−1
2 . Define Q2 = γ2P−1

2
and F2 = Y2Q−1

2 , then the following LMIs can be obtained:[
1 ∗
x2 Q2

]
≥ 0, Q2 > 0 (24)


Q2 ∗ ∗ ∗

AlQ2 + BlY2 γ2P−1
1 ∗ ∗

Q1/2Q2 0 γ2 I ∗
R1/2Y2 0 0 γ2 I

 ≥ 0, l = 1 · · · L (25)

[
Q2 ∗

AlQ2 + BlY2 Q1

]
≥ 0, l = 1 · · · L (26)

Constraint (22) is satisfied if [6][
Z2 Y2

YT
2 Q2

]
≥ 0, Z2,jj ≤ z2

j,inf, j = 1 · · ·m (27)

[
Q2 ∗

Ψ(AlQ2 + BlY2) Γ2

]
≥ 0, Γ2,ss ≤ ψ2

s,inf, l = 1 · · · L; s = 1 · · · q (28)

Thus, Y2, Q2 and γ2 can be obtained by solving

min
γ2,Y2,Q2,Z2,Γ2

γ2, s.t. Equations (24)–(28) (29)

3.2. Calculating Qh, Fh, ∀h ≥ 3

The rationale in Section 3.1 is applied, with a little change. Define an optimization problem

min
u(k+i|k),i≥h−1

max
[A(k+i)|B(k+i)]∈Ω,i≥h−1

Jh,tail(k) =
∞

∑
i=h−1

[
‖ x(k + i|k)‖2

Q + ‖u(k + i|k)‖2
R

]
(30)

s.t. Equations (4b) and (4c) for all i ≥ h − 1
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By analogy to Equation (18), problem (4a) is turned into min-max optimization of

Jh(k) := J(k) =
h−2

∑
i=0

[
‖ x(k + i|k)‖2

Q + ‖u(k + i|k)‖2
R

]
+ ‖ x(k + h− 1|k)‖2

P1
(31)

which is solved by

u(k + i|k) = Fh−ix(k + i|k), i = 0 · · · h− 2; u(k + i|k) = F1x(k + i|k), ∀i ≥ h− 1 (32)

By analogy to Equation (19), define

Jh(k) = x(k)T
{
Q+ FT

h RFh + [A(k) + B(k)Fh]
T P1,l2···lh−1

[A(k) + B(k)Fh]
}

x(k) ≤ γh (33)

where, by induction, for ∀h ≥ 3,

P1,l2···lh−1
=

[
h−1
∏
i=2

(Ali + Bli Fi)

]T

P1

[
h−1
∏
i=2

(Ali + Bli Fi)

]
+

h−1
∑

i=3


[

h−1
∏
j=i

(Alj
+ Blj

Fj)

]T

(Q+ FT
i−1RFi−1)

[
h−1
∏
j=i

(Alj
+ Blj

Fj)

]+Q+ FT
h−1RFh−1

(34)

and
P1,l2···lh = (Alh + Blh Fh)

T P1,l2···lh−1
(Alh + Blh Fh) +Q+ FT

h RFh (35)

By Equation (33), introduce a slack variable Ph = γhQ−1
h and define Fh = YhQ−1

h such that[
1 ∗
xh Qh

]
≥ 0 (36)

and 
Qh ∗ ∗ ∗

Alh Qh + BlhYh γhP−1
1,l2···lh−1

∗ ∗
Q1/2Qh 0 γh I ∗
R1/2Yh 0 0 γh I

 ≥ 0, li = 1 · · · L; i = 2 · · · h (37)

Moreover, the terminal constraint should be equivalent to

[A(k) + B(k)F2]
TS1,l2···lh−1

[A(k) + B(k)F2] ≤ Q−1
h (38)

where, by induction,

S1,l2···lh−1
=

[
h−1

∏
i=2

(Ali + Bli Fi)

]T

Q−1
1

[
h−1

∏
i=2

(Ali + Bli Fi)

]
(39)

Equation (38) means that, for ∀x(k) ∈ εh, if at the following time {Fh−1, · · · , F2, F1} is applied,
then x(k + h− 1|k) ∈ ε1 . Equation (38) can be transformed into Qh ∗

h−1
∏
i=2

(Ali + Bli Fi)(Alh Qh + BlhYh) Q1

 ≥ 0, li = 1 · · · L; i = 2 · · · h (40)
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Again, u(k|k) = Fhx(k|k) should satisfy[
Zh Yh
YT

h Qh

]
≥ 0, Zh,jj ≤ z2

j,inf, j = 1 · · ·m (41)

and [
Qh ∗

Ψ
(

Alh Qh + BlhYh
)

Γh

]
≥ 0, Γh,ss ≤ ψ2

s,inf, lh = 1 · · · L; s = 1 · · · q (42)

Thus, Yh, Qh and γh can be obtained by solving

min
γh ,Yh ,Qh ,Zh ,Γh

γh (43)

s.t. Equations (36), (37) and (40)–(42).

Algorithm 2 The Improved Off-Line MPC

1: Off-line, generate state points x1, x2, · · · , xN where xh−1,
2: h = N · · · 2 is nearer to the origin than xh.
3: Substitute x(k) in (8) by x1

4: Solve (12) to obtain Y1,
5: Q1, γ1, F1 = Y1Q−1

1
6: P1 = γ1Q−1

1 .
7: For x2, solve (29)
8: Obtain Q2, Y2 and F2 = Y2Q−1

2 .
9: For xh, h = N · · · 3, solve (43)
10: Obtain Qh, Yh and Fh = YhQ−1

h .
11: εh ⊃ εh−1, ∀h = N · · · 2.
12: On-line, at each time k adopt the control law (14).

Theorem 1. For systems (1) and (2), and an initial state x(0) ∈ εN , the off-line constrained robust MPC in
Algorithm 2 robustly asymptotically stabilizes the closed-loop system.

Proof. Similar to [9], when x(k) satisfies ‖x(k)‖2
Q−1

h
≤ 1 and ‖x(k)‖2

Q−1
h−1

≥ 1, h 6= 1,

let Q(αh(k))
−1 = αh(k)Q−1

h + (1 − αh(k))Q−1
h−1, Z(αh(k)) = αh(k)Zh + (1 − αh(k))Zh−1 and

Γ(αh(k)) = αh(k)Γh + (1 − αh(k))Γh−1. By linear interpolation,

[
Z(αh(k)) ∗
F(αh(k))

T Q(αh(k))
−1

]
≥ 0

and

[
Q(αh(k))

−1 ∗
Ψ(Al + Bl F(αh(k))) Γ(αh(k))

]
≥ 0, which means that F(αh(k)) satisfies the input and state

constraints. Since {Fh−1, Fh−1, Fh−2, · · · , F1} is a stable feedback law sequence for all initial state inside
of εh−1, it is shown that  Q−1

h−1 ∗
h−1
∏
i=2

(Ali + Bli Fi)(Alh + Blh Fh−1) Q1

 ≥ 0 (44)

Moreover, Equation (40) is equivalent to

 Q−1
h ∗

h−1
∏
i=2

(Ali + Bli Fi)(Alh + Blh Fh) Q1

 ≥ 0. Hence, by

linear interpolation,



Designs 2018, 2, 31 8 of 12

 Q(αh(k))
−1 ∗

h−1
∏
i=2

(Ali + Bli Fi)(Alh + Blh F(αh(k))) Q1

 ≥ 0 (45)

which means that {F(αh(k)), Fh−1, · · · , F1} is a stable control law sequence for all x(k) ∈ εh,αh(k) ={
x ∈ <n

∣∣∣xTQ(αh(k))
−1x ≤ 1

}
and is guaranteed to drive x(k + h− 1|k) into ε1, with the constraints

satisfied. Inside of ε1, F1 is applied, which is stable and drives the state to the origin.

If Equation (38) is made to be automatically satisfied, more off-line feedback laws may be needed
in order for εN to cover a desired space region. However, with this automatic satisfaction, better control
performance can be obtained. Hence, we give the following alternative algorithm.

Algorithm 3 The Improved Off-Line MPC with an Automatic Condition

1: Off-line, as in Algorithm 2,
2: Obtain Qh, Yh, γh and Fh, h = N · · · 1.
3: εh ⊃ εh−1, h = N · · · 2.
4: On-line, if for each xh, h = N · · · 3,
5: The following condition is satisfied:
6:

(Alh
+ Blh

Fh)
TS1,l2···lh−1

(Alh
+ Blh

Fh) ≤ Q−1
h , li = 1 · · · L; i = 2 · · · h (46)

7: for x2

8: The following condition is satisfied:
9:

(Al + Bl F2)
TQ−1

1 (Al + Bl F2) ≤ Q−1
2 , l = 1 · · · L (47)

10: Then at each time k adopt the control law (14).

4. Numerical Example

4.1. Example 1

Consider the system

[
x(1)(k + 1)
x(2)(k + 1)

]
=

[
0.8 0.2

β(k) 0.8

][
x(1)(k)
x(2)(k)

]
+

[
1
0

]
u(k), where β(k) is an

uncertain parameter. Use 0.5 ≤ β(k) ≤ 2.5 to form polytopic description and β(k) = 1.5 to calculate
the state evolution. The constraints are |u(k + i|k)| ≤ 2, ∀i ≥ 0. Choose the weighting matrices as
Q = I andR = 1. Consider the following two cases.

Case 1. Choose xh = [ξh, 0]T , h = 1 · · · 4. Choose ξ1 = 1 and ξh = ξh−1 + ∆ξh, h = 2 · · · 4. Choose
large ∆ξh such that: (i) condition (13) is satisfied, (ii) optimization problem (12) is feasible for xh, and
(iii) optimization problem (29) or (43) is feasible for xh. Thus, we obtain ξ2 = 1.1, ξ3 = 1.5 and ξ4 = 1.9.
The initial state lies at x(0) = [1.9, 0]T .

Apply Algorithms 1 and 2. The state and input responses for these two algorithms
are shown in Figures 1 and 2, respectively. The upper bounds of the cost value γh for
these two algorithms are [15.4987, 18.7479, 35.5955, 66.6209] and [15.4987, 18.7425, 34.9721, 58.1560],
respectively. Moreover, denote

Ĵ =
∞

∑
i=0

[
‖x(i)‖2

Q + ‖u(i)‖2
R

]
(48)

then Ĵ∗ = 16.3221 for Algorithm 1 and Ĵ∗ = 15.1033 for Algorithm 2. The simulation results show that
Algorithm 2 achieves better control performance.
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Case 2. Increase N. Algorithm 1 becomes infeasible at xh = 3.4658. However, Algorithm 2 is still
feasible by choosing x1 = 1, x2 = 1.1, x3 = 1.5, x4 = 1.9, x5 = 3.8, x6 = 9.0, x7 = 12.8, etc.

Figure 1. The state responses of the closed-loop systems (dashed line for Algorithm 1, solid Algorithm 2).

Figure 2. The input responses of the closed-loop system (dashed line for Algorithm 1, solid Algorithm 2).

4.2. Example 2

Directly consider the system in [9]:

[
x(1)(k + 1)
x(2)(k + 1)

]
=

[
1 0.1
0 1− β(k)

][
x(1)(k)
x(2)(k)

]
+[

0
0.0787

]
u(k), where β(k) is an uncertain parameter. Use 0.1 ≤ β(k) ≤ 10 to form a polytopic

description and use β(k) = 9 to calculate the state evolution. The constraints are |u(k + i|k)| ≤ 0.2,∣∣∣x(2)(k + i + 1
∣∣∣k)∣∣∣ ≤ 0.03, ∀i ≥ 0. Choose the weighting matrices as Q = I andR = 0.00002.

Case 1. Choose xh =
[

0.01 + 0.00025(h− 1) 0
]T

and xN = 0.05. The initial state lies at

x0 = [0.05, 0]T . Apply Algorithms 1 and 3. The state trajectories, the state responses and the
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input responses for these two algorithms are shown in Figures 3–5, respectively. Moreover, denote

Ĵ =
∞
∑

i=0

[
‖x(k + i)‖2

Q + ‖u(k + i)‖2
R

]
, then Ĵ∗ = 0.0492 for Algorithm 1 and Ĵ∗ = 0.0975 for Algorithm 3.

Case 2. Choose xh =
[

0.01 + 0.00025(h− 1) 0
]T

, h = 1 · · ·NN such that the optimization problem
is infeasible for xNN . Then, for Algorithm 1, xNN is 19.6006, and for Algorithm 3, 0.0505.

Figure 3. The state trajectories of the closed-loop systems (dashed line for Algorithm 1, solid Algorithm 3).

Figure 4. The state responses of the closed-loop systems (dashed line for Algorithm 1, solid Algorithm 3).
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Figure 5. The input responses of the closed-loop systems (dashed line for Algorithm 1, solid Algorithm 3).

5. Conclusions

In this paper, we have given a new algorithm for off-line robust MPC. The off-line state feedback
law is optimized instead, such that each single state feedback law is fixed by the infinite-horizon
control moves. This new algorithm consists of MPC with a varying horizon, i.e., the control horizon
(say M) varies from M > 1 to M = 1, while the original Algorithm 1 can be taken as an approach with
M = 1. Simulation results show that the new algorithm achieves better control performance. Our future
research on this topic will be extending it to the output feedback MPC approaches.
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