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Abstract: The COVID-19 pandemic exposed the vulnerability of global supply chains of many
products. One area that requires improved supply chain resilience and that is of particular importance
to electronic designers is the shortage of basic dual in-line package (DIP) electronic components
commonly used for prototyping. This anecdotal observation was investigated as a case study of
using additive manufacturing to enforce contact between premade, off-the-shelf conductors to allow
for electrical continuity between two arbitrary points by examining data relating to the stock quantity
of electronic components, extracted from Digi-Key Electronics. This study applies this concept
using an open hardware approach for the design, testing, and use of a simple, parametric, 3-D
printable invention that allows for small outline integrated circuit (SOIC) components to be used
in DIP package circuits (i.e., breadboards, protoboards, etc.). The additive manufacture breakout
board (AMBB) design was developed using two different open-source modelers, OpenSCAD and
FreeCAD, to provide reliable and consistent electrical contact between the component and the rest of
the circuit and was demonstrated with reusable 8-SOIC to DIP breakout adapters. The three-part
design was optimized for manufacturing with RepRap-class fused filament 3-D printers, making the
AMBB a prime candidate for use in distributed manufacturing models. The AMBB offers increased
flexibility during circuit prototyping by allowing arbitrary connections between the component and
prototyping interface as well as superior organization through the ability to color-code different
component types. The cost of the AMBB is CAD $0.066/unit, which is a 94% saving compared to
conventional PCB-based breakout boards. Use of the AMBB device can provide electronics designers
with an increased selection of components for through-hole use by more than a factor of seven. Future
development of AMBB devices to allow for low-cost conversion between arbitrary package types
provides a path towards more accessible and inclusive electronics design as well as faster prototyping
and technical innovation.

Keywords: 3D printing; additive manufacturing; breakout; chip shortage; design; electronics;
innovation; open electronics; open hardware; open source; prototyping; solderless; SOIC

1. Introduction

The global economy has been structured by companies that rely largely on optimal
structures of supply chains to achieve competitive advantages [1]. This model was recently
challenged during the COVID-19 pandemic as it crippled the global economy [2]. Initially,
the primary focus of supply chain disruptions was in the medical area [3]. As the entire
global population appeared at risk, finding solutions to medical supply shortages was
imperative, and a number of approaches surfaced, including: (i) low-tech solutions [4],
(ii) open hardware [5] or open hardware design [6], and (iii) distributed manufacturing [7].
Some of these approaches, such as distributed manufacturing using 3-D printing to make
life-saving supplies on demand, proved effective [8] and included personal protective
equipment (PPE) [9] such as face shields [10,11], masks [12], N95 respirators [13], N95
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mask adapters [14], heat-sterilizable masks [15], full face respirators [16], and powered
air-purifying particulate respirators (PAPRs) [17]. In addition, this approach was effective
at fabricating testing supplies and equipment such as nasopharyngeal swabs [18,19] and
infrared thermometers [20]. Open hardware approaches were also used to make steriliza-
tion equipment [21,22], and even sophisticated electronics, needed for what appeared at
the time to be a shortage of ventilators, proved possible in this model [23,24], as did units
to test them [25,26].

As the pandemic continued, supply chain disruptions occurred in other sectors such as
semiconductors [27] and electronics [28], causing a chip shortage that impacted everything
from hand-held consumer goods [29] to the automobile industry [30]. The wake-up call
from the pandemic [31] makes the value of having supply chain resilience clear in all
areas [32]. One area with needed resilience of particular importance to those that prototype
electronics equipment is that of the shortage of basic dual in-line package (DIP or DIL)
electronic components packaging. DIP components are normally used on breadboards to
prototype electronics before making a final copy or converting to a small outline integrated
circuit (SOIC) to make surface-mounted integrated circuits. Prototyping with an SOIC is
possible, but it is both physically challenging and time consuming compared to using a DIP.
Another option for using non-DIP package components with breadboards and protoboards
involve PCB breakout boards (BBs), but this incurs additional costs and requires soldering,
which further increases cost and reduces reusability of components. During the pandemic,
it anecdotally appeared that DIP chips were often in the shortest supply with the longest
lead times; SOIC chips, although still in short supply, were more easily obtained because
they are manufactured in higher volumes. To determine if this anecdotal lack of selection
was an issue for electronic designers, data relating to the stock quantity and number of
product offerings for a sample category were extracted for this study from the Digi-Key
Electronics website.

The observed issue of a component having the desired function but not satisfying the
physical constraints can apply to numerous electrical component types. Using additive
manufacturing to create structures that incorporate conductors can be used to address
this issue. To demonstrate proof-of-concept, off-the-shelf conductors and an open-source
3-D printer were used in an open hardware approach to overcome the anecdotal lack
of DIP components in an application case study to evaluate the technical and economic
feasibility of the proposed approach. This study summarizes the design, testing, and use
of a simple, parametric, 3-D printable device that allows for SOIC-type components to
be used in DIP package circuits (i.e., breadboards, protoboards, etc.). The geometry was
designed to (1) enforce physical contact between component leads and header pins and
(2) guide header pins to align and make contact with the breadboard or protoboard. The
design was developed to provide reliable and consistent electrical contact between the
component and the rest of the circuit and was demonstrated with reusable 8-SOIC to DIP
breakout adapters and a simple circuit involving common components. The results are
presented in the context of a concept that can be further expanded to other surface-mount
and through-hole component packages. The manufacturing time and costs are discussed
along with the possibility of eliminating the need for DIP in the future. It should be noted
that although a specific geometry for a specific use case, in this case, 8-SOIC to DIP, is
presented, this concept could be applied in many ways. Using 3-D printed geometry to
enforce electrical contact between conductors can be achieved in more than one fashion
and could be applied in several different contexts, including breakout boards, connectors,
and other electromechanical devices.

There are existing approaches that use additive manufacturing to create conductive
structures. Some of these methods include direct printing of circuits using conductive
thermoplastic filament [33–35], usage of conductive liquids or epoxies that are added to two-
or three-dimensional substrates using micro dispensing, spraying, or other post-processing
techniques to create traces [36–38], metal 3-D printing technologies such as selective laser
sintering that can additively manufacture precise and complex circuits [39,40], and the
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usage of stereolithography-based techniques [41,42]. The approach presented here is
distinct from all of this previous work due to its simplicity and accessibility as it can be
created using virtually any modern desktop fused filament fabrication (FFF) 3-D printer
and leverages off-the-shelf conductors.

2. Materials and Methods

To display the need for the presented AMBB in this application case, the data for
similar devices relating to component package and stock quantity were extracted from
the Digi-Key Electronics website. DigiKey.ca was chosen, as it is the 5th largest electronic
component distributor in North America and the 7th largest worldwide as of 2016 [43];
furthermore, the components used to test the AMBB were sourced from DigiKey.ca. The
data were extracted from product pages from the “Embedded Microcontrollers” section [44].
An open-source website scraper was written in Python and run locally on a laptop at 8 PM
MST on 3 July 2022. Two software packages were used: Selenium [45] and Beautiful
Soup [46]. Selenium was used to automate the browser clicking through each page and
Beautiful Soup was used to get the data from each page. The data from each page were
then written to a CSV file. The category listed 74,729 items, and the CSV file contained the
same number of items, indicating a successful and comprehensive scrape. Resulting data
was categorized by mounting type: “Through Hole” as through-hole, “Surface Mount” and
“Surface Mount, Wettable Flank” as surface mount, and all unspecified or other mounting
types as neither/unspecified. The data was processed and interpreted in three different
ways: (1) summing the stock numbers for the three defined categories, (2) summing the
number of component offerings for the three defined categories, and (3) summing the
number of component offerings with non-zero stock for the three defined categories. These
three categories were then summed together to ensure no data were omitted. The resulting
data were then converted to percentages.

The development of the device for the presented application case was centered on six
design goals: (1) to create a 3-D printable geometry that would provide reliable electrical
contact between 8-SOIC components and a standard DIP-sized breadboard or protoboard;
(2) complete reusability of the SOIC component and printed device; (3) complete design
parameterization; (4) usage of off-the-shelf materials; (5) minimization of device footprint;
(6) optimization for use across RepRap class [47–49] fused filament fabrication-based
3-D printers of varying tolerances and capabilities. This section will examine the design
decisions in the context of these six design goals as well as the equipment, software, and
materials involved in the design, manufacture, and validation of the proposed design.

OpenSCAD, an open-source script-only based modeler [50], and FreeCAD, an open-
source parametric 3-D modeler [51], were both used for the computer-aided design (CAD)
of the additive manufacture breakout board (AMBB). The models from both OpenSCAD
and FreeCAD were functionally identical and were both created to provide users with more
flexibility and increase accessibility. The AMBB consisted of three main parts: the main
enclosure, the component housing, and the securing bolt seen in Figure 1. The enclosure
had six main features: (1) a cavity to hold the component housing, (2) a threaded hole for
the securing bolt, (3) eight angled channels to guide and secure the header pins, (4) two
large symmetrically placed pockets that penetrate into the main cavity from above, (5) two
small symmetrically placed slots that penetrate into the main cavity from below, and (6) a
track that runs along the main cavity floor and exits through the back wall. The component
housing had two main features: a cavity to hold and secure the component and two rows
of symmetrically placed slots. The bolt was parametrically linked to the enclosure such that
the threaded portion of the bolt was a solid inversion of the threaded hole that extended
into the cavity from the top of enclosure. The bolt on the AMBB shown included a radius
tolerance of 0.95, resulting in the radius of the bolt being 0.10 mm smaller than that of the
receiving hole. Modification of the bolt and threading sizes may be required when different
devices and materials are used for manufacturing; this can be easily done by modifying the
four bolt tolerance parameters in the OpenSCAD model (bolt_rad_tol, threading_pitch_tol,
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thread_height_to, and thread_depth_tol) or manually changing the desired dimensions in
the FreeCAD model. The two large symmetrically placed pockets on the enclosure and the
two symmetrically placed pockets on the component housing function to accommodate
multi-meter probes for checking electrical contact between component leads and header
pins. The two small symmetrically placed slots on the enclosure function to reduce printing
artifact at the end of the channels and allow for visual confirmation of the header pin
placement within the channels.
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Figure 1. FreeCAD view of the enclosure (left), component housing (center), and securing bolt
(right); (a) top view; (b) rear view.

The AMBB was manufactured using fused filament fabrication (FFF) technology on an
unmodified open-source Original Prusa i3 MK3S+ [52] with a 1.75 mm Prusament brand
polylactic acid (PLA) filament on a double-sided textured PEI powder-coated spring steel
sheet using a 0.40 mm factory nozzle. The model was exported from FreeCAD as an STL
file; then, the G-code was generated and exported to an SD card using PrusaSlicer 2.4.2
software [53]. Layer height was set to 0.10 mm, default brim was active, thin-wall detection
was turned on, and infill was set at 15%; the temperatures were set based on the Prusament
PLA preset included as part of Prusaslicer: 215 ◦C for the nozzle (all layers) and 60 ◦C for
the bed (all layers). Detailed printer and slicer settings are both located in the associated
Open Science Framework repository [54]. The first layer was printed at 50% speed, which
then remained at 100% for the remainder of the print.

Once the printing process was complete, the three parts were removed from the print
bed; other excess plastic artifacts were removed using needle nose pliers and ESD-11
tweezers. Right-angle male header pins (7.5 × 13.0 × 0.5 mm) were then inserted into the
enclosure channels; the use of pliers can be helpful, especially if there are 3-D printing
artifacts in the channel. Care must be taken when inserting the header pins, since over-
insertion of the header pin may damage the terminal face of the channel, causing the
header pin to sit incorrectly. The component was then inserted into the component housing
cavity, and both inserted into the main cavity of the enclosure; the component housing
was pressed flush with the front face of the enclosure; then, the bolt was screwed into the
threaded hole on the enclosure and adequately tightened.

The completed AMBB was tested with an AN8205C portable multi-meter using the
continuity function to confirm a short-circuit between each of the component leads and
their respective header pins. To demonstrate the versatility of the AMBB, an inverting
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amplifier circuit was constructed using an 8-SOIC OP07DDR operational amplifier. The
schematic with nominal source and component values can be seen in Figure 2. OP07DDR
was supplied by generic 9 V batteries, and the input signal was supplied by a 3.3 V voltage
source from an Arduino Uno REV3.
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Finally, an economic analysis was carried out to determine the cost difference associ-
ated with using AMBBs for electronics prototyping versus that of traditional methods. First,
a per-unit cost for using an AMBB and using a traditional PCB-based BB was estimated.
All dollar amounts presented in this paper are in CAD. The per-unit cost of the AMBB was
calculated from the mass of PLA used, quantity of header pins used, and energy consumed
by the printer. The filament cost (CPLA) is given by Equation (1) using the mass of PLA
to print a full sheet, as given by PrusaSlicer (mPLA, f s), 102.30 g; the number of complete
AMBBs that includes all three components on a full sheet (nfs), 97; the cost for one spool of
Prusament brand polylactic acid (PLA) filament (CPLA, spool), 38.94 CAD; and the mass of
one PLA spool (mPLA,spool), 1000 g:

CPLA =
mPLA, f s

n f s

CPLA,spool

mPLA,spool
(1)

The cost of the header pins (CHPins) used is given by Equation (2) using the cost for a
package of right-angled header pins from Viinko Electronics HK (CHPins,pkg), 1.16 CAD; the
number of pins in the package (nHPins,pkg), 400; and the required number of header pins for
each AMBB (nHPins,used), 8:

CHPins =
CHPins,pkg

nHPins,pkg
nHPins,used (2)

The cost of the energy consumed (CEnergy,1) to print the device is given by Equation (3)
using the average power consumption for printing generic PLA on an Original Prusa,
when operated at an ambient temperature of 26 ◦C (room temperature), according to Prusa
Research (PAvg,PLA), 80 W; the print time for a full sheet (tprint, f s), 33.00 h (118,800 s); the
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energy cost during off-peak times at the time of testing according to London Hydro [55]
(CLondon,op), 0.0812 CAD/kWh:

CEnergy,1 =
PAvg,PLA × tprint, f s

n f s

CLondon,op

1 kWh
1 kWh
3.6E6J

(3)

The per-unit cost of the PCB-based BB (CBB,PCB) is given by Equation (4) using the
cost of a PCB-base breakout board (BB) package (CBB,pkg), 4.83 CAD; and the number of
BBs per package (nBB,pkg), 4:

CBB,PCB =
CBB,pkg

nBB,pkg
(4)

The cost of the solder (Csolder) used is given by Equation (5) using the estimated mass
of solder required to attach the component and header pins to the PCB (msolder,used), 0.2 g;
the cost for generic 63–37 tin-lead solder wire (Csolder,pkg), 11.99 CAD; and the mass of the
solder spool from Amazon.ca (msolder,pkg), 50 g:

Csolder = msolder
Csolder,pkg

msolder,pkg
(5)

The cost of the energy consumed to solder the component and header pins (CEnergy,2)
is given by Equation (6) using an estimate for the power required for an experienced user
to solder all joints for the pins and leads using a generic soldering iron (PAvg,iron), 80 W; the
time required to solder all joints for the pins and leads, assuming a warmup time of 30 s,
(ttot,iron), 200 s:

CEnergy,2 = PAvg,iron × ttot,iron
CLondon,op

1kWh
1kWh
3.6E6J

(6)

All prices stated are based on the lowest-cost available generic version of the given
product as of July 2022 in Ontario, Canada. The stated prices, quantities, and values may
vary with time period, geographical location, availability, and user ability. The percentage
savings of using an AMBB versus a traditional PCB-based breakout board is given by
Equation (7).

%Savings =
CTotal,PCB−BB − CTotal,AMCB

CTotal,PCB−BB
100% (7)

3. Results

First, as can be seen by the results of the evaluation of the DigiKey website in both the
quantity in Figure 3 and number in Figure 4, it is clear that there was far more selection
for designers when surface-mount components could be used in place of through-hole
components. As of 3 June 2022, only 12% of the electronics actually available (in stock)
were through-hole, as shown in Figure 5.

The correct view of anecdotal limitations of using through-hole electronic components
is clear. The results of the data scrape conducted for the “Embedded Microcontrollers”
category on DigiKey.ca revealed that 94% of stock was SMD package components, 91% of
product offerings were SMD package components, and 88% of in-stock product offerings
were SMD package components. These results clearly demonstrate the increased selection
of components available to electronics designers when given the ability to prototype with
SMD package components, something which the AMBB has demonstrated as a key benefit.
See the Open Science Framework repository for the spreadsheet containing the complete
dataset and interpretation.

To give electronics designers access to SMD components without losing the ease of
prototyping with through-hole components, all three components of the presented AMBB
design were printed over 25 times in batch sizes ranging from 1 to 10 devices per print
with a perfect success rate when the default brim setting was used. This demonstrated the
proposed designs’ viability for 3-D printing applications, making it a prime candidate for
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use in a distributed manufacturing model [56], allowing for easy adoption by electronic
designers. As an example, the AMBB design is shown in use with a constructed circuit
in Figure 6 based on the design shown in Figure 2. The AMBB with the SMD chip works
identically to a through-hole component.
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The AMBB design allows for a huge amount of flexibility during circuit prototyping
due to the ability for the user to use various connection methods. The AMBB can be used
conventionally by directly inserting into the breadboard, as shown in Figure 6. The header
pins can also instead be replaced by standard square terminal jumper wires, allowing for a
connection at arbitrary points in the circuit while the AMBB rests on or beside the proto-
typing board in what is commonly referred to as the “dead bug configuration”. Another
similar configuration involves the header pins being flipped such that they are directed
upwards, allowing for female-to-female or female-to-male jumper wires to be connected
and then placed at arbitrary points in a circuit. Any of the mentioned configurations can
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be used in combination depending on the users’ goals. For example, the AMBB can be
inserted into the breadboard; then, two of the header pins can be switched out for jumper
wires to allow for direct connection to supplies, other breadboards, etc. Another useful
advantage is the ability to use differently colored filaments, all with roughly equivalent
mechanical properties [57], to color-code different components.
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This is a direct implementation of Figure 2, where 9 V are the batteries, the black AMBB contains an
8-SOIC op amp, and the 3.3 V is supplied using an Arduino UNO r3.

Table 1 displays the measured voltages from the constructed circuit shown in Figure 7.
The theoretical value for the output signal presented in Table 1 was calculated using
Equation (8); this equation assumes ideal behavior as pertains to the operational am-
plifier. In relation to Figure 6: Rfb = 3.3 kΩ, Rinput = 2 kΩ, and Vinput = +3.3 V; this
gives Vout = −5.5 V as seen in Table 1, where R is resistance and V is voltage.

Vout =
−R f b

Rinput
Vinput (8)



Inventions 2023, 8, 61 9 of 15

Table 1. Experimental validation of AMBB demonstration circuit.

Description Theoretical Value (V) Value (V)

Input signal +3.3 +3.41
Positive rail +9.0 +8.96

Negative rail −9.0 −8.28
Output signal −5.5 −5.51
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Ultimately, all six of the design goals were satisfied. Design goal 1 was satisfied based
on the successful continuity testing and constructed test circuit (Figure 2). Goal 2 was
satisfied as none of the components nor the printed structures were damaged or altered
from the components being inserted, tested, and removed from the AMBB. Goal 3 was
successfully addressed as both the FreeCAD and OpenSCAD embodiments were designed
to be parametrically linked such that users could alter individual parameters without
having to then adjust the related geometry. Certain parameters are not fully parametric
due to geometric complexity and may require manual adjustment; this includes pin access
hole depth (PA_depth; OpenSCAD) and occasional re-selection of sketch support faces
(multiple parameters; FreeCAD). The only two materials used were angled male header
pins and PLA filament, which satisfies goal 4, since both can be purchased off the shelf
from many suppliers. The footprint of the AMBB was 13 × 12 mm, which allowed for the
placement of 15 AMBBs on a standard breadboard with a length of 63 pins. Moreover, the
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height provided by the header pins allows for components and/or wires to be placed below
the AMBB, which further minimized the devices’ footprint. Together, this satisfies design
goal 5 relating to minimizing the device footprint. The design did not: (1) include any
functional structures with dimensions smaller than 0.4 mm, the standard FFF-based 3-D
printer nozzle size, (2) require specialty filaments, or (3) require multi-material extrusion,
which satisfies design goal 6 relating to optimization for use in various RepRap-class FFF-
based 3-D printers. An assembly of the described device is shown in Figure 7, and a partial
assembly displaying the internal geometry is shown in Figure 8.
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Based on the sum Equations (1)–(3) using the corresponding values, the cost of the
AMBB when printed as part of a full sheet was calculated to be 0.066 CAD/unit; the cost
of contribution for the total AMBB cost was as follows: header pins 35%, PLA 62%, utility
power 3%. Based on the sums of Equations (2) and (4)–(6) using the corresponding values,
the cost of the conventional PCB-based breakout board was calculated to be 1.37 CAD/unit.
According to Equation (7), the presented additive manufacturing-based breakout board
design provided savings of over 94% when compared to a conventional PCB-based breakout
board.

The proposed approach and overarching concept in this paper was successfully im-
plemented for the presented application case and was shown to be both technical and
economically feasible.

4. Discussion

A key design choice was the selection of materials, those being the male header pins
as the electrical bridge between the breadboard and component terminals and the use
of PLA as the print material. Header pins were used due to their availability, known
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electrical properties, and frequent use in electronic prototyping. Header pins were chosen
over solid high-gauge wire due to their rigidity, which translated to increased durability
and hence reusability; furthermore, right-angled pins were selected over straight pins
since forming the straight pins to the desired shape added labor time, damaged print on
occasion, and decreased uniformity as well as reproducibility. PLA was chosen as the
print material for several reasons: (1) it is electrically insulative, (2) widely available as
one of the most common filament types, (3) it is offered in various colors, allowing for
color coding of different components, and (4) increases sustainability due to the ability for
it to be recycled in a distributed-recycling and additive-manufacturing (DRAM) context
using either recyclebot [58] or direct extrusion [59] approaches. Although PLA can be
recycled five times without losing appreciable mechanical strength [60], the biopolymer,
often derived from corn, can be composted to help contribute to a sustainable circular
economy [61]. With minimal alterations, however, other 3-D printing polymers could
be used for this application. This includes recycled waste plastic from more common
plastics such as acrylonitrile butadiene styrene (ABS). This, coupled with solar-powered
3-D printers [62–65] to cut electrical costs, would largely eliminate the 3-D printing material
costs [66] and thus decrease the costs by over 60%. Even without these measures, by using
only off-the-shelf parts, the open source AMBB system will save designers over 94% while
increasing their selection of components for through-hole use by more than a factor of seven.
This approach will radically reduce the time for prototyping. It should be pointed out
that the time and economic savings from soldering surface mount chips was not included
in the analysis, so all economic values can be considered extremely conservative. If this
approach becomes widespread, it may provide a path to the elimination of DIP and other
large outline package types as they are unnecessary, assuming that an AMBB is tailored to
every chip.

Although this design has many advantages for electrical prototyping, it also has
certain limitations. For example, the geometry of this model is such that the header pins
are angled towards the pins of the IC. This limits scalability, since the addition of more pins
will require that the outmost pins are either set at an increasingly greater angle and/or
demand a longer channel distance. This will mean that a maximum number of pins will
be reached for the current design either due to angular limitation or the channel length
exceeding that of the header pins available. In this case, 0.4 mm was the width, 1.27 mm
was the pitch of the SOIC terminals, and the 0.64 × 7.25 mm rectangles were the angled
portion of the header pins that were vertically separated at the other end by 2.54 mm (the
pitch of DIP terminals). If one could find sufficiently long pins, the practical maximum for
conversion between these specific types (SOIC to DIP) would be 6 × 2 = 12 per side (24 for
a two-sided chip as seen in Figure 9). Note that the image in Figure 9 is 1/4 since it was
reflected over the x-axis and then the y-axis. It should also be noted that these were average
values, since dimensions and tolerances vary slightly between different header pin and
chip manufacturers. This limitation could be overcome by altering the current geometry or
taking a modified approach to enforce electrical contact. This reveals a strong need for a
software-based tool to generate arbitrary 3-D geometry to accommodate conductors and
enforce contact based on a number of input parameters and constraints.

This leads to perhaps the most important and exciting aspect of the presented design:
the direction that future work will take. The development of software that allows for quick
and user-friendly generation of AMBB designs and other 3-D printed polymer-conductor
arrangements, either as direct 3-D models or indirectly as scripts for use in OpenSCAD or
similar design environments, would enable designers to have an unprecedented amount of
flexibility and design freedom. This would essentially remove all constraints with respect
to the availability of different component packages and connection types. This flexibility
has value for those prototyping electronics of any kind [67], but most clearly for those
developing open scientific hardware [68,69] and those working in low-resource settings [70].
For example, it is usually the case that the same component is available in various different
package types, and it may be that stock and lead times vary; having a software-based tool to
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generate AMBBs and other conductive geometries that convert between arbitrary package
and connection types would allow the designer to purchase based on availability, lead time,
or price rather than being limited to a certain package type. Additionally, this concept
and approach can apply beyond adapting integrated circuit (IC) chips to be used for other
electrical connection formats. Other useful future work may involve the investigation of
different materials and geometric configurations that aim to reduce size, complexity, cost,
and labor time to construct the AMBB and other conductive geometries. Finally, it should
be mentioned that it could be further explored how this technique can be incorporated into
or used in conjunction with existing techniques for additive manufacturing.
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5. Conclusions

This study has successfully demonstrated and validated an open source 3-D printable
design that can convert 8-SOIC to DIP in a case study to evaluate the feasibility of the
proposed concept and approach. The parametric design was created using two different
open-source modelers, OpenSCAD and FreeCAD, both of which enable and encourage
user modification and improvement. The three-part, two-material design was optimized
for manufacturing with RepRap-class FFF-based 3-D printers, making the AMBB a prime
candidate for use in a distributed manufacturing model. The AMBB offered increased
flexibility during circuit prototyping by allowing an arbitrary connection between the
component and prototyping interface as well as superior organization through the ability to
color-code different component types. The cost of the 3-D printable AMBB was calculated
to be 0.066 CAD/unit, which represents over 94% economic savings compared to the
conventional PCB-based breakout boards. The AMBB successfully enables circuit designers
to prototype with surface-mounted chips with the same ease that they are accustomed to
with DIP chips. Extending this concept to other use cases and electrical connection types
could increase prototyping flexibility and accelerate the rate of technological progress,
particularly in low-resource facilities.
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