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Abstract: Various models of membrane oscillations emerging in the theory of elasticity of mechanical
systems, biomechanics of the internal ear of vertebrata, and in the theory of electrical circuits are
discussed in the article. The considered oscillations have different natures, but their mathematical
models are described using similar initial boundary value problems for the second-order hyperbolic
equation with the nontrivial boundary condition. The differential equations in these problems are
the same. Thus, for example, the model of voltage distribution in the telegraph line emerges for the
one-dimensional equation of oscillations. The model of oscillations of a circular homogeneous solid
membrane, a membrane with a hole, and the model of gas oscillations in a sphere and spherical
region emerge for the two-dimensional and three-dimensional operators, but take into account the
radial symmetry of oscillations. The model problem on membrane oscillation can be considered as
the problem on ear drum membrane oscillations. The unified approach to reducing the corresponding
problems to the initial boundary value problem with zero boundary conditions is suggested. The
technique of formulating the solution in the form of a Fourier series using eigenfunctions of the
corresponding Sturm–Liouville problem is described.

Keywords: hyperbolic equation; modeling of oscillations with attenuation; boundary value problem;
exact solutions

1. Introduction

The paper considers oscillatory processes with the presence of attenuation of various
natures, the mathematical model of which is the initial boundary value problem for a linear
equation of hyperbolic type. Attention is paid to the problems of voltage distribution in
a telegraph line, the description of vibrations of a rectangular membrane, the description
of vibrations of a membrane rigidly fixed at the edges in the multidimensional case, the
description of radial gas vibrations in a spherically symmetric region, and the description
of vibrations of a circular membrane, which, with some assumptions, can be considered
as an approximation to the tympanic membrane of the ear of vertebrates. The obvious
observation is that the sources of these tasks are various technical and biological processes.

The problems are conceptually different from the point of view of the nature of the
processes under consideration. However, it is established that an important feature of these
problems is the possibility of reducing them in a universal way to the same initial boundary
value problem for a linear partial equation. Under certain assumptions, namely the fixed
geometry of the domain, the assumption of the symmetry of the oscillations allows us to
propose a unified approach and a method for constructing an accurate solution to emerging
problems in the form of functional series.

It is worth noting that the multidimensional problems considered in the paper are
successfully reduced to one-dimensional ones, that is, the dimension of the problem does
not affect the process of constructing a solution, but it affects the type of eigenfunctions of
the corresponding Sturm–Liouville problem. A feature in the formulation of the boundary
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condition is the presence of an external non-stationary harmonic regime, namely, an external
influence exerted on the oscillating system. This impact is not distributed within the area
in which the solution of the corresponding problem is being sought, but is concentrated on
the boundary of this area, that is, if the boundary conditions are not trivial. The method
of special variable replacement was used in the work, which made it possible to reset
the boundary conditions, and thus made it possible to apply the method of separation of
Fourier variables.

For example, in works [1–5], mechanical models of vibrations of membranes and
pendulum and elastic systems with friction are considered, and methods for analyzing the
vibrational processes of these systems are proposed.

Let us point out that many authors pay attention to such problems. Thus, the problem
of oscillation of a circular film membrane with electric current conductors distributed on
it is discussed in [1]. The method of formulating the exact law of membrane oscillations
was obtained with the help of the assumption of the solution linear dependence on radial
variable and the Fourier method of separation of variables. The problem of controlling the
string oscillation process without friction is considered in [2]. The mathematical models
of dynamic processes in heterogeneous structures based on the hypotheses of complex
rigidity and internal friction are considered in [3]. The exact solutions obtained in this
work emerged when investigating ordinary differential equations with constant coefficients
being the mathematical models of oscillations with friction. The method of obtaining
the exact solution for the nonlinear model of oscillations with friction is proposed in [4].
The approximate-analytical method to calculate small free and forced oscillations of one-
dimensional systems with dry friction is described in [5].

A mathematical model of the human auditory cochlea is given in [6]. This work shows
that mathematical analysis of oscillations can be applied in the study of a biomechanical
system. In [7], membrane oscillations are investigated in the presence of an external
distributed disturbance. In [8], numerical methods are used to study vibrations and
determine the qualitative effect of the appearance of an echo. It is worth noting that
analytical methods are used in this work to accurately describe oscillatory processes, and
the validity of their application can be found in [9,10]. Further analysis and discussion of
the works will be carried out as necessary in the text.

In this work, a unified approach will be proposed, based on the method of separation
of variables, which will allow for the investigation of model boundary value problems of
hyperbolic type with a nonstationary boundary condition to present an exact solution in
the form of a functional Fourier series for the corresponding system of basis functions.

A one-dimensional problem of voltage distribution in a telegraph line, a three-dimensional
problem of radial oscillations of a gas in a spherical region, and a model problem of oscilla-
tions of a mammal’s eardrum will be considered.

2. Materials and Methods

Let us consider the differential equation in partial derivatives:

α2(t)utt + 2β(t)ut + γ2(t)u = Lu, (1)

u|x=0 = v(t), u|x=l = 0, (2)

u|t=0 = ut|t=0 = 0, (3)

where α(t), β(t), γ(t) are set functions of time, the physical sense of which depends on
the consideration of specific physical process, and u = u(x, t)—required function. The
differential expression defined by the differential operator L using spatial variables, which
has the second order or higher, is in the first part of the Equation (1). In this article we will
consider the case of one spatial variable and multidimensional problems, which can be
reduced to a one-dimensional one, in some way or another.
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Then, we will introduce the differential operator by the time variable:

Dt(. . .) := α2(t)
∂2

∂t2 (. . .) + 2β(t)
∂

∂t
(. . .) + γ2(t)(. . .), (4)

at the same time, the Equation (1) will be as follows:

Dtu = Lu, (5)

where the near-boundary conditions (2) and initial conditions (3) remain unchanged.
Let us also point out that the Equation (5) can be considered not only as a model of

oscillatory processes in mechanics but also in biology. It was found that the oscillatory
process of an internal ear is described by a similar equation (see, for example, [6]). It
is known that radial-symmetric oscillations are modeled by one-dimensional equations
of hyperbolic type. Thus, the method of formulating the solution of the heterogeneous
equation of (1) type at the harmonic type of heterogeneous component is proposed in [7].
“A very weak” solution is defined and the acoustic problem of shallow water, for which the
qualitative effect of echo emergence is found using numerical methods, is considered in [8]
for the equation similar to (1).

It is possible to substitute the required function so that the boundary conditions (2)
will become trivial. For this we will introduce a new function w(x, t):

u = w + v(t)
(

1− x
l

)
, (6)

for which the Equation (5) and conditions (2)–(3) will be as follows:

Dtw +
(

1− x
l

)
Dtv(t) = Lw, (7)

w|x=0 = w|x=l = 0, (8)

w|t=0 = −v(0)
(

1− x
l

)
, wt|t=0 = −v′(0)

(
1− x

l

)
. (9)

Then, we will substitute function w for the summand with the first derivative by time
variable to vanish in the Equation (7). Let

w = A(t)W, v(t) = A(t)s(t), (10)

where function A(t) is defined from Cauchy problem for an ordinary differential equation:

α2(t)A′(t) + β(t)A(t) = 0, A(0) = 1, (11)

that is

A(t) = exp

− t∫
0

β(τ)

α2(τ)
dτ

.

Then, according to (10) we have:

w = exp

− t∫
0

β(τ)

α2(τ)
dτ

W, s(t) = exp

 t∫
0

β(τ)

α2(τ)
dτ

v.

With such substitution we acquire the equation for the new function W :

α2(t)Wtt + Q(t)W +
(

1− x
l

)(
α2(t)s′′ (t) + Q(t)s(t)

)
= LW, (12)
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where Q(t) is defined by the Formula (13):

Q(t) = −
β′(t)α2(t)− β(t)

(
α2(t)

)′
α2(t)

− β2(t)
α2(t)

+ γ2(t). (13)

It should be noted that the boundary conditions (8) for the new function W remain
unchanged:

W|x=0 = W|x=l = 0, (14)

and the initial conditions will be as follows:

W|t=0 = −v(0)
(

1− x
l

)
, Wt|t=0 = −

(
v′(0) +

β(0)
α2(0)

v(0)
)(

1− x
l

)
. (15)

Let us point out that the solution of the Equation (1) is expressed through the solution
of the Equation (12) by the formula:

u(x, t) = v(t)
(

1− x
l

)
+ exp

− t∫
0

β(τ)

α2(τ)
dτ

W(x, t). (16)

Let us find the solution of the problem (12), (14), (15) with the help of the variables
separation method. Let us consider the Equation (12), which does not contain a heteroge-
neous summand:

α2(t)Wtt + Q(t)W = LW, (17)

where we find W = T(t)X(x), then, after the insertion of this expression into the
Equation (17), we have:

α2(t)
T
′′

T
+ Q(t) =

LX
X

.

And the Sturm–Liouville problem emerges for the function X = X(x):

LX = λX, X(0) = X(L) = 0. (18)

As it is known, with the corresponding conditions for differential operator L(. . .), the
problem (18) has the computation set of eigen values λn and eigenfunctions Xn(x). After
that, we expand the function of one real variable

(
1− x

l
)

in a Fourier series by the system
of eigenfunctions Xn of the problem (18). Let(

1− x
l

)
= ∑

n
bnXn, (19)

where bn—Fourier coefficients found by the Formula (20):

bn =

(
1− x

l , Xn
)

‖Xn‖2 . (20)

Taking into account (19) and (20), the problem (12), (14), (15) will be as follows:

∑
n

(
α2(t)T′′n + Q(t)Tn + bn

(
α2(t)s′′(t) + Q(t)s(t)

))
Xn = ∑

n
λnTnXn,

W|t=0 = −v(0)∑
n

bnXn, Wt|t=0 = −
(

v′(0) +
β(0)
α2(0)

v(0)
)

∑
n

bnXn.
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Due to the linear dependence of own functions Xn, we use the family of Cauchy
problems to correct Tn(t) :

α2(t)T′′n + (Q(t)− λn)Tn = −bn

(
α2(t)s′′ (t) + Q(t)s(t)

)
, (21)

Tn|t=0 = −v(0)bn, (Tn)t|t=0 = −
(

v′(0) +
β(0)
α2(0)

v(0)
)

bn. (22)

After solving them and with the help of the Formula (16) we obtain the exact solution
of the initial problem (1)-(2)-(3) as a Fourier series:

u(x, t) = v(t)
(

1− x
l

)
+ exp

− t∫
0

β(τ)

α2(τ)
dτ

∑
n

Tn(t)Xn(x). (23)

Let us briefly summarize the equations under consideration:

1. α2(t)utt + 2β(t)ut + γ2(t)u = uxx—equations for voltage fluctuations in a limited
telegraph line.

2. α2(t)utt + 2β(t)ut +γ2(t)u = uxx + uyy + uzz, (x, y, z) : x2 + y2 + z2 ≤ R2—equation
of damped gas oscillations in a spherical region.

3. α2(t)utt + 2β(t)ut + γ2(t)u = uxx + uyy, (x, y) : x2 + y2 ≤ R2—vibration equation of
a circular membrane.

The meaning of the parameters in the models under consideration in the general
case is as follows: α2(t)—density, β(t)—coefficient that determines the resistance force
proportional to speed, and γ2(t)¯viscosity coefficient.

3. Results

Following [9,10], let us consider the telegraph line with length l. With the distributed
parameters C, L, R, G, where C—capacity per length unit, L—inductance per length unit,
R—resistance per length unit, and G—conductivity per length unit (see [11,12]). Let the
differential operator L = ∂2

∂x2 , α2 =
√

CL, β = CR+LG
2 , γ2 = RG. We accept that the

right end of the line is grounded and the left one is connected to the power source, which
supplies voltage according to the harmonic law:

v(t) = Vsin ωt,

where V—voltage amplitude and ω—frequency. We also assume that there is neither
voltage nor current at the initial time moment. Let u = u(x, t)—voltage distribution in
such telegraph line. It was established that this function is the solution of the homogeneous
problem (1)-(2)-(3) (see, for example [13–15]).

With the entered parameters, it is simple to have that

Q(t) ≡ γ2 − β2

α2 , λn = −
(πn

l

)2
, Xn(x) = sin

πnx
l

, bn =
2

πn
,

at n ∈ N. The initial conditions (22) will be as follows:

Tn(0) = 0, T′n(0) = −2
ωV
πn

. (24)

In the Equation (21), the expression
(

γ2 − β2

α2 +
(

πn
l
)2
)

can be both positive and
negative, but for all possible natural n it will take the negative value only for a finite set of
n values.
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Let N1 :=
{

n|n ∈ N, γ2 − β2

α2 +
(

πn
l
)2

< 0
}

. Then, let −σ2
n = γ2 − β2

α2 +
(

πn
l
)2. Then,

with ∀n ∈ N1, we have

Tn = c1ne
σnt
α + c2ne−

σnt
α +

α2ω2 − γ2

πn(α2ω2 + σ2
n)

V sinωt, (25)

and from the initial conditions we find that

c1n = − α
2σn

(
ωV(α2ω2−γ2)
πn(α2ω2+σ2

n)
+ 2ωV

πn

)
,

c2n = α
2σn

(
ωV(α2ω2−γ2)
πn(α2ω2+σ2

n)
+ 2ωV

πn

)
and

W = ∑
n∈N1

(
α

2σn

(
ωV(α2ω2−γ2)
πn(α2ω2+σ2

n)
+ 2ωV

πn

)(
−e

σnt
α + e−

σnt
α

)
+ α2ω2−γ2

πn(α2ω2+σ2
n)

V sinωt
)

sin πnx
l .

After that, relying on the Formulas (4) and (12), we have that

u(x, t) =
(
1− x

l
)
Vsin ωt

+ ∑
n∈N1

(
αωV
2σn

(
α2ω2−γ2

πn(α2ω2+σ2
n)

+ 2
πn

)(
−e(

σn
α −

β

α2 )t + e−(
σnt
α +

β

α2 )t
)

+ α2ω2−γ2

πn(α2ω2+σ2
n)

V sinωt
)

sin πnx
l .

(26)

Let now N2 :=
{

n|n ∈ N, γ2 − β2

α2 +
(

πn
l
)2

> 0
}

. Let us introduce the designation

ζ2
n = γ2 − β2

α2 +
(

πn
l
)2. Then, with ∀n ∈ N2 and ω2 6= ζ2

n, we have

Tn = c1nsin
ζn

α
t + c2ncos

ζn

α
t +

α2ω2 − γ2

πn(α2ω2 − ζ2
n)

V sinωt, (27)

and from the initial conditions we find that

c1n = −αωV
2ζn

(
α2ω2 − γ2

πn(α2ω2 − ζ2
n)

+
2

πn

)
, c2n = 0

and

W = ∑
n∈N2

(
−αωV

2ζn

(
α2ω2 − γ2

πn(α2ω2 − ζ2
n)

+
2

πn

)
sin

ζn

α
t +

α2ω2 − γ2

πn(α2ω2 − ζ2
n)

V sinωt
)

sin
πnx

l
.

Then, relying on the Formula (23), we have that

u(x, t) =
(
1− x

l
)
Vsin ωt

+ ∑
n∈N2

(
− αωV

2ζn

(
α2ω2−γ2

πn(α2ω2+ζ2
n)

+ 2
πn

)
sin ζn

α t

+ α2ω2−γ2

πn(α2ω2+ζ2
n)

V sinωt
)

e−
β

α2 tsin πnx
l .

(28)

For the resonance case α2ω2 = ζ2
n, the solution defined by the Formula (27) will be

replaced by
Tn = c1nsin ωt + c2ncos ωt + t(A sinωt + Bcos ωt). (29)

The constants from (29) can be also defined from the initial conditions and the formula for
the exact solution in the form of a Fourier series, similar to (28), can be obtained.
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Example 1. Model parameters α ≡ 1, β = 4, γ = 2 (Figure 1):

utt + 8ut + 4u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0
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utt + 32ut + 4u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0

Example 3. Model parameters α ≡ 1, β = 0.8, γ = 0.2 (Figure 3):

utt + 0.8ut + 0.2u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0
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Example 4. Model parameters α ≡ 1, β = 0.8, γ = 2 (Figure 4):

utt + 0.8ut + 2u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0

Example 5. Model parameters α ≡ 1, β = 0, γ = 4 (Figure 5):

utt + 4u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0
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u|t=0 = ut|t=0 = 0
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Example 7. Model parameters α ≡ 1, β = 0.2, γ = 0.2 (Figure 7):

utt + 0.2ut + 0.2u = 25uxx

u|x=0 = 2sin 32πt, u|x=1 = 0

u|t=0 = ut|t=0 = 0
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We should point out that a similar approach can be used for a two-dimensional case,
when the region in which the oscillations are considered is square. The numerical-analytical
solution of the problem of rectangular membrane oscillation was carried out in [16]. The
oscillatory process was modeled; at the same time, it was demonstrated that the solution of
the corresponding boundary value problem was defined by the double Fourier series:

u(x, y, t) =
∞

∑
k, j=1

Ujk(t)sin
πkx
lx

sin
π jy
ly

,

where lx, ly—parameters of the rectangular region (length and width, respectively). At
the same time, for the general multidimensional case and parallelepiped region in Rn with
parameters l1, l2, . . . , ln, with differential operator L(. . .) = (. . .)x1x1

+ (. . .)x2x2
+ · · · +

(. . .)xnxn
, and conditions of rigid fixation at the boundary, the solution will be as follows:

u(x1, x2, . . . , xn, t) =
∞

∑
j1, j2, ..., jn=1

Uj1, j2, ..., jn(t)
n

∏
k=1

sin
π jkxk

lk
.

Eigen values for the considered problem are defined by the formula:

λj1, j2, ..., jn = −
n

∑
k=1

π2 j2k
l2
k

.

3.1. Spherically Symmetric Cases in Three-Dimensional Space

Let us point out that the solution of the problem of small radial oscillations of gas
with attenuation [17] with the availability of nonstationary disturbance at the bound-
ary can be reduced to the considered problem (1)–(3). Let u = u(x, y, z, t), L = ∆ =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and the region in which the oscillations occur be radially symmetrical.
Thus, for example, it is possible to take the sphere with radius R or spherical layer
Ω =

{
(x, y, z)

∣∣(x, y, z) ∈ R3, R2
0 < x2 + y2 + z2 < R2

1
}

. It should be pointed out that the
solution u(x, y, z, t) will radially depend on spatial variables, i.e., the required function
will actually depend on the distance to the origin of coordinates, namely, on the variable
r =

√
x2 + y2 + z2. Based on [18], we will write over the differential operator L in radial

coordinates:
ux = urrx = ur

x
r

,

uxx =
(

ur
x
r

)
x
= urx

x
r
+ ur

( x
r

)
x
= urr

x2

r2 + ur
r− x2

r
r2 = urr

x2

r2 + ur

(
1
r
− x2

r3

)
.

Due to the symmetry, we similarly obtain:

uyy = urr
y2

r2 + ur

(
1
r
− y2

r3

)
, uzz = urr

z2

r2 + ur

(
1
r
− z2

r3

)
.

Then, Lu = uxx + uyy + uzz = urr
x2+y2+z2

r2 + ur

(
3
r −

x2+y2+z2

r3

)
= urr +

2ur
r . Now, the

operator L is finally defined by the Formula (30):

L :=
∂2

∂r2 +
2
r

∂

∂r
. (30)

Let us formally set up the problem for a spherical region. It is necessary to define the
solution of the equation

Dtu =

(
∂2

∂r2 +
2
r

∂

∂r

)
u, (31)
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which satisfies the boundary conditions (32):

u|r=0 = 0, u|r=R0
= v(t), (32)

and initial conditions (33):
u|t=0 = ut|t=0 = 0. (33)

Let us introduce the new function Z = Z(r, t) by the Formula (34):

Z = ru, (34)

which we use to obtain the equation for Z with the help of (31). For this, it should be noted
that u = Z

r and Dtu = 1
r DtZ. Now, Lu = L

(
Z
r

)
=
(

∂2

∂r2 +
2
r

∂
∂r

)
Z
r . Then, we calculate the

derivatives in more detail:

∂

∂r
Z
r
=

Zrr− Z
r2 =

Zr

r
− Z

r2 ,

∂2

∂r2
Z
r
=

∂

∂r

(
∂

∂r
Z
r

)
=

∂

∂r

(
Zr

r
− Z

r2

)
=

Zrrr− Zr

r2 − Zrr2 − 2rZ
r4 =

Zrr

r
− 2

Zr

r2 + 2
Z
r3 .

Now, we obtain the recalculated expression for operator L:

L
(

Z
r

)
=

Zrr

r
− 2

Zr

r2 + 2
Z
r3 +

2
r

(
Zr

r
− Z

r2

)
=

Zrr

r
.

We compile everything together and the Equation (31) is as follows:

DtZ = Zrr. (35)

The boundary conditions (32) allow the identification of the boundary conditions for
function Z :

Z|r=0 = 0, Z|r=R0
= R0v(t), (36)

and the initial conditions remain trivial:

Z|t=0 = Zt|t=0 = 0. (37)

The problem (35)–(37) coincides with the problem (1)–(3) practically completely, but it
differs in the boundary condition. However, in this case, the replacement of the required
function by the Formula (38):

Z = w + rv(t) (38)

allows resetting of the boundary conditions to zero and, having repeated the solution of
the problem (7)–(9), to obtain the precise expression for the function Z(r, t), and then to
write out the solution of the initial problem (31)–(33).

Only the boundary conditions will change for the spherical layer. Let the oscillation
be absent on the external surface of the spherical layer and some mode, which depends
only on the time variable, is set on the internal surface. In such case, we have the boundary
conditions (39):

u|r=R0
= v(t), u|r=R1

= 0. (39)

In this case, the replacement of (34) remains in force, the Equation (35) does not change,
and the boundary conditions (36) are as follows (40):

Z|r=R0
= R0v(t), Z|r=R1

= 0, (40)
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and the initial conditions (37) remain unchanged. To reset the boundary conditions to zero,
let us introduce the substitution (41):

Z = w +

(
r− R1

R0 − R1

)
R0v(t), (41)

that provides again the reduction to the previously solved problem (1)–(3).

3.2. Oscillations of Circular Membranes

Let us further consider the oscillations of a circular membrane. This model emerges
when examining the oscillations of a human cochlea, as well as in technical acoustics [19].
The numerical experiment for modeling the oscillations of a circular membrane was con-
ducted in [20]. A standard procedure of discretization of partial derivatives was performed
in this work and the approximate solution was searched for using the numerical methods
of algebra; however, the analytical investigation was not carried out for the considered
problems. Surprisingly, the mathematical model of mammals’ ear drum membrane [21] is
the initial boundary value problem for the two-dimensional equation of oscillations [22].
The full-scale experiments connected with the investigation of drum membrane can be
conducted, with certain accuracy, with the help of the formulas obtained in this work. The
general provisions connected with the middle ear and drum membrane mechanics are
described in the overview work [23], where it is demonstrated that the drum membrane
can be interpreted as a mechanical membrane. In [24], the authors propose the system of
two ordinary differential equations as a model of drum membrane oscillations, and the
solution of this system is defined by an integral operator. The drum membrane model
was examined and the probabilistic estimate of breakout risk as an explosion result was
calculated in [25]. As before, the model of drum membrane oscillations set up using het-
erogeneous differential equations of the second order was considered. The transition to
the model containing the equation in partial derivatives was performed in [26]. Here, the
conclusion of the equation of drum membrane oscillations is made, the corresponding
initially boundary value problem is set, and the analytical calculations with the application
of special functions, namely Bessel functions, are given. The model with the equation in
partial derivatives of hyperbolic type but with variable coefficients already is used in [27].
The proposed method allowed for the obtaining of numerical data compliant with the
actual data, the source of which is the drum membrane physiology. The drum membrane
dynamics with the fixed chain of ear bones is described with the help of the similar model
in [28]. The articles [29–32] present the numerical investigation of the drum membrane
oscillations. The numerical finite-element methods in modeling are given in [33,34]. The
perspectives and possibilities of using model results are discussed, for example, in [35,36].

Let us dwell in more detail on some special situations that arise when considering spe-
cific values of the parameters of the model problem under consideration (1)-(2)-(3). In [22],
vibrations of a viscoelastic annular plate are considered, which leads to the appearance
of a fourth-order hyperbolic type equation. To solve this problem, the same method of
expansion in terms of eigenfunctions is used. In the future, as a development of this work,
a study of the influence of the term with the fourth order derivative will be carried out.

In article [24], the classical equation of forced harmonic vibrations without friction
is considered as a simplified vibration model. So, if in our case for Equation (1) we take
Lu = Ff ull and assume that the solution u depends only on time, then for α2(t) = m,
β(t) = 0, γ2(t) = k, we exactly obtain Equation (8) from this work. Moreover, in the
additional materials to this article, the Navier–Cauchy equations are explicitly obtained,
which can be derived from Equation (1).

In [25], the equation of forced oscillations with friction is considered, in which the

explicit form of the external influence is specified, namely: Ff ull = APm

(
1− t

t0

)
e−

bt
t0 . Note

that in this work the parameters in Equation (1) are defined as follows: α2(t) = m, β(t) = c
2 ,

γ2(t) = k, and a solution that depends only on time is considered.
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Based on [26], we can put α2(t) = ρ
T , β(t) = γ2(t) = 0, L = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 . These
parameters correspond to the asymmetric vibrations of a round plate. Note that in the case
of radial symmetric vibrations, the form of the basis functions will coincide with those
obtained in this work.

In [27], the acoustics of the ear canal and eardrum are considered. The model
of the processes under study is Equation (1) with α2(t) = A(x), β(t) = γ2(t) = 0,
L = c0∂

∂x

(
A(x) c0∂

∂x

)
, with an additional inhomogeneous term of a special form.

In [28], a mathematical model is considered in which for Equation (1), α2(t) = 1,
β(t) = γ2(t) = 0, L = c2

(
∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2

)
with nontrivial boundary conditions. The

solution to the corresponding problem is obtained in the form of a Fourier functional series.
As it is known, in this case, the equation solution depends on two spatial variables,

i.e., u = u(x, y, t), we will investigate the radially symmetrical oscillations of the circular
membrane of radius R0. The assumption that the function u = u(r, t), where r =

√
x2 + y2,

will be used. Operator L is recalculated in exactly the same way as before. And now we
have that the differential operator L is defined by the Formula (42):

L :=
∂2

∂r2 +
1
r

∂

∂r
, (42)

and boundary conditions (2) are as follows:

u|r=R0
= v(t), |u||r≤R0

< ∞. (43)

The initial conditions (3) remain the same. The boundary conditions (43) are zeroed
by the standard replacement of the variable that was previously used in this work. It is
known that the operator’s eigenfunctions (42) are zero-order Bessel functions of the first
kind [17,18]:

Xn = J0

(
κnr
R0

)
, (44)

where κn—equation root
J0(κn) = 0. (45)

A Fourier series, which gives the solution of the corresponding boundary value
problem, is defined by the formulas similar to (26) and (28). The difference is that Bessel
functions will be the basic functions and sets N1 and N2 will be defined by the roots of the
Equation (45). The solution kind is demonstrated by the formula (46):

u = rv(t) + ∑
n∈M1

T1n(t)e
− β

α2 t J0

(
κnr
R0

)
+ ∑

n∈M2

T2n(t)e
− β

α2 t J0

(
κnr
R0

)
, (46)

where M1 :=
{

n|n ∈ N, γ2 − β2

α2 +
(

κn
R0

)2
< 0

}
, M2 :=

{
n|n ∈ N, γ2 − β2

α2 +
(

κn
R0

)2
> 0

}
,

T1n(t)—the function, which does not contain periodic summands relative to t, and T2n(t)—
the function, which contains periodic summands relative to t. It should be pointed out that
set M1 is finite or empty, set M2 is countable.

Let us now consider the spherical membrane oscillations. In this case, R1—membrane
radius and R0—radius of the hole in the membrane. Let us consider that the membrane is
fixed by its edge, and some mode, which depends only on the time variable, is set on the
internal boundary, i.e., the boundary conditions are fulfilled

u|r=R0
= v(t), u|r=R1

= 0. (47)
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It should be pointed out that, in this case, the substitution of the variable (6) is not
good and the following formula should be used:

u = w + v(t)
(

r− R1

R0 − R1

)
. (48)

The following boundary conditions will be fulfilled for the function w = w(r, t):

w|r=R0
= w|r=R1

= 0, (49)

as well as the initial conditions (50):

w|t=0 = −v(0)
(

r− R1

R0 − R1

)
, wt|t=0 = −v′(0)

(
r− R1

R0 − R1

)
. (50)

It should be noted that when substituting (33), the heterogeneous summand will
change in the Equation (7). For the considered case we have:

Dtw +

(
r− R1

R0 − R1

)
Dtv(t)−

1
R0 − R1

v(t) = Lw. (51)

For this case, zero-order Bessel functions of the first and second kind are the eigenfunc-
tions of operator L. At the same time, the eigenfunctions are defined by the Formula (52)
for boundary conditions (49):

Xn = N0(κnR0)J0(κnr)− J0(κnR0)N0(κnr), (52)

where κn—roots of the characteristic equation:

J0(κR0)N0(κR1)− J0(κR1)N0(κR0) = 0. (53)

The desired solution of the problem on the circular membrane oscillation is defined by
a Fourier series using the system of eigenfunctions (52). The Fourier series kind is defined
by the formula similar to (46).

4. Conclusions

The article considers the mathematical model of oscillations with friction and set mode
at the boundary, which depends only on time. The initial boundary value problem for
the second-order hyperbolic equation with the nontrivial boundary condition describes
the law of oscillations. The second-order differential operator considered in this work is
either originally one-dimensional by time variables or, relying on the oscillatory process
symmetry, can be reduced to one-dimensional. With the help of successful substitution and
the method of separation of variables, we managed to reduce this problem solution to the
known problem of one-dimensional bounded string oscillation and suggested the method
of solution formulation as a Fourier series. At the same time, the obtained Fourier series,
depending on the type of differential operator by time variables, set the voltage distribution
for the telegraph line, law of gas oscillations in a sphere or spherical region, and the law
of oscillation of a circular membrane without and with a hole. The work results can be
applied in practical calculations of telegraph lines, modeling of membrane oscillations in
acoustics, biology, and medicine.
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