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Abstract: Modern mobile networks exhibit a complex heterogeneous structure. To enhance the
Quality of Service (QoS) in these networks, intelligent control mechanisms should be implemented.
These functions are based on the processing of large amounts of data and feature extraction. One
such feature is information about user mobility. However, directly determining user mobility remains
challenging. To address this issue, this study proposes an approach based on multi-linear data
processing. The user mobility is proposed to determine, using the multi-linear data, about the
changing of the Signal-to-Interference-plus-Noise-Ratio (SINR). SINR varies individually for each
user over time, relative to the network’s base stations. It is natural to represent these data as a tensor.
A tensor-based preprocessing step employing Canonical Polyadic Decomposition (CPD) is proposed
to extract user mobility information and reduce the data volume. In the next step, using the DBSCAN
algorithm, users are clustered according to their mobility patterns. Subsequently, users are clustered
based on their mobility patterns using the DBSCAN algorithm. The proposed approach is evaluated
utilizing data from Network Simulator 3 (NS-3), which simulates a portion of the mobile network.
The results of processing these data using the proposed method demonstrate superior performance
in determining user mobility.

Keywords: O-RAN; RIC; multi-dimensional data; tensor-based data processing

1. Introduction

Modern mobile networks require not only high data rates and low latency, but also
the capability to serve the heterogeneous communications on demand. For example,
Quality of Service (QoS) parameters significantly diverge for Enhanced Mobile Broadband
(eMBB), Ultra Reliable Low Latency Communications (URLLC), and Massive Machine-
Type Communications (mMTC). It is hard to carry out the conflicting requirements within
a single physical network infrastructure.

The mobile network of a single provider can exhibit a complex, heterogeneous, and
hierarchical structure. Moreover, this network should support a set of different Radio
Access Technologies (RATs). Furthermore, User Equipment (UE) should support different
standards, including 5G New Radio (5G NR), Long Term Evolution (LTE), and Wi-Fi. After
all, the density of base stations’ installation is also increased.

5G NR provides enhanced capabilities for wireless communications geared towards
heterogeneous traffic. To achieve this, Network Slicing is used. This technology enables
the creation of independent logical networks on a common physical infrastructure with
optimized parameters for specific services and applications. Intellectual closed-loop man-
agement is implemented to control these kinds of mobile networks. However, this approach
presents implementation difficulties due to the closed nature of the equipment interfaces
provided by vendors.

The Open Radio Access Network (O-RAN) Alliance proposes to change this paradigm
and introduces open interfaces between the elements of the cellular networks [1]. Moreover,
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networks deployed under the O-RAN architecture consists of multi-vendor equipment
and third-party software solutions. To control and manage the network parameters, pro-
grammable RAN intelligent controllers (RICs) are used [2].

The automatic optimization of QoS and the Quality of Experience (QoE) are the main
functions of the RIC. The centralized storage of network data in the RIC allows us to
adopt novel network management approaches. For instance, the Traffic Steering (TS)
function facilitates user switching between cells for throughput maximization. RIC collects
a large amount of data about network configuration, operating frequencies, cell and traffic
parameters, users’ mobility, etc. [3].

RIC algorithms are based on Artificial Intelligence (AI) and Machine Learning (ML)
workflows [4]. Different approaches for AI and ML in RAN can be used, as well as those
considered in [5].

Moreover, the problems of compromise between the secrecy rate and the consumed
power are also important for RAN that can be considered as heterogeneous networks.
To address this issue, the authors in [6] proposed the secrecy energy-efficient hybrid
beamforming (BM) schemes for one type of heterogeneous network: the Satellite-Terrestrial
Integrated Network (STIN). The concept of STIN was extended to the Hybrid Satellite-
Terrestrial Relay Network (HSTRN) in [7]. Reconfigurable Intelligent Surfaces (RISs) were
proposed for providing the required QoS for blocked users. To achieve this, the base
stations of HSTRN in cooperation with RIS are utilized to enforce the satellite signals at the
blocked users. In [8], the Malicious RISs are considered as green jammers in the Internet of
Things (IoT) networks.

Moreover, the handover procedure is crucial in RAN, and significantly impacts QoS.
Furthermore, UEs can be switched between different RATs in heterogeneous networks.
Therefore, the standard handover algorithms between cells that select the serving cell may
have a negative effect on QoS in networks with a complex hierarchical structure. The
mobility pattern of the users can be utilized as a criterion for serving policy in heteroge-
neous networks.

In Self-Organizing Networks (SONs), LTE and 5G NR, the standard handover algo-
rithms, are modified to solve the problems of the mobility procedures’ stability and load
balancing [9]. To this end, the handover parameters are adaptively adjusted. For example,
the threshold level of the receiving signal or the hysteresis characteristic can be modified to
enhance QoS during handover.

In [10], the authors proposed to improve the handover algorithm by employing the
geographic coordinates of users. However, this method needs to collect and process data
regarding user coordinates. Therefore, the indirect methods of evaluating user mobility
can be utilized for more effective selection of the serving cell, serving policies, and making
decisions about the handover.

The objective parameter that characterizes the quality of the radio channel is the Signal-
to-Interference-plus-Noise Ratio (SINR). Additionally, modulation and coding schemes
are chosen based on the SINR level [11] and can indirectly represent spectrum efficiency.
Moreover, throughput in modern networks is primarily dependent on SINR rather than on
the number of available channels. Furthermore, the change in the SINR over time, with
respect to the serving base station and potential serving base stations, indirectly indicates
the user movement pattern. Therefore, SINR can be employed to determine user mobility
and enhance the handover algorithm.

However, SINR significantly varies due to changes in the real channel parameters.
Moreover, SINR must be evaluated relative to the serving base stations and potential
serving base stations. Consequently, these data are multi-linear and have a large volume.
This amount of data cannot be processed using the classical methods of classification or
clustering. Therefore, to overcome the curse of dimensionality, tensor-based processing
can be employed. To this end, the multi-linear data are represented as multi-way tables
and decomposed into matrices with fewer dimensions. This approach also allows us to
decrease the noise and extract the features from observed multi-linear data.
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In this paper, we analyze the users mobility pattern determining as a function of
the RIC. This information can be used for more adequate Policy Management, ultimately
enhancing overall QoS in the RAN. Drawing from the findings of studies [12–14], which
focused on analyzing human mobility patterns, we can deduce that most individuals
move according to distinct patterns and trajectories shaped by the urban environment’s
topography, such as major streets, park areas, and road junctions. For instance, most
personal and public transportation subscribers navigate along predetermined routes, in
alignment with the road network’s structure and traffic regulations. Therefore, in our work,
the necessary actions to ensure the desired communication quality (QoS, QoE) will be
consistent for users with identical mobility profiles.

The key contributions of this paper can be summarized as follows:

1. We propose the multi-linear model of the data that represent the SINR fluctuations
and can be received from the RAN.

2. We design a method based on the data decomposition and clustering to determine
the user mobility profile within the RAN.

3. Simulation results demonstrate that the proposed method effectively identifies
user mobility.

The rest of the paper is organized as follows. Section 2 reviews the current state of the
research field. Section 3 describes the bases of tensor algebra, the model of multi-linear data,
and the proposed method for user mobility determination. In Section 4, we present the
scenarios and simulation results. In Section 5, we discuss the limitations of the proposed
method. Section 6 concludes the paper.

2. Background and Related Works
2.1. Architecture O-RAN

Traditionally, Radio Access Networks (RANs) are designed as monolithic structures,
with each component functioning as a black box. Analyzing and tuning RAN parameters
in such architectures is an impossible task.

To address this issue, as the opposite of complex and closed RANs, a new open archi-
tecture was proposed—Open RAN (O-RAN) [15,16]. The O-RAN architecture presented
in Figure 1 is based on the following points: principles of the disaggregation of system
elements, open interfaces between these elements, virtualization, and the programmability
of elements. The O-RAN standardization ensures free interoperability between multi-
vendor components. Moreover, the network functions of the O-RAN are software defined,
virtualized, and implemented as white-box hardware.

In O-RAN, the NR Next Generation Node Base (gNB) is disaggregated into several
nodes: Open Control Unit (O-CU), Open Distributed Unit (O-DU), and Open Radio Unit
(O-RU). The O-CU contains the gNB radio resource management logic and performs IP
protocol mapping of the UEs traffic. The O-DU implements the functions of the Medium
Access Control (MAC) layer and performs scheduling functions to allocate the radio
resources between traffic flows. The O-RU incorporates Physical (PHY) layer functions and
performs radio frontend functions [4,17].

The O-RAN architecture includes two RICs for managing and controlling the RAN:
Non-Real Time (non-RT) RIC and Near-Real Time (near-RT) RIC. The non-RT RIC optimizes
the RAN parameters on a time scale exceeding 1 s, and includes the functions of the Service
Management and Orchestration (SMO) framework. The near-RT RIC operates on a time
scale between 10 ms and 1 s and controls the parameters of the O-DU and O-CU via E2
interface [4,17].

The RICs interfaces for interacting with RAN elements are defined in the O-RAN
specifications. The controllers themselves are software-defined and consist of Application
Programming Interfaces (APIs) and autonomous applications, known as xApps and rApps.
The APIs provide message collection and routing functions as well as interface termination.
The control logic is implemented using xApps and rApps in the near-RT RIC and non-RT
RIC, respectively. Application autonomy refers to the fact that they can be third-party
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developed and integrated into the RIC. Generally, xApps and rApps are AI/ML-based
solutions capable of predicting network traffic and/or configuring RAN nodes based on
current conditions [4,17].

Figure 1. O-RAN architecture, with components and interfaces from O-RAN and 3GPP. O-RAN
interfaces are drawn as solid lines, 3GPP ones as dashed lines.

Mobility-related metrics are employed in various RIC use cases, including Traffic
Steering, QoE optimization, Handover, and Interference Optimization. These functions
allow to automatically optimize the QoS and QoE. Therefore, the problem of the user
mobility determining is considered in this paper.

2.2. User Mobility Pattern

One of the challenges in 5G NR systems is that signals at high carrier frequency exhibit
poor penetration properties and high energy losses during reflection. Therefore, for this
type of system, the transmitted energy should be concentrated in the user’s direction,
making user localization crucial.

On the one hand, ref. [18] presents a 3D positioning technique from the UE perspective.
The core idea is to utilize massive MIMO systems in the BS, which allows the UE to realize
high-precision positioning using a single antenna. Based on the sparsity of the mmWave
channel, the CANDECOMP/PARAFAC (CP) decomposition is employed to estimate the
positioning parameters (including the angles of departure and the time of arrival).

On the other hand, ref. [19] introduces a tensor-based 3D position estimation method
for 5G massive MIMO systems. In this approach, the BS at a known position localizes
the UE using the received signals from this UE. The authors employ the truncated Higher
Order Singular Value Decomposition (HOSVD) model with dividing the receive antenna
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array into the subarrays to estimate the angle of arrival (AoA), angle of departure (AoD)
and delay of each part. Based on this information, the UE position can be estimated.

In contrast to [18,19], our proposed algorithm analyzes the user mobility rather than
the user localization. The user mobility issues is explored in [20,21], where the modeling
of user mobility in wireless communication is provided. The authors present a model
that provides a realistic mobility model and verified the accuracy of their theory through
extensive modeling.

In [22], the location and mobility management strategies are, considered. A new loca-
tion management scheme, termed the mobility-pattern-based scheme (MPBS), is proposed
to reduce the signaling traffic load and paging delay simultaneously. In [23], the user
mobility in cellular networks is studied. The simple case of a single user traveling in a
straight line within a single BS is considered, from which the probability distribution of
path length without handover is derived. This knowledge can be used to improve the
handover procedure.

Unlike the cited papers, the proposed method does not focus on user mobility model-
ing [20,21] or system efficiency improvement [22,23]. The primary motivation of this work
is to close a knowledge-gap in the overall user mobility analysis. This will enable the sepa-
ration of users into distinct groups based on their mobility patterns. This can be achieved
because users move along certain trajectories determined by urban city structure [12–14],
and users with similar mobility patterns can be represented as a single group. This group
movement information can be used to ensure optimal policies and provide corresponding
QoS for each user within the group. To cluster the users into groups, this paper considers
SINR values as a signal that contains the user mobility information.

2.3. SINR Analysis

The analysis of the SINR values has been applied to address various issues, i.e.,
to improve bandwidth efficiency in [24], to reduce interference between femtocells and
macrocells in [25], to increase capacity and improve energy efficiency in [26], and to produce
the vertical handover in heterogeneous wireless networks in [27].

In [24], the authors propose an ML-based technique, i.e., an Artificial Neutral Network
(ANN) to predict SINR in order to reduce the use of radio resources in 5G networks. Radio
resource allocation is usually based on channel state estimation, i.e., SINR with the help of
Sounding Reference Signals (SRS). To minimize the radio resource usage and hence to im-
prove bandwidth efficiency, the Non-Linear Auto Regressive External/Exogenous (NARX)-
based ANN is proposed, whose main objective was to minimize the rate of sending SRS.

In [25], results in game theory and stochastic approximation are used to investigate
the problem of femto-to-mactocell cross-tier interference. As the main result, the authors
propose an algorithm which maximizes the instantaneous performance of the whole sys-
tem. The core of this algorithm is that all corresponding SINR observations of all active
communications are available in both macro- and femtocells. Based on these observations,
the femtocells learn the probability distributions of possible transmission configurations
and perform the actions such that a minimum time-average SINR can be guaranteed in the
macrocells, at the equilibrium.

The SINR analysis is extensively utilized in the development of new handover al-
gorithms. An adaptive algorithm for handover in 5G and LTE-Advanced networks is
presented in [28]. The algorithm relies on the SINR measurements to assess the channel
state information. The authors do not consider the changes of the channel parameters over
time; however, the adjustment of time-to-trigger is presented in algorithm.

A comprehensive survey of the handover management is presented in [29]. Improved
classical and novel methods with AI/ML-based solutions are reviewed. When comparing
input data for different methods, SINR is frequently utilized rather than Reference Signal
Received Power (RSRP) or Reference Signal Received Quality (RSRQ). Experimental meth-
ods propose to extract the additional parameters related to mobility pattern, including the
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velocity and moving direction of the users. However, it requires the additional hardware
implementation beyond the existing mobile technology.

In this paper, the SINR values computed at several BSs located in the immediate
vicinity of a given UE are considered as user information. In this case, when collecting such
data for several dozen users, the problem of analyzing the received signals arises. One
option for clustering is time series analysis [30,31]; however, to the best of our knowledge,
the representation of correlated data in the form of a tensor gives more insight into the
information contained in these data [32]. Thus, the acquired data will be represented as
a tensor, and tensor decomposition techniques will be employed as a preprocessing step
before clustering the users.

2.4. Tensor Decomposition in Wireless Communication

The use of tensor decomposition in wireless communications has its roots in [33]. The
authors employ the parallel factor (PARAFAC) model in the direct-sequence Code-Division
Multiple Access (DS-CDMA) systems to resolve a critical challenge: blind separation. To
overcome the multi-user separation-equalization-detection challenge, the blind PARAFAC
receiver is introduced, demonstrating a performance comparable to the non-blind receiver
with minimum mean-squared error (MMSE).

This concept is further developed in subsequent articles. For instance, in [34], a
PARAFAC-based approach is proposed, which leads to the solution of the simultaneous di-
agonalization problem. The authors of [35] propose an additional initialization step, which
is called as enhanced line search with complex step (ELSCS), to improve the convergence
of PARAFAC decomposition. This step is performed before Alternating Least Squares
(ALS) algorithm which is used to compute PARAFAC decomposition. In [36], a constrained
tensor model is introduced based on two constraint matrices defining the spatial spread-
ing of the data streams and the spatial reuse of the spreading codes in multiple-antenna
CDMA system.

Another field of research in wireless communication is channel estimation. To cope
with this problem, tensor decompositions are applied in [37–42]. In [37], a joint channel
estimation for a three-hop Multiple-Input Multiple-Output (MIMO) system with amplify-
and-forward relaying protocol is performed. This estimator is based on ALS estimation
by coupling PARAFAC and Tucker3 tensor models for the received signals to estimate the
channel matrices in an iterative manner.

The authors in [40] investigate the issue of joint downlink (DL) and uplink (UL)
channel estimation for millimeter wave (mmWave) MIMO systems using a tensor modeling
approach. Assuming a closed-loop and multifrequency-based channel training framework,
a two stage algorithm is proposed. In the first step, the joint estimation of the compressed
DL and UL channel matrices is obtained in an iterative way (ALS algorithm) or in a closed-
form solution. In the second step, different users’ channel parameters are estimated (AoD,
AoA, etc.) by solving independent compressed sensing problem.

In [42], time-varying and frequency-selective (TVFS) mmWave MIMO channels with
high-mobility transceivers are explored. The frequency-domain received signal is repre-
sented as a third-order canonical polyadic (CP) model. Due to the nature of the TVFS
channels, the factor matrices of the CP model contain the channel parameters, including
AoD, AoA, time delay, path gain, and Doppler shift.

3. Model and Method
3.1. The Basis of Tensor Algebra

We use the following notation in this paper. Scalars are denoted as lower-case italic
letters a. Vectors and matrices are denoted by lower-case bold-faced letters (a) and upper-
case bold-faced letters (A), respectively. Tensors are denoted as upper-case bold-faced
calligraphic letters A. Moreover, a(i) defines the element (i) of a vector a. The same applies
to a matrix A (i, j) and a tensor A (i, j, k).
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The tensor ID,R is D-dimensional super-diagonal tensor of size R × R × . . . × R.
The element of this tensor is equal to one if all D indices of this element are equal and
zero otherwise. The d-mode product between a D-way tensor of size Md along mode
d = 1, 2, . . . , D represented as A ∈ RM1×M2×···×MD and a matrix U ∈ RJ×Md is denoted
as A×d U. It is computed by multiplying all d-mode vectors of A with U, whereas the
d-mode vectors of A are obtained by varying the d-th index from 1 to MD and keeping
all other indices fixed. The d-mode unfolding of the tensor A is denoted as [A](d) ∈
RMd×Md+1·...·MD ·M1·...·Md−1 .

The canonical polyadic (CP) model of a D-way noiseless tensorX 0 ∈ RM1×M2×M3×···×MD

is represented as

X 0 = ΛD,R ×1 F1 ×2 F2 ×3 F3 × · · · ×D FD, (1)

where Fd ∈ RMd×R(d = 1, 2, 3, . . . D) are the factor matrices that are obtained after the
factorization or CP decomposition of the tensor X 0, R is the order of the CP model or
the rank of the tensor X 0, and ΛD,R is a super-diagonal core tensor with loading factors
λr(r = 1, 2, 3, . . . , R) on its super-diagonal that normalize the columns of the factor ma-
trices to length one to avoid the scaling ambiguity of the CP decomposition. The CP
decomposition of three-way tensor is illustrated in Figure 2.

Figure 2. Canonical polyadic decomposition of a three-way noiseless tensor X 0.

Thanks to the diagonality of the core tensor in the CP model (1), the factor matrices
Fd ∈ RMd×R(d = 1, 2, 3, . . . D) consist of R independent vectors that allow to separate and
physically interpret the extracted components. This feature of the CP model is widely used
in different areas like signal array processing and signal separation, as well as for MIMO
systems [43] and biomedical applications [44]. Moreover, the CP decomposition allows
to decrease the volume of the data that is a crucial point for our method of user mobility
classifying, since the using of raw multi-linear data for considered problem is not suitable.

In practice, the recorded data are corrupted by noise. The tensor that is constructed
from the noisy recorded data are defined as

X = X 0 +N , (2)

where N ∈ RM1×M2×M3×···×MD is the additive noise tensor. Therefore, (1) can be rewritten
in the following way:

X = ΛD,R ×1 F1 ×2 F2 ×3 F3 × · · · ×D FD +N . (3)

Obviously, the rank of the noisy tensor X is not equal to the rank R of the noiseless
tensor X 0. In general, it can be bigger. Therefore, the CP model of the tensor with
observations X includes the estimates F̂d ∈ RMd×R(d = 1, 2, 3, . . . D) of factor matrices
Fd ∈ RMd×R(d = 1, 2, 3, . . . D)

X ≈ ΛD,R ×1 F̂1 ×2 F̂2 ×3 F̂3 × · · · ×D F̂D = X̂ , (4)

where X̂ is a tensor that best approximates the noisy tensor X .
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The widely used algorithm for computing the CP decomposition is named Alternating
Least Square (ALS) [45]. ALS is based on the solving of the linear least square problem

min
X̂

∥∥∥X − X̂
∥∥∥2

F
(5)

where ‖·‖2
F denotes the Frobenius norm.

Fixing all but one factor matrices of the tensor X̂ and sequentially solving the least-
square problem (5) for each factor matrix, the best approximation of the tensor according
to the CP model (4) can be computed. One of the next convergence criteria can be used as a
stopping condition for solving the least-square problem: exceeding a specified number of
iterations, the objective value is at or closed to the specified one, there are no significant
changes in factor matrices or objective function.

As was mentioned before, the real data are corrupted by noise. The proper choice of the
model order or the rank of the tensor with observed multi-linear data affects the accuracy,
as well as the interpretability, of the results after the tensor decomposition. Moreover, the
overestimating of the model order gives more noisy results with redundancy. Meanwhile,
the CP decomposition with underestimated model order does not allow to extract full
information from the multi-linear data.

In practice, the rank or the CP model order can be estimated by the visual inspection
of the d-mode singular values profile of the tensor X . To this end, the Higher Order
Singular Value Decomposition (HOSVD) is used also known as Multi-Linear Singular
Value Decomposition (MLSVD) [46]. The HOSVD model of a tensor X is defined as

X = S ×1 U1 ×2 U2 ×3 U3 × · · · ×D UD, (6)

where S ∈ RM1×M2×M3×···×MD is the core tensor and Ur ∈ RMd×Md , (d = 1, 2, 3, . . . D) are
the unitary factor matrices. The d-mode singular values can be computed via the Singular
Value Decomposition (SVD) of the d-mode unfolding of the tensor X according to

[X ](d) = Ud · Σd · VH
d , (7)

where Ud ∈ CMd×Md , V d ∈ CM̃d×M̃d are unitary matrices and Σd ∈ CMd×M̃d is a diagonal
matrix that has the d-mode singular values σ

(d)
i on the main diagonal, M̃d = M

Md
, and

M = ∏D
d=1 Md.

3.2. The Model of the Multi-Linear Data

In this paper, we consider the case when the direct navigate methods are not applicable.
Therefore, the indirect methods and available data from the base stations should be used
for determining the user mobility. To this end, we propose to analyze the changing of the
SINR in time on the users side. The behavior of the SINR changing indirectly characterizes
the user mobility. Note that the changing of the SINR is a very noisy parameter. Therefore,
this fact should be taken into account when the method for processing this kind of data
are designed.

Mobile users are served by different base stations. Therefore, we propose to consider
the SINR changes of many users in time with respect to the base stations. Collecting these
data during the relatively long time and stacking these data into the multi-linear table, the
SINR changes can be natively represented as a three-way tensor. In summary, the three-
way tensor X , which contains information about the SINR fluctuations, has dimensions
cell ID × time × user ID and is expressed as a function fSINR of three variables:

X = fSINR(CellId, time, UserId) = Λ3,R ×1 F1 ×2 F2 ×3 F3, (8)

where F1 ∈ RCell Id×R, F1 ∈ Rtime×R, and F1 ∈ RUserId×R are the factor matrices that
include the information how the SINR is changed with respect to the base stations, time,
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and users, respectively. The three-way tensor Λ3,R absorbs the weights of each vector
from the factor matrices to avoid the scaling ambiguity of the CP decomposition. Figure 3
illustrates the CP decomposition of multi-linear observed data that is represented as a
three-way tensor.

Figure 3. The CP decomposition of the 3-way tensor with the observed data.

The resulting factor matrices have significantly less size and can be analyzed for
determining the user mobility. In real systems, the new obtained data can be represented
as new slices or matrices and is added to the tensor X . There is no reason to decompose
this tensor again and the new factor matrices can be computed by representing the new
data for each user as the linear combination of factor matrices and solving the following
optimization problem:

minimize
a

(S− Ŝ(a))

subject to Ŝ(a) =
R

∑
i=1

bi × āi · c̄i

(9)

where S is initial data, Ŝ(a) is approximate data which is represented as the linear combina-
tion of factor matrices āi · c̄i multiplied by the corresponded value b.

3.3. The Method

The proposed method includes the following steps. The received data from the base
stations that include information about the changing of the SINR with respect to the base
stations and time for each user are stacking into the three-way table or tensor.

In the next step, the model order of these multi-linear data are estimated. To this end,
the singular values for each mode are computed according to (7). The number of dominant
singular values determines the model order for the CP decomposition.

Next, the CP decomposition is performed according to (3). The resulting factor ma-
trices include the information about the changing of SINR with respect to time, CellID,
and UserID.

To separate users by their mobility, a variety of clustering algorithms, such as K-means,
Gaussian Mixture Model, Agglomerative Hierarchical Clustering algorithm, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN), etc., can be employed. In this
paper, the DBSCAN method is utilized for the automatic prediction of the number of
clusters and the separation of the users by their mobility.

4. Simulations

The data for simulations were obtained from open-source discrete-time event simu-
lator, namely Network Simulator 3 (NS-3). The scenario shown in Figure 4 describes the
urban area, roads and crosses. In real-world scenarios, mobile base stations are placed
near roads in areas with high traffic, such as highways or crossroads, to provide more
robust service and improve network performance. In the presented scenario, we have also
positioned base stations near roads to make the simulation more realistic. The distance
between base stations is approximately 100 m, which is typical of a small cell scenario. The
center frequency of the radio signal is set to 3.5 GHz, and the bandwidth is 20 MHz. The
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3rd Generation Partnership Project (3GPP) Urban micro cell model is chosen as the channel
model in NS-3.

User mobility is simulated as transport mobility, where users move along roads
according to predefined trajectories. In this case, three groups consisting of five users each
(red, orange, and green) are added to the scenario. Users in each group follow the same
simulated path. At intersections, users can change direction, and in some parts of the route,
users from different groups may move along the same section of the road simultaneously.
To make the scenario more realistic, the starting and ending points, as well as the turning
points at intersections, are different for each user. This ensures that each user has a unique
trajectory while following similar patterns. Additionally, each user has its own channel
model to ensure that each user experiences varying SINR values. The speed of each user is
in the range of 30 to 40 km per hour, varying depending on group and section of the route.
The second scenario has the same parameters as the first, but five randomly allocated static
users are added (black).

Figure 4. The scenario of simulation.

The obtained data from NS-3 contain the following parameters: timestep, time since
the beginning of simulation; SINR, Signal to Noise and Interference Ratio; CellID, ID of
measured cell; UserID, ID of measuring user. Periodicity of measurement is about 100 ms
and SINR is written in double float format. Both scenarios simulate user movement for
60 s.

The obtained NS-3 multi-linear data are stacked in to the tensor with dimensions
15 × 600 × 5 according to the model (8). In the first step of our proposed method, the
model order is estimated. To this end, the d-mode singular values are computed (7). In
Figure 5, the obtained d-mode singular values from the multi-linear data are depicted.
According to the obtained results, the estimated rank of the tensor is 4.

In the next step, the CP decomposition is performed according to (4) and (5). The
resulting factor matrices for the scenario with static users are depicted in Figure 6. The top
plots in Figure 6 illustrate how the SINR between each user and all base stations is changed.
The middle plot shows the evaluation of the SINR in time. The bottom plot represents the
SINR changing for each base station. Moreover, in Figure 7, the factor matrices after the CP
decomposition for the scenario without static users are depicted.
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Figure 5. The d-mode singular values computed according to the (7) of the 3-way tensor with the
observed data.

Figure 6. The factor matrices after the CP decomposition for the scenario without static users.
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In the third step, clustering is performed based on the DBSCAN algorithm to de-
termine the moving users and the patterns of their movement. To avoid introducing
bias due to the different scales of the factor matrices, the factor matrices are normalized.
Moreover, the outer product of the first and third factor matrices is used as input to the
clustering algorithm.

Thanks to the DBSCAN algorithm, the number of clusters is automatically estimated.
To this end, the parameters of the DBSCAN algorithm are tuned. The resulting parameters
are: epsilon, 0.3; minimum number of samples, 3.

In Figure 8, the results of clustering are presented. As the initial group affiliation is
known the accuracy of clustering could be determined. On the left side, results of DBSCAN
for the first scenario is presented. Here, three clusters and all users from the same group are
grouped to one cluster with no miss-clustered points. This means that five users belonged
to one group according to the scenario, and are recognized as one cluster.

Figure 7. The factor matrices after the CP decomposition for the scenario with static users.

On the right side, we can see the results for the second scenario. Here, all users from
groups are also recognized as belonging to one cluster, and all five static users do not
belong to any cluster and are recognized with DBSCAN as noise points. In this case, the
proposed method cannot separate them, due the user’s random allocation and lack of
similar patterns in SINR changing.

For both scenarios, the algorithm works well and the accuracy on the synthetic data
for determined scenario is 100%. For a future step, we are planning to complicate scenario
to research the limits of applicability of this solution.



Inventions 2024, 9, 1 13 of 15

Figure 8. The results of clustering.

5. Discussion

Analyzing the results, the following limitations of the proposed method can be identi-
fied. The proposed method in this paper is considered as a function of the RIC that serves
only one cluster or group of base stations. For considering the proposed method in terms
of serving a few clusters, further investigation should be performed.

The method may also struggle to differentiate between user groups with low mobility,
due to the lack of common patterns in SINR fluctuations. To address this, increasing the
data collection duration can provide more substantial information.

The next limitation is the computational complexity of the tensor decomposition,
which does not allow us to obtain the factor matrices in real time. Hence, the initial decom-
position is performed in non-real time, while the new data can analyzed as a minimization
problem provided in (9). Moreover, the replicated results can be detected by computing the
Euclidean distance between the clustered data points and can be dropped out.

6. Conclusions

In this paper, we introduce an approach to identify mobility patterns based on the
analyzing Signal-to-Noise and Interference Ratio (SINR) values. The raw data received
from the Radio Access Network (RAN) cannot be directly clustered due to its massive size,
multi-linearity, and high noise levels. However, these data can be effectively represented as
a tensor. The model order is estimated by analyzing the singular values profile, while the
CP decomposition is employed for feature extraction. The obtained factor matrices are then
clustered using the DBSCAN algorithm, which eliminates the need for predetermining the
number of clusters.

To demonstrate the effectiveness of the proposed method, simulations were conducted
using the Network Simulator 3 (NS-3). Two scenarios were simulated, and the resulting data
were analyzed using the proposed method. The simulation results indicate that our method
can accurately identify distinct mobility patterns among users. This approach can serve as
a foundation for an xApp that processes data within the RAN Intelligent Controller (RIC).

In the future, the proposed method can be integrated with machine learning-based
agents to enhance the overall performance of the mobile network. Additionally, the
proposed method can be implemented as part of the RIC functionality and validated
on a testbed that emulates real LTE and 5G NR heterogeneous networks.
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