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Abstract: In this paper, the Ant-based Radial Basis Function Network (ARBFN) is proposed to
determine the optimal daily dispatch of ice-storage air-conditioning systems. ARBFN is a novel
algorithm that is integrated into the Ant Colony Optimization and Radial Basis Function Network.
ARBFN is used to construct the function of the cost and operation for each chiller and ice-storage
tank and is used to simulate the polynomial function of the cooling load and the cost of power
consumption. The best learning rate in the training process is adjusted in ARBFN to improve the
accuracy of constructing models for chillers and ice-storage tanks. The electricity savings are thus
4.130% on a summer day and 7.381% on a non-summer day. The results have shown that ARBFN can
more accurately calculate the actual power consumption and cooling capability of each chiller and
ice-storage tank. Lastly, ACO is used to calculate the daily dispatch of the ice-storage air-conditioning
system. The results demonstrated the optimization of energy savings and efficiency for the operation
of the ice-storage air-conditioning system.

Keywords: ice-storage air-conditioning system; Radial Basis Function network; Ant Colony
Optimization; energy saving

1. Introduction

The growth in electricity demand in recent years has become substantial and the
summer peak load is rising year by year. Taiwan is an island and must generate 100% of
its own electricity due to the fact that its power system is not connected to other power
grids. Stable energy and a stable power supply are very important for Taiwan. The demand
for electricity is continuously growing at an average of 3.2% per year and the capacity
of air-conditioning systems occupies more than 30% of the overall energy consumption
and up to 40% during peak periods [1]. Therefore, we have an urgent need to seek and
develop alternative sources of energy and carry out comprehensive reviews of the efficiency
of using these energy sources. Currently, public sites both in Taiwan and abroad have
tended to grow larger in scale, and public buildings such as large hospitals, office buildings,
and shopping malls must use air-conditioning systems. In many case studies, the cooling
capacity is above 1000–10,000 RT, and the load is about 40–50% of the total power load.
Ice-storage air-conditioning systems, which integrate chillers with an ice-storage tank, have
been effectively applied to the management of the system cooling loads [2]. They shift the
peak load of electricity consumption to off-peak hours in order to reduce the problem of
overloads during peak hours, improve the efficiency of off-peak electricity use, and reduce
peak electricity use. Therefore, power management in ice-storage air-conditioning systems
is very important for energy saving [3].

In ice-storage air-conditioning systems, chillers account for the biggest share of the
air-conditioning system power consumption, roughly 60% [4]. The electrical energy con-
sumption of chiller plants markedly increases if the chillers are improperly managed. The
optimization approach for multi-chiller systems has thus attracted significant attention. A
benefit of the optimization approach is that it often leads to substantial savings in energy
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consumption. Studies have been carried out on the effectiveness of optimal chiller loading
(OCL) problems in the past [5–8]. Recently, some artificial intelligence techniques have been
presented to solve the OCL problem and have shown their effectiveness [9,10]. Simulated
annealing (SA) based on the kW/PLR curves includes non-convex functions to solve the
OCL problem [11]. Additionally, a differential evolution algorithm (EP) was proposed to
solve the OCL problem [12] and a two-stage differential evolution was used to solve the
optimal chiller loading for energy saving [13]. Furthermore, a particle swarm optimization
(PSO) algorithm was presented to solve the OCL problem and has shown its effective-
ness [14,15]. The authors of [16] also proposed the Barnacles Mating Optimizer algorithm
to optimize the chiller loading for energy conservation and reduction. Results indicated
that an optimal dispatch of the chillers can be found so that the operating cost of the whole
scheduling period can be minimized while satisfying numerous operating constraints. The
problem becomes a difficult decision-making process because of the complex constraints so
efficient tools are needed to determine the best dispatching system.

Ant colony optimization (ACO) is the activity characteristic of biotic populations [17,18].
The advantages of the ACO algorithm are that it learns and exchanges information to
search for the shortest route between the colony and food sources. In the ACO method,
individual solutions can converge to the optimal solution through a small number of
evolution iterations. In this paper, the ant colony optimization algorithm is integrated with
the radial basis function network to create the ant-based radial basis function network
(ARBFN) for finding the optimal dispatch of ice-storage air-conditioning systems. The
RBFN has many of the advantages of neural intelligence in searching, with an easy and
fast convergence in computation, but it has poor stability in a higher-dimensional search.
Because the ACO has the capability to optimize learning parameters, the best learning rate
of the ARBFN is adjusted to improve the accuracy of constructing models. The ARBFN is
then used to construct the function of the cost and operation of each chiller and ice-storage
tank. The results showed that ARBFN can more accurately calculate the actual power
consumption and cooling capability of each chiller and ice-storage tank. In addition, the
ACO was used to calculate the daily dispatch of the ice-storage air-conditioning system and
optimize the energy saving and efficiency of the operation of the ice-storage air-conditioning
system. The simulation results from this study provided a novel tool to solve the problems
of the economic dispatch of ice storage air-conditioning systems and can provide more
efficient energy use to dispatch chillers for saving energy.

2. Problem Description

The ice-storage air-conditioning system operates ice-storage in the off-peak hours
of electricity use. During peak electricity use, the ice is melted into water to release cold
energy in order to meet the required cooling load. The ice-storage air-conditioning system
fully utilizes the characteristics of chillers and ice-storage tanks in order to provide better
operations and electricity planning. In a conventional ice-storage air-conditioning system,
the energy-saving planning of the chiller groups and the ice-storage tank is conducted
mainly by letting the chiller groups be responsible for supplying the whole day’s cooling
load for the target space. The mathematical formulas of the chillers and ice-storage tank
are introduced as follows:

2.1. The Cooling Load of the Chiller

The cooling load of the chillers in the air-conditioning system usually considers the
measured return and supply water temperature of the chiller units and the cooling water
flow to calculate the cooling load of the chiller using (1) to (3):

∆Tchw,i = Tchwrt,i − Tchwst,i (1)

∆Tchw,imin ≤ ∆Tchw,i ≤ ∆Tchw,imax (2)
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Qchiller,i =
(

LPMchiller,i × (∆Tchw,i)× ρw × Cpw
)
× 60 (3)

2.2. Ice-Storage Cooling System

The operation modes of the ice-storage cooling system are divided into two kinds:
“charge process” and “discharge process”. The ice-storage operation during off-peak
periods freezes water into ice in order to store the cooling capability, and the cooling load
capability of ice melting is calculated with water temperature differences and the water
flow valve. Thus, the cooling load of the ice-storage cooling system is calculated by (4)
to (7):

∆Tisw = Tiswr − Tisws (4)

∆Tisw,min ≤ ∆Tisw ≤ ∆Tisw,max (5)

Qice =
(
∆Tisw × LPMice × Cpw × ρw

)
× 60 (6)

LPMicemin ≤ LPM ≤ LPMicemax (7)

3. Solution Algorithms
3.1. The Models of Chillers and Ice-Storage Tanks

The chiller function can be expressed (8) [5]:

Pchiller,i = ai + biQchiller,i + ciQ2
chiller,i + diQ3

chiller,i (8)

where Pchiller,i is the power consumption of the i-th chiller and ai, bi, ci, di are the regression
coefficients of the i-th chiller. The model constructed with traditional methods tends
toward linear functions and mainly depends on the Tchwrt,i return and Tchwst,i supply water
temperature of the ice-storage air-conditioning system. The charge and discharge process
of the ice-storage tank are defined as (9) and (10), respectively:

ICEcp = aice,cp + bice,cpPice + cice,cpP2
ice + dice,cpP3

ice (9)

ICEdp = aice,dp + bice,dpQice + cice,dpQ2
ice + dice,dpQ3

ice (10)

where aice,cp, bice,cp, cice,cp, and dice,cp are regression coefficients of the function of the ICEcp
ice-storage capacity and Pice is the power consumption cost. The cooling load capacity of
ice melting is calculated based on the amount of melting ice.

The actual controllable parameters of the chillers and ice-storage tank are used in order
to demonstrate the association between the power capacity of the chillers and ice-storage
tank and the cooling capacity of the system. The main purpose of this paper is to find the
optimal dispatch of the ice-storage air-conditioning system that satisfies the demanded
cooling load of the system. The objective function is defined as (11):

Objective function =
h

∑
t=1

(
l

∑
i=1

Pt
chiller,iU

t
i × Pricet

chiller + Pt
ice × Pricet

ice

)
(11)

The cooling conditions of the target space as shown in (12) must also be satisfied.(
l

∑
i=1

Qt
chiller,i + Qt

ice

)
≥ CLt (12)
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where Qt
chiller,i is the cooling load of i-th chiller during the hour t (kJ/h), Qt

ice is the cooling
load of i-th ice-storage during the hour t (kJ/h), and CLt is the system total cooling load
during the hour t (kJ/h).

3.2. Ant-Based Radial Basis Function Network (ARBFN)

The ARBFN consists of the input, hidden, and output layers. The signal propagation
and the basic function of each layer are described in [19]. The ARBFN structure is shown
in Figure 1 and the “ACO” process is performed in the training stage. The learning rates
µw, µc, µσ are adjusted by ACO as stated below. The ACO technique finds the optimal
solution using a population of ants. The population size is set to P = 20 and the dimension
is set to d = 3. The generation ants are µd

i = [µw, µc, µσ], where µw, µc and µσ are the
ARBFN learning rates. To evaluate the accuracy of the ARBFN in testing, the mean absolute
percentage error (MAPE), as calculated with (13), is used in this paper.

MAPE =
1

2U

U

∑
u=1


∣∣∣Pture

u − Pcal
u

∣∣∣
Pture

u
+

∣∣∣Qture
u −Qcal

u

∣∣∣
Qture

u

× 100% (13)

where Pture
u and Qture

u are the actual data of the chiller and ice-storage tank, Pcal
u and Qcal

u
are the ARBFN regression data, and U is the number of testing data.
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the ice-storage air-conditioning system is to determine the operating parameter settings 
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rithm has been verified on complex problems. It not only possesses excellent efficiency, 
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Figure 1. The ARBFN structure j-th model.

This study mainly adopts the ARBFN to find various operating parameters of chillers
and ice-storage tanks. The cost-performance curve for each unit was simulated in order to
solve the energy-saving planning for the ice-storage air-conditioning system. The operation
of the ice-storage air-conditioning system and all the chillers and ice-storage tanks is an
optimization problem. Therefore the scheduling strategy adopted for energy-saving in the
ice-storage air-conditioning system is to determine the operating parameter settings of each
chiller and ice-storage tank in each time period. The ant colony optimization algorithm
has been verified on complex problems. It not only possesses excellent efficiency, but
it can also convert the presentation of the problem-solving process into paths. Through
probability calculation and updating pheromones, the best path is selected. Therefore, when
encountering several local optima, it can find better objective functions than conventional
search algorithms.

The ARBFN is used to construct the function of cost and operation for each chiller
and ice-storage tank. The operating data of the charge process and discharge process of
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each chiller and ice-storage tank are collected and divided into input variables and output
variables. Then, the cooling load and power consumption for each chiller and ice-storage
tank can be constructed. ARBFN is used to construct the cost function for each chiller and
ice-storage tank. Therefore, when the input variables of the chiller are determined, the
corresponding output variables can be obtained through the ARBFN.

The chillers’ net is expressed as
Input = [Temp, Tchwrt, PLR, ∆Tchw, ∆Tcw]
Output = [Pchiller, Qchiller]
The charge process of the ice-storage net is expressed as
Input = [Temp, ∆Tisw, ∆Tbcw, ∆Tbccw, Ice Capacity (%)]
Output = [Pice, Ice Charge (RT)]
The discharge process of the ice-storage net is expressed as
Input = [Temp, Tiswr, ∆Tisw,LPM, Ice Capacity (%)]
Output = [Qice, Ice Discharge (RT)]
The operation of the ice-storage net is expressed by (14) and (15)

∆Tbcw = Tbcws − Tbcwr (14)

∆Tbccw = Tbccws − Tbccwr (15)

The steps of ARBFN are as follows:

(1) Use the ACO algorithm to compute the 24-h switching state of each chiller.
(2) The operating parameters of each chiller are used by the NO.1 to NO.6 chiller net

to calculate their individual power consumption and cooling load capacity. For the
ice-storage tank, the ice-storage operation consists of a total of nine hours from 22:00
to 06:00 the next day. The operating parameters are used by the charging process
net to calculate the power consumption and ice-storage volume. From 07:00 to 21:00,
the ice-melting operation occurs for a total of 15 h. The operating parameters are
then used by the discharge process net to calculate the cooling load capacity and the
amount of melting ice.

(3) The sum of the cooling load capacity of all chillers and ice-storage tanks should also
meet the required cooling load of the system in each time period. The total power
consumption multiplied by the electricity price per time is the sum of the total cost.

4. Simulation Results

In this paper, six chillers (NO.1 and NO.2 are sets of 550RT and NO.3 to NO.6 are sets
of 1000RT) and ice-storage tank sets of 8000RT are used as the simulation case. The power
price for the chillers and ice-storage tanks is calculated based on the time-of-use rate in [20].
The required hourly data of the ice storage system were collected from 22:00 of the previous
day until 21:00 of the following day on two days (a summer day and non-summer day).

4.1. Least-Squares Regression (LSR) Model Verification

The collected data are used to plot the distribution of Pchiller power consumption
and Qchiller cooling capacity. Figure 2 shows that although the power consumption and
cooling capacity data of the NO.3 chiller are chaotically scattered, they generally exhibit
a proportional rising. Equation (8) is used in this paper to construct the third-order
polynomial function of power consumption using LSR. Therefore, Figure 2 shows that the
relationship between Pchiller and Qchiller is almost linear. The constructed corresponding
output function is shown in Figure 3 and Table 1 shows the coefficients of the polynomial
functions for chillers and ice-storage tanks constructed by LSR.
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Table 1. Chillers NO.1-NO.6 and the ice storage LSR.

Unit a b c d

Pchiller,1 65.7772 0.196085 1.3707 × 10−8 1.249 × 10−9

Pchiller,2 128.7969 0.044904 0.000113908 −2.628 × 10−8

Pchiller,3 68.2033 0.141784 4.13921 × 10−5 −7.599 × 10−9

Pchiller,4 107.7250 0.118114 1.87115 × 10−5 −1.467 × 10−9

Pchiller,5 623.2087 −0.455524 0.000228205 −2.660 × 10−8

Pchiller,6 101.5365 0.085082 6.87455 × 10−5 −1.141 × 10−8

ICEcp 2204.5246 −24.353361 0.092520429 −0.0001022

ICEdp −21.7173 0.220563 5.53312 × 10−5 −1.591 × 10−8
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4.2. ARBFN Model Verification

Table 2 shows the learning performance of the ARBFN, RBFN, and BPN for comparison
of the NO.3 chiller net. With the regulation of learning rates µw, µc, and µσ by ACO, the
ARBFN has a better accuracy than the other methods in Table 2 and is shown in Figure 4.

Table 2. Performance comparison with various control methods in the NO.3 chiller net.

Method Number of
Training Data

Number of
Test Data MAPE (%) Number of

Training Data
Number of
Test Data MAPE (%)

ARBFN 117 11 1.062 106 22 2.048

RBFN 117 11 2.431 106 22 4.779

BPN 117 11 4.679 106 22 8.547
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Figure 4. Chiller NO.3 on ARBFN.

The ARBFN is used to construct the function model of the hourly ice storage of the
charge process net for the ice-storage tank as shown in Figure 5. The ARBFN is used to
construct the function model of the hourly ice melting of the discharge process net for the
ice-storage tank, and the association between the cooling capability and ice discharge is
shown in Figure 6. If the melting ice volume of the ice-storage tank Qice decreases, the
cooling load will also decrease.
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Training Data 

Number of 
Test Data 

MAPE 
(%) 

Number of 
Training Data 

Number of 
Test Data 

MAPE 
(%) 

ARBFN 117 11 1.062 106 22 2.048 
RBFN 117 11 2.431 106 22 4.779 
BPN 117 11 4.679 106 22 8.547 

The ARBFN is used to construct the function model of the hourly ice storage of the charge 
process net for the ice-storage tank as shown in Figure 5. The ARBFN is used to construct the 
function model of the hourly ice melting of the discharge process net for the ice-storage tank, 
and the association between the cooling capability and ice discharge is shown in Figure 6. If 
the melting ice volume of the ice-storage tank iceQ  decreases, the cooling load will also de-
crease. 
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4.3. The Dispatch of ICE-Storage Air-Conditioning System

The condition parameters on a summer day and non-summer day, as given in
Figures 7 and 8, are simulated. The hourly required cooling capacity, outside air temper-
ature, and Tchwrt of the ice-storage system were collected from 22:00 of the previous day,
until 21:00 of the following day on both a summer and non-summer day.
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In this paper, the accuracy of the LSR and ARBFN models for the chiller and ice-storage
tank is analyzed with the system cooling load on a summer day and a non-summer day.
The parameters of each unit were used as input data for LSR and ARBFN to compute the
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cooling capacity and power consumption in order to calculate the cost of a single day’s
power consumption. Finally, as given in Tables 3 and 4, the actual power consumption
measured by the ice-storage air-conditioning system was compared for verification. In the
tables, the “actual” data are the actual measurements of the ice-storage air-conditioning
system. The power consumption of a single day was also listed for comparative analysis.

Table 3. Comparative analysis of power consumption on a summer day.

Hour
Actual ARBFN LSR

Power (kW) Power (kW) 1 Error (%) Power (kW) 2 Error (%)

22 3023.882 3073.545 1.64 3336.999 10.35

23 3224.135 3114.188 3.41 3380.314 4.84

24 3213.706 3116.380 3.03 3339.555 3.92

1 3145.202 3083.166 1.97 3324.830 5.71

2 3179.706 3041.616 4.34 3326.815 4.63

3 3131.653 3031.975 3.18 3298.529 5.33

4 2745.719 2882.666 4.99 3060.697 11.47

5 2828.079 2761.755 2.35 2940.212 3.97

6 2641.276 2673.040 1.20 2791.609 5.69

7 2024.825 1928.986 4.73 2168.484 7.09

8 2583.937 2595.920 0.46 2892.467 11.94

9 2608.795 2544.626 2.46 2824.032 8.25

10 2447.217 2478.641 1.28 2610.111 6.66

11 2446.248 2516.830 2.89 2660.329 8.75

12 2406.625 2530.431 5.14 2673.871 11.10

13 2828.901 2708.706 4.25 3027.895 7.03

14 2728.399 2619.541 3.99 2778.751 1.85

15 2671.204 2606.755 2.41 2846.374 6.56

16 3409.064 3248.773 4.70 3490.559 2.39

17 3130.662 3160.913 0.97 3468.779 10.80

18 3122.562 3205.378 2.65 3424.233 9.66

19 3208.062 3069.716 4.31 3362.217 4.81

20 2816.290 2741.367 2.66 3012.843 6.98

21 2915.637 2827.455 3.02 3014.334 3.39

Total (kW) 68,481.79 67,562.37 1.34 73,054.84 6.68

Cost NT$ 194,726 192,310 1.24 181,517 6.78
1Error = |Actual(Power)−ARBFN(Power)|

Actual(Power) × 100%; 2Error = |Actual(Power)−LSR(Power)|
LSR(Power) × 100%.

In this paper, the errors between the actual power consumption of the chillers and
ice-storage tank and the estimations of the ARBFN and LSR were compared and shown in
Tables 3 and 4. The maximum error of ARBFN in a single hour on a summer day was 5.14%
and 5.13% in a single hour on a non-summer day, while the maximum error of LSR in a
single hour on a summer day was as high as 11.94% and in a single hour on a non-summer
day was as high as 28.64%. The average hourly error of the ARBFN on a summer day and a
non-summer day was 2.815%, and the difference in power consumption was 50.10 kW. The
average hourly error of LSR was 7.805%, and the difference in power consumption was
144.81 kW. Therefore, the accuracy of the ARBFN models can be verified. If LSR is chosen
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for the scheduling assessment of the ice-storage air-conditioning system, larger errors in
costs tend to occur.

Table 4. Comparative analysis of power consumption on a non-summer day.

Hour
Actual ARBFN LSR

Power (kW) Power (kW) 1 Error (%) Power (kW) 2 Error (%)

22 2071.718 2019.278 2.53 2004.281 3.26

23 2183.114 2113.548 3.19 2111.880 3.26

24 2151.736 2172.034 0.94 2163.087 0.53

1 2048.908 2134.770 4.19 2177.811 6.29

2 2022.306 2085.315 3.12 2116.379 4.65

3 2087.035 2093.330 0.30 2113.926 1.29

4 1984.494 2086.231 5.13 2070.827 4.35

5 2081.175 2030.614 2.43 1968.841 5.40

6 1953.010 1955.428 0.12 1936.210 0.86

7 1234.242 1184.907 4.00 914.504 25.91

8 1535.591 1495.657 2.60 1346.210 12.33

9 1540.546 1591.767 3.32 1546.554 0.39

10 1566.713 1594.757 1.79 1407.467 10.16

11 1688.817 1669.943 1.12 1672.489 0.97

12 1693.599 1711.994 1.09 1594.723 5.84

13 1803.121 1843.776 2.25 1885.726 4.58

14 1585.353 1653.696 4.31 1413.713 10.83

15 1472.108 1537.330 4.43 1328.556 9.75

16 1596.275 1671.406 4.71 1441.107 9.72

17 1435.071 1447.220 0.85 1050.250 26.82

18 1423.891 1417.715 0.43 1078.923 24.23

19 1395.253 1434.252 2.80 995.708 28.64

20 1409.325 1356.831 3.72 1313.006 6.83

21 1493.497 1438.046 3.71 1426.941 4.46

Total (kW) 41,456.900 41,739.850 0.68 39,079.120 5.74

Cost (NT$) 91,457 92,249 0.87 98,605 7.25
1Error = |Actual(Power)−ARBFN(Power)|

Actual(Power) × 100%; 2Error = |Actual(Power)−LSR(Power)|
LSR(Power) × 100%.

Table 5 shows the operating status of chillers during 24 h periods on a summer day
and a non-summer day. From Table 5, during off-peak hours when the cooling load is
smaller, the ice maker stores the required cooling energy in the storage tank. During peak
hours, the storage tank provides the required cooling load. Figure 9 shows the operating
cost of chillers during 24 h periods on a summer day and a non-summer day. It can be
seen in Figure 9 that the TOU rate will influence the overall economy of the ice storage
air-conditioning system.
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Table 5. The operating status of chillers on a summer day and non-summer day.

Hour
Summer Day Non-Summer Day

No.1 No.1 No.2 No.3 No.4 No.5 No.6 No.1 No.2 No.3 No.4 No.5 No.6

1 0 1 1 1 1 1 0 0 1 0 1 1 1

2 1 1 1 0 1 1 1 1 0 0 1 0 1

3 1 1 1 1 1 0 1 1 0 1 1 0 1

4 0 1 1 1 1 0 0 1 1 0 1 1 1

5 0 1 0 1 1 1 0 1 1 0 1 0 1

6 0 1 1 0 1 1 0 1 0 1 1 1 0

7 0 0 1 1 1 0 0 1 0 0 0 0 1

8 0 0 1 1 1 1 0 0 0 1 0 1 1

9 0 0 0 1 1 1 0 0 1 1 1 0 1

10 0 0 1 1 1 1 0 0 0 1 1 1 0

11 1 1 1 0 1 1 1 0 0 1 1 1 0

12 1 0 1 1 1 0 1 0 1 1 1 1 0

13 0 1 1 1 1 1 0 0 0 0 1 1 1

14 1 0 1 1 1 0 1 0 1 1 0 1 0

15 1 0 1 1 1 1 1 0 0 1 1 1 0

16 1 0 1 1 1 1 1 0 0 1 1 1 0

17 1 0 1 1 1 1 1 1 0 1 0 0 1

18 0 1 1 1 1 1 0 0 0 1 1 0 0

19 0 1 1 1 1 1 0 0 0 1 1 1 0

20 1 1 1 1 0 1 1 0 0 1 0 0 1

21 0 0 1 1 1 1 0 0 0 0 1 1 0

22 1 1 1 0 1 1 1 0 1 0 1 1 1

23 1 1 0 1 1 1 1 1 1 1 1 0 1

24 0 0 1 1 1 1 0 0 1 1 1 1 1
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Figure 9. The operating cost of chillers on a summer day and non-summer day.

The convergent characteristics of operating costs on a summer day (17 July) and a
non-summer day (21 October) are as given in Figure 10. Using ACO to optimize the
energy planning for the ice-storage air-conditioning system can effectively reduce costs.
The electricity savings are thus 4.130% on a summer day and 7.381% on a non-summer day.
This system can also yield a better plan for ice storage and melting procedures.
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Figure 10. Convergent characteristics of operating cost on a summer day and non-summer day.

Table 6 shows the comparisons of the various algorithms. An IBM PC with a P-IV2.0 GHz
CPU and 512 MB SDRAM was used for this test. The improvement of the ARBFN over other
algorithms is clear. Although the execution time of the ARBFN was longer, it did indicate the
capacity of ARBFN to discover a better optimum.

Table 6. Comparison of the various algorithms.

Summer Day Non-Summer Day

Algorithms Total Cost (NT$) Execution Time (s) Total Cost (NT$) Execution Time (s)

ARBFN 186683.17 5.67 84706.24 5.67
GA-RBFN 187309.84 4.81 85371.62 4.81
EP-RBFN 188131.15 3.54 85984.38 3.54

GA-RBFN: GA with RBFN EP-RBFN: EP with RBFN.

5. Conclusions

In this paper, the ARBFN is combined with the ACO algorithm to determine the opti-
mal planning of the ice-storage air-conditioning system. The advantages of the ARBFN in
regression analysis include simulating the corresponding power consumption and cooling
capacity of each chiller and ice-storage tank, thus providing their operating parameters.
Using the ACO algorithm for the parameter learning of the radial basis function network
keeps the training speed within an allowable range, and it is more accurate than traditional
polynomial regression methods in modeling the function of power consumption and cool-
ing capacity. The ACO algorithm is also integrated to derive energy-saving planning for
the ice-storage air-conditioning system. In this paper, actual cases were used to verify the
effectiveness of the proposed method. For future development, it can be extended to more
restricted types, such as an efficiency analysis for the operation and continuous operation
of ice-storage systems with variable frequency as well as adjustment plans for ice-storage
and melting in ice-storage systems. It is expected that these results will be more in line
with the energy-saving planning of the ice-storage air-conditioning system. This method
could also improve the operating efficiency of air-conditioning equipment.
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Nomenclature

Cpw The specific heat of chilled water (4.186 kJ/kg)
LPMchiller,i Liter per minute of chilled water, 1 RT = 10 LPM
LPMice Liter per minute of ice-storage water control valve
LPMicemin The liters per minute lower bound of ice-storage water
LPMicemax The liters per minute upper bound of ice-storage water
Pchiller,i The power consumption of the chiller (kW)
Pt

chiller,i The power consumption of the i-th chiller during hour t
Pricet

chiller The power price of a chiller during hour t
Pt

ice The power consumption of the ice storage during hour t
Pricet

ice The power price of ice storage during hour t
Qice Cooling load of the ice storage (kJ/h)
Tiswr The return temperature of the ice-storage water (◦C)
Tisws The supply temperature of the ice-storage water (◦C)
Tchwst,i The supply temperature of chilled water (◦C)
Tbccwr The return temperature of brine chiller cooling water (◦C)
Tbccws The supply temperature of brine chiller cooling water (◦C)
Tchwrt,i The return temperature of chilled water (◦C)
Tbcwr The return temperature of brine chiller water (◦C)
Tbcws The supply temperature of brine chiller water (◦C)
Ut

i The i-th chiller on/off during the hour t
∆Tchw,i The temperature difference of chilled water (K)
∆Tchw,imin The temperature differences of the lower bound of chilled water (◦C)
∆Tchw,imax The temperature differences of the upper bound of chilled water (◦C)
∆Tisw The temperature difference of ice-storage water (◦C)
∆Tisw,min The temperature differences of the lower bound of ice-storage water (◦C)
∆Tisw,max The temperature differences of the upper bound of ice-storage water (◦C)
∆Tbcw The temperature difference of brine chiller water (◦C)
∆Tbccw The temperature difference of brine chiller cooling water (◦C)
ρw The density of chilled water (1 kg/L)
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