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Abstract: Open literature offers a wide canvas of techniques for surrogate-based multi-objective
optimization. The large majority of works focus on methodological and theoretical aspects and
are applied to simple mathematical functions. The present work aims at defining and assessing
surrogate-based techniques used in complex optimization problems pertinent to the aerodynamics of
reversible aerofoils. Specifically, it addresses the following questions: how meta-model techniques
affect the results of the multi-objective optimization problem, and how these meta-models should be
exploited in an optimization test-bed. The multi-objective optimization problem (MOOP) is solved
using genetic optimization based on non-dominated sorting genetic algorithm (NSGA)-II. The paper
explores the possibility to reduce the computational cost of multi-objective evolutionary algorithms
(MOEA) using two different surrogate models (SM): a least square method (LSM), and an artificial
neural network (ANN). SMs were tested in two optimization approaches with different levels of
computational effort. In the end, the paper provides a critical analysis of the results obtained with
the methodologies under scrutiny and the impact of SMs on MOEA. The results demonstrate how
surrogate model incorporation into MOEAs influences the effectiveness of the optimization process
itself, and establish a methodology for aerodynamic optimization tasks in the fan industry.
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1. Introduction

Reversible single-stage axial fans are largely employed in tunnel and metro ventilation systems,
to supply and extract air from the tunnels. State-of-the-art solutions include the use of dedicated fans
for air supply and extraction, but in general the use of reversible fan rotors, characterized by truly
reversible blade sections, has been established as the most convenient [1–3].

Traditionally, truly reversible aerofoils have been generated by flipping the pressure side of a
non-cambered aerofoil and joining the suction side trailing edge with the pressure side leading edge,
and vice versa (Figure 1). Therefore, the aerofoil has periodic aerodynamic performance in terms of
lift and drag coefficients every 180 degrees of angle of attack. However, the unnecessary thickness
in the trailing edge coming from this approach (Figure 1) reduces the performance when compared
with standard aerofoils used for turbomachinery blades. As a global effect, the average aerodynamic
efficiencies of reversible profiles reach just up to 95% of the correspondent non-reversible geometry [4].
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Figure 1. Reversible aerofoil generation. 

Since 2012, the new legislation introduced minimum efficiency grades, imposing stricter 
efficiency constraints on fan designers during the design of a new reversible fan, challenging them 
toward revised reversible aerofoil concepts. In the past, this process relied mainly on two-
dimensional cascades wind tunnel data [5] or fully three-dimensional annular cascades data [6]. 
Nevertheless, experimental reversible cascade data are seldom available to industrial fan designers. 

When looking at optimization strategies, several multi-objective optimization problems 
(MOOPs) have been presented in the open literature and the choice depends upon various aspects, 
in particular the level of knowledge of the objective function and the fitness landscape [7]. Among 
these methods, evolutionary algorithms (EAs) often perform well in approximating solutions to all 
types of problems. They ideally do not make any assumption about the underlying fitness landscape 
and they are able to find a good spread of solutions in the obtained set of solutions. Furthermore, 
genetic methods are independent from the level of knowledge of the objective function and the fitness 
landscape, and are consequently less sensitive to numerical noise. Over the past decade, a number of 
multi-objective evolutionary algorithms (MOEAs) have been proposed [8–14], primarily because of 
their ability to find multiple Pareto-optimal solutions in one single simulation run. Among the 
number of different EAs, the most popular belong to the family of genetic algorithms (GAs) and 
among these, we focused on non-dominated sorting genetic algorithm (NSGA)-II [15]. 

When dealing with engineering optimization problems, the number of calls of the objective 
function to find a good solution can be high. Furthermore, in optimization problems based on 
computer experiments, where the simulation acts as the objective function, the computational cost of 
each run can severely restrict the number of available calls to the fitness function. Therefore, to reduce 
these computational efforts, the introduction of SMs has been proposed. Traditionally, the use of SMs 
in MOEAs has been classified according to the type of surrogate model at hand [16–18]. However, 
these works have shelved MOEAs’ point of view concerning the integration of SM into the 
evolutionary process. Jin [19] and Manríquez [20] proposed a classification based on the way EAs or 
MOEAs incorporate the SMs (focusing on the optimization loop). This taxonomy is called working 
style classification and allows for finding similar optimization problems, putting a greater emphasis 
on the methodology followed and not on the SM used. According to such a classification, the 
approaches are divided into direct fitness replacement (DFR) methods and indirect fitness 
replacement (IFR) methods [20]. 

This paper presents a study on the SM-based methodology to obtain a set of optimized aerofoil 
shapes for use in reversible fan blading. The work investigates the possibility to speed up the MOOP 
based on a non-dominated sorted genetic algorithm proposed by Deb [15], by means of SMs. In this 
view, meta-models created by a least square interpolation surface and artificial neural network were 
used to replace aerodynamic performance predicted by XFoil [21]. Even if the use of the boundary 
element method (BEM) can lead to non-optimal solutions, it is still a good replacement (mostly 
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Since 2012, the new legislation introduced minimum efficiency grades, imposing stricter efficiency
constraints on fan designers during the design of a new reversible fan, challenging them toward revised
reversible aerofoil concepts. In the past, this process relied mainly on two-dimensional cascades wind
tunnel data [5] or fully three-dimensional annular cascades data [6]. Nevertheless, experimental
reversible cascade data are seldom available to industrial fan designers.

When looking at optimization strategies, several multi-objective optimization problems (MOOPs)
have been presented in the open literature and the choice depends upon various aspects, in particular
the level of knowledge of the objective function and the fitness landscape [7]. Among these methods,
evolutionary algorithms (EAs) often perform well in approximating solutions to all types of problems.
They ideally do not make any assumption about the underlying fitness landscape and they are able
to find a good spread of solutions in the obtained set of solutions. Furthermore, genetic methods are
independent from the level of knowledge of the objective function and the fitness landscape, and are
consequently less sensitive to numerical noise. Over the past decade, a number of multi-objective
evolutionary algorithms (MOEAs) have been proposed [8–14], primarily because of their ability to
find multiple Pareto-optimal solutions in one single simulation run. Among the number of different
EAs, the most popular belong to the family of genetic algorithms (GAs) and among these, we focused
on non-dominated sorting genetic algorithm (NSGA)-II [15].

When dealing with engineering optimization problems, the number of calls of the objective
function to find a good solution can be high. Furthermore, in optimization problems based on
computer experiments, where the simulation acts as the objective function, the computational cost
of each run can severely restrict the number of available calls to the fitness function. Therefore, to
reduce these computational efforts, the introduction of SMs has been proposed. Traditionally, the
use of SMs in MOEAs has been classified according to the type of surrogate model at hand [16–18].
However, these works have shelved MOEAs’ point of view concerning the integration of SM into the
evolutionary process. Jin [19] and Manríquez [20] proposed a classification based on the way EAs or
MOEAs incorporate the SMs (focusing on the optimization loop). This taxonomy is called working
style classification and allows for finding similar optimization problems, putting a greater emphasis on
the methodology followed and not on the SM used. According to such a classification, the approaches
are divided into direct fitness replacement (DFR) methods and indirect fitness replacement (IFR)
methods [20].

This paper presents a study on the SM-based methodology to obtain a set of optimized aerofoil
shapes for use in reversible fan blading. The work investigates the possibility to speed up the MOOP
based on a non-dominated sorted genetic algorithm proposed by Deb [15], by means of SMs. In
this view, meta-models created by a least square interpolation surface and artificial neural network
were used to replace aerodynamic performance predicted by XFoil [21]. Even if the use of the
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boundary element method (BEM) can lead to non-optimal solutions, it is still a good replacement
(mostly customary in design phase) of an expensive tool, such as computational fluid dynamic
(CFD), to perform a preliminary study on this topic and to define guidelines to replicate the study in
cascade configuration by means of CFD [22]. Each meta-model was used in two different optimization
strategies, namely, (i) a simple-level characterized by a no evolution control (NEC) approach, and
(ii) an indirect fitness replacement (IFR) bi-level. To have the maximum control on each step of the
MOOP solution, the entire optimization framework and the meta-models development were in-house
coded in Python [23]. In conclusion, differences between the use of different meta-models and different
optimization strategies are discussed by means of quality metrics typical of optimization schemes.

2. Multi-Objective Optimization with Evolutionary Algorithms (MOEA)

Whether or not MOEA is assisted by surrogate models, there are main aspects common to both
approaches. To mention just a few; the choice of the objective functions, the geometry (aerofoil)
parameterization, and the optimization algorithm.

2.1. Objective Functions

The selected objective functions for the multi-objective optimization problem (MOOP) were the
aerodynamic efficiency (ε) and the stall margin (α), defined as follows:

ε =
CLS
CD

, α =
AoA(max(CL))− AoA(CLS)

AoA(max(CL))
, (1)

where CL is the lift coefficient, CD is the drag coefficient, and AoA(CLS) is the angle of attack where lift
coefficient reaches a specified value of lift coefficient CLS. According to the provided definition of stall
margin α, each aerofoil polar was computed between 0◦ and the angle of attack where the CL reaches
its maximum.

Aerodynamic efficiency was selected in this study to represent the key performance indicator of
profile losses in relation to aerodynamic blade section loading. Stall margin provides a measure of
the stable operating range of the profile. When optimized geometries data are used in a quasi
3D axisymmetric code, for design or performance prediction of an axial fan, as in the work of
Angelini et al. [24] or Drela et al. [25], stall margin is also a measure of solution reliability. The α

objective function has the additional purpose to prevent the tendency of optimized elements to move
their maximum aerodynamic efficiency in proximity of AoA (max(CL)).

Aerodynamic efficiency, lift coefficient, and thus stall margin, are not only functions of aerofoil
geometry (g), where g is a vector that univocally defines the aerofoil geometry, but also of Reynolds (Re):

ε = ε(Re, CLS, g)m, α = α(Re, CLS, g). (2)

The objective is to get a set of optimized geometries under specified Re and CLS that can be used
to replace current aerofoils sections of an existing blade geometry. Such a new set of geometries g′ is
considered optimized under said Re and CLS if aerodynamic efficiency ε′ and/or stall margin α′ are
higher than the ε and α of the current set:

ε(Re, CLS, g′) = ε′, α(Re, CLS, g′) = α′, and CL(Re, AoA′, g′) = CLS (3)

Such aerofoil collection can be used to re-stagger an existing fan blade to obtain better fan
efficiency or more stable working conditions at a given design point. In fact, when velocity diagrams,
aerodynamic loading (CL,i), Reynolds number (Rei), and blade solidity (σi) are prescribed at each blade
radius, it is possible to determine the aerofoil stagger (γi) (Figure 2) that results in the blade working
at optimized conditions ε′ and α′.

γi = β∞,i − AoA′ i (4)
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where “i” identifies the generic blade section along the span. The restaggered blade with optimized
aerofoils will result in a deflection (θ = β/1 − β/1) close to the design deflection.
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2.2. Aerofoil Parameterization

As the present study concerns truly reversible aerofoils, the parameterization of only one surface
of the profile univocally defines the aerofoil geometry. Selection of the parameterization scheme among
all available methods represents a crucial point, because it strongly influences the whole optimization
process, as described by Wu [26], Kulfan [27], and Samareh [28]. For optimization purposes, the most
important features of a parameterization scheme are the following: (i) to provide consistent geometry
changes, and (ii) to produce an effective and compact set of design variables [28]. These two features are
in fact fundamental during the optimization loop, because they simplify the generation and simulation
of geometries, and avoid data overfitting in the meta-model. Two parameterization schemes were
tested, Sobieczky [29] and the B-Splines parameterization [28]. These schemes were chosen for their
simplicity and the reduced amount of design variables required to reproduce a set of given aerofoil
geometries. B-Splines parameterization was selected according to its capability to reproduce the
suction side of a set of 40 reversible aerofoils selected between the most commonly used in ventilation
industry, or generated by a simple rearrangement of the suction side of several generic non-cambered
aerofoils. A curve fitting algorithm, developed by Schneider [30], finds values of the parameterization
coefficients for the given profiles to obtain the minimum deviation between a selected reversible
aerofoil and the resulting parameterization.

According to the Nelder–Mead search algorithm [31], the sixth degree B-Spline parameterization
guarantees a good balance among aerofoil geometrical features and the number of design parameters.
B-Spline parameterization uses the coordinates of six points. Two points define the beginning and the
end of the aerofoil suction side and are forced to have coordinates (0, 0) and (1, 0). A second set of
points indicates the direction of the surface at the leading edge and at the trailing edge. For those points,
x was again forced to 0 and 1, respectively, while y coordinates are the first two degrees of freedom
(Ya/1 and Ya/1). The third couple of points are used to control the suction surface between the leading
and trailing edge, adding other four degrees of freedom (Xa2, Ya/1 and Xa/1, Ya/1). Figure 3 shows the
set of control points and relative parameterization (dashed line) after the curve fit to reproduce the
given geometry (solid line).

The error observed applying the B-Spline parameterization is less than 10−3 for each of the initial
set of 40 reversible aerofoils. It is computed as the distance between the suction side (solid line in
Figure 3) and its parameterization (dashed line in Figure 3). Table 1 reports the error range.
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Table 1. B-Spline parameterization error range.

min error 4.29 × 10−5

max error 7.26 × 10−4

mean error 2.91 × 10−4

2.3. Optimization Algorithm

The MOOP has been solved using the non-dominated sorting genetic algorithm (NSGA-II)
proposed by Deb [15]. NSGA-II is a non-dominated sorting-based multi-objective evolutionary
algorithm (MOEA), combining the concept of non-dominated sorting together with an explicit
diversity-preserving mechanism, based on crowding distance. Starting from the parent population
Pt, taken as an initial set of N = 40 individuals (geometries), the algorithm generates an offspring
population Qt of the same size N. Then, the two populations are combined to form an Rt population
of size 2N. The offspring Qt is generated using the following criterion: four elements are generated
using crossover, mutation, and breed interpolation from the first two most promising elements in Pt.
Among them, the first two are random mutations, a third element is generated by scattered crossover,
and the genes of the last element are averaged between the parents’ genes. The remaining 36 elements
of Qt population are obtained by scattered crossover or mutation of random selected elements in Pt.
A non-dominated sorting approach, as suggested by Deb [15], is used to pick individuals from the
last non-dominated front. An advantage of this approach is that solutions compete with each other
also in terms of how dense they are in the fitness space. Thus, diversity is explicitly considered when
forming the offspring population. Furthermore, elitism is ensured by non-dominated sorting of both
parents and offspring and inclusion of non-dominated fronts in the new set of elements. NSGA-II
has demonstrated its ability to find a much better spread of solutions and better convergence near
the true Pareto-optimal front when compared with the Pareto achieved with different evolutionary
algorithms [24].

2.4. Test Matrix

We decided to select a series of operating conditions on the envelope of reversible fans for tunnel
and metro applications [22]. A matrix of 25 optimization cases was defined by means of the selection
of five values of Re, and five values of CLS, reported in Table 2. Each optimization starts from the same
initial population (Pt) of N = 40 reversible aerofoils described above.

Table 2. Reynolds (Re) and specified value of lift coefficient (CLS) values used in the test matrix.

Re 300,000 675,000 1,050,000 1,425,000 1,800,000

CLS 0.1 0.3 0.5 0.7 0.9
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3. Surrogate Model-Based Optimizations

If the final objective is to compute a stable solution for the MOOP, more accurate and
computationally expensive fitness estimators need to be deployed into the MOEA framework,
increasing the time to solution. As a compromise, the established framework to address such
challenging optimization problems is the use of surrogate-based optimization, in which a meta-model
approximates the fitness function and leads the optimizer with local or global extrema values at
a much lower computational cost [8,9]. In this work, the least square method (LSM) and artificial
neural networks (ANNs) were used as surrogate models (SM) of the original BEM solution (i.e., the
XFoil-based fitness function) in the MOOP.

Two meta-model optimization approaches were considered. Namely, the simple-level approach,
in which the optimization is entirely driven by the SMs, and the bi-level approach, in which the
reference solution (original fitness function) is used to evaluate the surrogate optimum designs.

Following the classification proposed by Jin [32] and Manríquez [20], the simple-level is also
called the direct fitness replacement (DFR) method or no evolution control (NEC), and it is considered
the most straightforward SM approach. The simple-level framework is illustrated in Figure 4, where
MOEAs calculate the solutions using the SMs without any assessment against the original fitness
function. NEC has proven to be adequate in problems with low dimensionality in both decision
and objective space, and is established in turbomachinery applications [11–14]. However, in more
challenging problems [12,20], this approach can converge to false or sub-optima, which in a MOOP,
is a Pareto front not corresponding to the Pareto front estimated by the original function.

The bi-level framework (or in-fill criterion), also known as the indirect fitness replacement (IFR)
method [24,33], advocates the use of the fitness function during the EA process, adding new sample
points to the current data set, while one or more components of the MOEA (typically the variation
operators) are assessed in the SM. The IFR method is clearly a two-stage approach, as illustrated in
Figure 5. A number of solutions are produced, evaluated, and compared using the SM. Among them,
n best solutions are then delivered to the parent approach and evaluated against the original fitness
function to enrich, iteration by iteration, the sampling data set from which meta-models are derived.
Therefore, it is expected to keep the optimization towards the true Pareto front, and at the same time
reduce the risk of convergence to false optima [16,34]. Most of the existing works in this category
use the MOEA in a direct coarse grain search, while the SM intervenes in a local search, providing
candidate solutions, which are then assessed in the real function. Therefore, the IFR approach uses the
SM for exploitation purposes, while the MOEA is employed for design space exploration.

3.1. Data Sampling

In both of the optimization frameworks, the initial meta-models were trained by means of selected
samples inside the design space. In this work, the design space includes s = 8 parameters (i.e., 6 airfoil
geometry parameters, Re and CLS), and the vector of independent variables reads as follows:

F = (Xa2, Ya2, Ya1, Xa3, Ya3, Ya4, Re, CLS) (5)

Usually, a full factorial design of experiment is used to test all possible combinations of variables
(factors). Such an approach would require a large number of experimental trials, specifically 38 = 6561.
To reduce the number of trials, we use a central composite design, and in particular the rotatable
central composite inscribed (CCI). CCI is full factorial, to which 2s axial trials and center point trials
are added [35,36]. Axial points are located at factors levels −1 and 1, while factorial points are brought
into the interior of the design space and located at distance 1/ν from the center point. Here, ν is the
distance from the center of the design space to a star point. To ensure the rotatability of the design [37],
ν was set to the following:

ν = (2s)0.25, (6)
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where s is the number of factors. As a consequence, the number of factorial runs is 28 = 256, with ν

set to 4 to keep rotatability. The operating ranges for all the factors and the levels at which they were
tested are shown in Table 3.
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Coded Levels and Corresponding Absolute Levels

−1 −1/ν 0 1/ν 1

Xa/1 0.0140 0.0282 0.0330 0.0377 0.0519
Ya/1 0.0217 0.0423 0.0491 0.0560 0.0765
Ya/1 0.0126 0.0332 0.0401 0.0470 0.0676
Xa/1 0.0049 0.0136 0.0164 0.0193 0.0280
Ya/1 0.2761 0.3430 0.3653 0.3876 0.4545
Ya/1 0.0265 0.0599 0.0710 0.0821 0.1155
Re 300,000 862,500 1,050,000 1,237,500 1,800,000
CLS 0.1 0.4 0.5 0.6 0.9
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The total number of experimental trials was equal to N = 2s + 2s + 1 = 273. All 273 examples were
tested by means of XFoil to calculate the vector of design objectives that reads as follows:

O = (ε, α), (7)

Notably, the entire sampling task required approximately 1.5 h on a 4 cores i7 laptop.

3.2. Least Square Method (LSM)

The model fitness function was approximated using a second-order polynomial response surface,
which reads as follows:

O =ζ0 + ζ1F1 + ζ2F2 + ... + ζsFs+

ζ1,1F2
1 + ζ2,2F2

2 + ... + ζs,sF2
s +

ζ1,2F1F2 + ... + ζs−1,sFs−1Xs + q

(8)

A least square method fit approach enables the estimation of the polynomial coefficients,
or regressors, so that it best fits the CCI data set. The polynomials (8) quantify the relationship between
the vector O of the objective functions, ε and α, respectively, and the factors. ζ ι are the regressors and q
is an error associated with the model. This first surrogate model is suitable for optimization processes
and can handle noisy optimization landscapes, as reported in the works of [33,38].

3.3. Artificial Neural Network (ANN)

The neural network developed was a multilayer perceptron (MLP), commonly used in regression
problems [39]. A series of tests on the architecture of the MLP was carried out to identify the best
tradeoff architecture to ensure accuracy and limit the computational costs. Following these tests, the
selected configuration MLP included one hidden layer, 25 neurons, a logsig activation function on
the hidden layer, and a linear function on the output layer. Tests were done using 10 to 60 neurons,
and 1 and 2 hidden layer(s), for a total of 6 tests on a single layer network and 36 tests on a double
layer network. The architecture with one hidden layer and 25 neurons had the best surrogate model
coefficient of determination. The MLP is illustrated in Figure 6.
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Figure 6. Neural network structure.

The neural network was trained using a Bayesian optimization algorithm, randomly initializing
weights and biases between 1 and −1. To avoid convergence into a local minimum and detect
overfitting, the sampling dataset was re-organized into five different datasets; each was then split into
a “training dataset” containing 80% of the total samples, and a “test dataset” with the remaining samples.
The ANN was then trained on each dataset and the accuracy was evaluated by means of the coefficient
of determination R/1, calculated above the entire normalized prevision set; ε and α.
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3.4. Pareto Front Properties

To further analyze the SM-assisted multi-objective optimization performance, the quality of results
was assessed using the following Pareto front properties: (i) the number of Pareto optimal solutions
in the set; (ii) the accuracy of the solution in the set (i.e., measured by closeness to the theoretical
Pareto-front solution); and (iii) the distribution and (iv) spread of the solutions [40]. To quantify these
properties, we computed a set of performance indices. Specifically; (i) Overall Non-dominated Vector
Generation Ratio (ONVGR); (ii) Hyperarea (H); and (iii) Spacing (Sp) and Overall Pareto Spread (OS).

ONVGR is a cardinality-based index derived from the one defined in Okabe et al. [40], and it is
linked to the number of non-dominated solutions in the Pareto front. To compute this index, all the
elements that populate the optimized solution sets (from all optimization framework; MOEA and SMs
assisted optimizations) were combined in a unique Pareto front for each test case, according to the
non-dominated sorting algorithm of NSGA-II. ONVGR defines the percentage of unique Pareto front
elements that are generated from metamodel-assisted optimization, or using XFoil as fitness function.
H identifies the area of objective space subtended by the Pareto solution set. Sp identifies the distance
between the elements that populate the solution set. OS quantifies how widely the optimized solution
set spreads over the objective space. In a two objectives optimization, it is computed as the ratio of
the rectangle that is defined selecting the good and bad points (according to each objective functions),
and the rectangle that has two vertices on the Pareto front extreme points. A solution set presenting
higher OS value is characterized by wider spread.

4. Results

Standard MOEA results are first illustrated. The results from the developed SMs are then
presented and compared against MOEA.

4.1. MOEA

The fitness function selected to compute the objective functions ε and α during NSGA-II algorithm
was based on BEM modelling of the airfoil (i.e. XFoil). This model was selected as it is customary in the
prediction of aerofoil lift and drag polars [41,42]. Moreover, RANS-based numerical models were found
to be affected by noise as a consequence of turbulence modelling discontinuous variations in calculating
objective functions and discretization, as indicated by Giunta et al. [43] and Madsen et al. [44,45].
Figure 7 shows the objective function values of the initial given population Pt for Re = 1.05 × 106 and
CLS ranging between 0.1 and 0.9.
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Figure 7. Original fitness function objectives ε and α for Re 1.05 × 106 and different values of CLS.
Filled symbols are used to interpolate a technological frontier (dotted line) for the baseline
aerofoil geometries.
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We analysed the initial population using XFoil with the aim to find an initial frontier. We sorted the
tested individuals according to fast non-dominated sorting algorithm, suggested by Deb [15], obtaining
the front depicted by filled symbols. Any optimization technique should move this imaginary frontier
(dotted line) towards higher efficiencies and stall margins. Figure 8 shows the results for all Re and
CLS combinations of the MOEA test matrix after 20 generations.
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Each graph illustrates the initial frontier (dotted line) and the final frontier obtained by a selection
of elements on the Pareto fronts. Irrespective of the configuration, the frontier shifts as a result of a
major improvement in efficiency, lowering the stall margin.

4.2. No Evolution Control (NEC) or Single-Level Approach

MOOP was solved using NSGA-II algorithm assisted by developed meta-models. SMs’ accuracy
in terms of coefficient of determination R/1 for the least square method and artificial neural networks
is reported in Table 4.

Table 4. Surrogate models coefficient of determination for the no evolution control (NEC) approach.
LSM—least square method; ANN—artificial neural networks.

R/1

Output LSM ANN

ε 0.9620 0. 9656
α 0.9480 0.9865

Global - 0.9906

In this method, there is no call to the original fitness function-based BEM, and the optimization
was stopped after 20 generations. To assess the results of the SM-assisted optimization, solutions
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on the Pareto fronts were retested with XFoil. Figure 9 shows the results of such an assessment for
Re = 1.05 × 106 and CLS = 0.5. Irrespective of the value of Reynolds number and CLS, the use of
SMs to drive the optimization result was inadequate with the NEC approach. In fact, a consistent
discrepancy was observed between the meta-model predicted aerodynamic performance (black dots)
and the performance obtained testing the same individuals with the BEM function (white dots).
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artificial neural networks (left) and the least square method (right) for Re 1.05 × 106 and CLS 0.5.

A geometrical analysis made on a few geometries of the SMs’ Pareto fronts confirms that the
geometrical trends, previously found with MOEA, are not reproduced. In addition, as described in
Figure 9, each Pareto front given by SMs provides similar aerofoil shape, in contrast to the flow physics,
which suggest the finding of thinner aerofoils in zones with high efficiency and low stall margin, and
conversely an increased thickness in the zone with low efficiency and high stall margin.

To quantify the underlined departure of SMs’ optimization, the prediction capability (Pc) was
plotted against the number of iterations in Figure 10 (i.e., Re = 1.05 × 106, CLS = 0.5). Notably, the
prediction capability Pc is an index similar to the coefficient of determination R/1, computed as follows:

Pc, ε = 1−
∑
n

εBEM,i − εi

∑
n

εBEM,i − ε BEM
(9)

where εBEM,i is the aerodynamic efficiency (objective function) of the ith individual of Pareto front
tested with the BEM function, and ε,i is the efficiency predicted by the surrogate model. Using the
same criteria, we have computed Pc,α.

Irrespective of the SMs, after an initial phase of five or six iterations, in which the meta-model
prediction is above 90%, Pc quickly drops for both objectives ε and α. Despite that Pc trends in ANN
and LSM are similar, the optimization behaviors are totally different. In the test matrix, ANN tends
to empathize a geometrical feature that generates distorted or unrealistic geometries that are hard or
impossible to simulate by means of XFoil, while this trend was seldom recorded for LSM.

The inability of meta-model based optimized geometry to replicate the behaviour of aerofoils is
strongly connected to the incorrect prediction of elements in the intermediate regions of the sampled
design space for SMs’ instruction. This circumstance was already documented in highly dimensional
problems (as in the present case owing to the selected aerofoil parameterization) when using the
single-level NEC approach [12,46].
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4.3. Indirect Fitness Replacement (IFR) or Bi-Level Approach

In view of the poor performance of the NEC approach, the IFR framework was implemented
for the solution of the MOOP. In this case, the initial sampling was used to train the first iteration of
both meta-models. Then, meta-model assisted NSGA-II was invoked for five generations. The genetic
algorithm was kept identical to the original formulation used in the reference MOEA optimization.
After the NSAG-II completion, the 40 best new members are evaluated using the original fitness
objective function, and then stored to enrich the SMs training pool. To this end, a limit of 10 calls to the
objective function was set, in order to control the computational cost of the optimization process.
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Figure 10. Prediction capability progression and optimized elements generated during the first
10 generations for both objective functions for Re = 1.05 × 106 and CLS =0.5. Left: ANN; Right: LSM.

Figure 11 illustrates the results of the final iteration loop again for the combination Re = 1.05 × 106,
CLS = 0.5, already used in the NEC exploration. In the IFR approach, aerodynamic performance
predictions are in good agreement with XFoil predictions, with a significant gap reduction between
Pareto fronts estimated by the meta-models and by the original fitness function. In addition, it is
possible to infer that the aerofoil flow physics is well represented in both SM-based optimizations,
by the change in the aerofoils geometry. Thinner aerofoils populate the upper left region of Pareto
front, where the efficiency increases to the detriment of stall margin, as expected and confirmed by
MOEA analysis.
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Figure 12 shows the overall comparison of SM-assisted optimizations against the standard MOEA
for five different configurations of the test matrix. Notably, in Figure 12, the dotted lines indicate the
base-line aerofoil performance for the specified Re and CLS values. To give additional hints about the
ANN-based surrogate, Figure 12 also shows the results of a reduced complexity level artificial neural
network with only 10 neurons per hidden layer. Because the results obtained with the IFR approach
demonstrates that the complexity of SMs had low impact on the quality of the obtained Pareto fronts,
we performed the optimization with a simplified version of the ANN to reduce the computational
effort required. At a glance, these results give the indication of the quality of SM-assisted optimizations
implemented in a IFR test-bed, using half of the computational effort required by the MOEA. It is also
worth noting that, when comparing the two meta-models, the quality of the Pareto front solutions is
close, indicating a reduced influence of the optimization process to the specific meta-modelling algebra.

Table 5 reports the values of the indexes described in Section 3.4. In each column, the best case is
in bold, and the worst case is in italic.

Table 5. Pareto Fronts quality indexes for different optimizations techniques. ONVGR—overall
non-dominated vector generation ratio; H—hyperarea; OS—overall pareto spread; Sp—spacing;
MOEA—multi-objectives evolutionary algorithms.

Re CLS Fitness ONVGR H OS Sp

675,000

0.3

ANN 28.6 43.0 0.29 0.57
ANN 10n 10.7 41.7 0.32 0.28

LSM 46.4 42.4 0.20 0.28
MOEA 14.3 41.6 0.15 0.40

0.7

ANN 43.8 42.8 0.36 1.62
ANN 10n 10.4 43.0 0.31 0.26

LSM 37.5 41.8 0.38 0.66
MOEA 8.3 40.4 0.15 0.60

1,050,000 0.5

ANN 11.9 53.3 0.51 0.80
ANN 10n 21.4 47.1 0.35 0.27

LSM 33.3 53.1 0.42 0.72
MOEA 33.3 45.2 0.24 0.24

1,425,000

0.3

ANN 18.4 62.1 0.68 1.28
ANN 10n 52.6 58.8 0.23 0.29

LSM 28.9 61.3 0.48 0.62
MOEA 0.0 53.0 0.27 0.97

0.7

ANN 32.0 45.8 0.31 0.62
ANN 10n 28.0 44.1 0.15 0.06

LSM 40.0 47.8 0.27 1.65
MOEA 0.0 43.8 0.10 0.30

According to the values of ONVGR listed in Table 5, the SM-assisted optimizations resulted in a
larger number of non-dominated elements in the set when compared with MOEA. The only exception
concerns the central test case in the matrix (Re = 105000, CLS = 0.5), where MOEA optimization
reaches 33.3% of non-dominated elements. However, we can obtain the same result using LSM as the
fitness function.

As per H, the use of ANN determines a wider dominated area in the objective space, although
LSM has very close values for the same test cases. As observed above, also in this case, worse results
have been obtained using the MOEA approach. Concerning SP values, the analysis shows that ANN,
even with 10 neurons, in general have Pareto fronts characterized by the minimum distance between
the elements that populate the solution. The values of OS tend to confirm that ANN Pareto sets present
a wider spread over the objective space, in line with the H quality.

As a final comment, it is impossible to say that the overall quality of solution sets for MOOP
cannot be accounted for by means of a single performance index, especially if the shape of Pareto front
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is extremely different. In the end, because in this study the declared final objective was to move as
much as possible the technological frontier on the α–ε chart, the effectiveness was assessed by means
of ONGVR index, concluding that SMs-assisted optimization can be equivalent, or even better in this
case, with respect to that based on XFoil and surrogate models.
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5. Conclusions

This paper presents an investigation of surrogate-based optimization of truly reversible profile
family for axial fans. The multi-objective optimization problem (MOOP) is based on the NSGA-II,
an evolutionary algorithm able to find multiple Pareto-optimal solutions in one simulation run.
The MOOP has been firstly solved using the XFoil software, avoiding the modelling and use of any
SMs. These results have been compared with those obtained by implementing different SMs in the
MOOP, considering two different optimization frameworks, namely NEC and IFR.

The use of SMs to assist MOEAs is a complex matter that requires an exhaustive analysis
of the entire optimization framework and how the SMs are embedded in the considered
optimization algorithm.

This work has shown that, for this problem, an IFR approach has to be preferred to an NEC
approach. In fact, an NEC approach has produced false Pareto-fronts in all of the tested configurations.
In particular, the NEC optimization has been not able to explore the entire design space in between
the sampling points. The genetic algorithm led the optimizer to candidate solutions that were, during
every iteration, more and more distant from the corresponding true value. This interpretation was
suggested by the decreasing value of prediction capability associated with the increase of unrealistic
geometries and thick profile.

An IFR approach has produced more reliable results, providing a good prediction capability
during the iterations, and hence reducing the distance between estimated and true Pareto fronts.
The optimization was able to cover the entire design space, providing a geometry along the Pareto
fronts similar to those experienced by the MOEA optimization. The IFR method required a more
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complex and computationally expensive optimization framework based on a bi-level approach, with
the infill criterion based on the results of the GA.

An analysis of the ONVGR index has shown that, in most cases, the IFR optimization was able to
produce better results (individuals) than the XFoil-based optimization.

Regarding the SMs used in this work (an LSM and ANN with different number of neurons),
the IFR results show the independence of the MOEA to the SM considered. This is considered an
important outcome; LSM being an easier and faster to model when compared with an ANN. On the
other side, the NEC approach results do not present any relevant differences between the two SMs,
even though different prediction accuracies were reached.

The different reliability of the results obtained by adopting a NEC and IFR approach scales
down the role and importance of the initial sampling in SMs-based optimization. In fact, it is
evident that an NEC approach is totally favourable to exploitation, on the contrary, not being able to
correctly explore the design space. An IFR approach, which involves an infill criterion, overcomes
the difficulties and limitations related to the correct initial sampling creation, by iteratively adding
optimized solutions evaluated with XFoil to the initial sampling. This approach ensures a better
balance between exploration and exploitation of the design space.

The results shown for the IFR approach demonstrated that, in the selected cases, a consistent
reduction of MOOP computational cost is possible. In the specific case, according to the metric selected
to judge the Pareto frontiers, the calls to the expensive objective function were reduced by 50%, in all
cases producing a reliable set of better solutions in comparison with the standard MOEA approach.

In conclusion, this study clarified the strong impact of the optimization framework on the
reliability of the obtained Pareto fronts in a SM-based design optimization for an industrial fan
benchmark problem. With an IFR approach, the use of the considered SMs can significantly reduce
the computational time needed to solve the MOOP by reducing the call of the fitness function, while
ensuring the creation of the same, or even better, Pareto fronts when compared with those obtained
using only XFoil. The solutions obtained by the IFR method present higher values of Pareto quality
indexes when compared with MOEA (see Table 5). The major improvement is associated with
the ONVGR index, which assesses that the elements populating the Pareto front obtained with the
SMs-assisted optimization dominate the solution obtained with the MOEA.

Nomenclature

Acronyms
ANN Artificial Neural Network
CCD Central Composite Design
CCI Central Composite Inscribed
CFD Computational Fluid Dynamic
DFR Direct Fitness Replacement
EAs Evolutionary Algorithms
FNDS Fast non dominated sorting algorithm
GAs Genetic Algorithms
H Dominated Space or Hyperarea
IFR Indirect Fitness Replacement
LSM Least Square Method
MOEA Multi-Objectives Evolutionary Algorithms
MOOPs Multi-Objectives Optimization Problems
MS Max Sum
NSGA-II Non-dominated sorting genetic algorithm
NEC No Evolution Control
ONVGR Overall Non-dominated Vector Generation Ratio
Qt Offspring population
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OS Overall Pareto Spread
PC Prediction capability
Pt Initial population
Rt Global population
SMs Surrogate Models
SP Spacing
Latin
a, z Synapse activity [-]
AoA Angle of attack [deg]
CD Drag coefficient [-]
CL Lift coefficient [-]
CLS Specified lift coefficient [-]
g Array containing aerofoil geometry [-]
k Neuron number [-]
m ANN number of predicted dependent variables [-]
q LSM associated error [-]
Re Reynolds number [-]
s LSM number of factors [-]
W Relative velocity [m/s]
F factors [-]
Xai x-coordinates of B-Spline parameterization [-]
O objectives [-]
Yai y-coordinates of B-Spline parameterization [-]
Symbols
α Stall margin [-]
β Flow angle [deg]
γ Aerofoil stagger [deg]
ε Aerodynamic efficiency [-]
ζi LSM regressors [-]
θ Deflection [deg]
λ Linear activation function [-]
ν Star point distance [-]
σ Sigmoid activation function [-]
Superscripts
‘ Selected solution
1,2 Inlet and Outlet fan sections
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