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Abstract: We present a comparative study aiming to determine the most efficient multivariate model
screening for the main drugs of abuse based on their ATR-FTIR spectra. A preliminary statistical
analysis of selected spectra data extracted from the public SWGDRUG IR Library was first performed.
The results corroborated those of an exploratory analysis that was based on several dimensionality re-
duction methods, i.e., Principal Component Analysis (PCA), Independent Component Analysis (ICA),
and autoencoders. Then, several machine learning methods, i.e., Support Vector Machines (SVM),
eXtreme Gradient Boosting (XGB), Random Forest, Gradient Boosting, and K-Nearest Neighbors
(KNN), were used to assign the drug class membership. In order to account for the stochastic nature
of these machine learning methods, both models were evaluated 10 times on a randomly distributed
subset of the whole SWGDRUG IR Library, and the results were compared in detail. Finally, their
performance in assigning the class identity of three classes of drugs of abuse, i.e., hallucinogenic (2C-x,
DOx, and NBOMe) amphetamines, cannabinoids, and opioids, were compared based on confusion
matrices and various classification parameters, such as balanced accuracy, sensitivity, and specificity.
The advantages of each of the illicit drug-detecting systems and their potential as forensic screening
tools used in field scenarios are also discussed.

Keywords: amphetamines; cannabinoids; opioids; ATR-FTIR spectra; PCA; ICA; autoencoders; SVM;
XGB; random forest; gradient boosting; K-Nearest Neighbors (KNN)

1. Introduction

Amphetamines are a class of psychotropic compounds that became popular in recent
decades for their stimulant, euphoric, and hallucinogenic effects. In recent decades, many
such new psychotropic substances have emerged in the black market [1]. Among these,
three important groups of hallucinogenic amphetamines have been noticed in recent years,
i.e., 2C-x, DOx, and NBOMe amphetamines.

The 2C-x class of drugs owes its name to Alexander Shulgin and refers to the two
carbon atoms that bind the amino group to the benzene ring [2]. The compounds included
in the DOx class of hallucinogenic amphetamines are characterized by the presence of
methoxy groups in the phenyl ring at the 2 and 5 positions, and a substituent at the
4-position of the phenyl ring [3]. The NBOMe amphetamines, which are analogs of the
2C-x drugs, emerged in the early 2000s when they were first synthesized [4,5].

Cannabinoids are a class of drugs similar in structure to the chemical compounds
found in the natural products of Cannabis sativa. With the accessibility of cannabinoids
expanding, especially of synthetic ones, public concern about these compounds is rising [6].
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Opioids represent a class of drugs of abuse with important effects for the treatment of pain,
used in a medical but also in an illicit scope [7,8].

Such illicit drugs constantly emerging in the black market represent a current problem
of our days. From this point of view, it is important to develop models which can be able to
automatically detect the class membership of these new compounds.

2. Related Work

Machine learning and statistical methods have been successfully applied to detect
various types of drugs. Pereira et al. [9] applied PCA followed by PLS-DA (Partial Least
Squares Discriminant Analysis) and ATR-FTIR spectra to identify the presence of different
illegal drugs in seized ecstasy tablets. In a recent study [10], Koshute et al. developed
a machine-learning model based on various techniques, such as random forests, neural
networks, or logistic regression, in order to identify fentanyl analogs based on mass spectra.
Lee et al. [11] developed machine learning models applied to LC-MS-MS (High-Resolution
Liquid Chromatography Mass Spectrometry) in order to identify unknown controlled
substances and new psychoactive substances (NPS). For this purpose, Artificial Neural
Networks (ANN), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) models
were developed for the classification of 13 subgroups, including the 2C series, opiates, and
classical cannabinoids. Wong et al. [12] analyzed the detection of some novel psychoactive
substances based on Gas Chromatography–Mass Spectrometry (GC-MS). In this scope, three
machine learning models were applied, namely ANN, Convolutional Neural Networks
(CNN) and Balanced Random Forest (BRF).

The aim of our study is to develop a machine learning system that can be used for
the detection of various drugs of abuse, namely 2C-x, DOx, and NBOMe amphetamines,
opioids, and cannabinoids, based on their ATR-FTIR (Attenuated Total Reflectance–Fourier-
Transform Infrared Spectroscopy) spectra.

3. Materials and Methods
3.1. Dataset Preparation

Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectrometers
are increasingly used for in-field screening for illicit drugs, as they are portable instruments
and do not require sample preparation [13]. The ATR-FTIR spectra used in this study were
extracted from the SWGDRUG public spectral library [14]. They consist of 95 spectra of
the targeted illicit drugs and of randomly selected negatives of forensic interest, as shown
in Table 1. In order to perform statistical analysis, the spectra were divided into four
classes: Class 1—amphetamines (including 2C-x, DOx, and NBOMe hallucinogens); Class
2—opioids; Class 3—cannabinoids; and Class 4—negatives. The class of amphetamines
contains the spectra of 25 substances, the class of opioids includes the spectra of 36 com-
pounds, the class of cannabinoids consists of the spectra of 18 substances, and the class
of negatives was formed with the spectra of 16 different (randomly selected) compounds.
The statistical analysis, autoencoders, and machine learning modeling were performed by
using the Python packages numpy 1.24.1, scipy 1.10.0, scikit-learn 1.2.1, and sequitur 1.2.4.

3.2. Exploratory Data Analysis

In order to identify patterns and anomalies, an exploratory investigation based
on statistics and graphical representations was first performed on the dataset. Two
types of exploratory data analysis methods were used, i.e., statistical and dimensionality-
reduction methods.

3.2.1. Statistical Measures

To gain a better understanding of the trends in our dataset, we used a series of
statistical parameters. The mean was used to assess the central tendency of the data, while
the standard deviation was used to measure the amount of dispersion of the data. A low
value of the standard deviation indicates that the data values tend to be close to the true
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value of the set, and a higher value indicates that the data values are spread out on a
larger interval.

Table 1. Compounds included in the database.

Nr. crt. Amphetamines Opioids Cannabinoids Negatives

1 2C-B HCl 4’-Methyl acetyl fentanyl HCl JWH-018
N-(5-chloropentyl) analog

4-Acetoxy-N,N-
Dimethyltrypt-
amine oxalate

2 2C-C HCl para-Methyl acetyl
fentanyl HCl JWH-203 Cocaine base

3 2C-E HCl Benzylfentanyl HCl JWH-250 Sertraline HCl

4 2C-T-7 HCl Acryl fentanyl HCl JWH-122 Trenbolone Hexahydro
benzylcarbonate

5 2C-T-2 HCl 2-Furanylbenzyl fentanyl JWH-018 adamantyl-
carboxamide 4-estren-3beta, 17beta-diol

6 2C-I HCl 2R,4S-2-Methyl fentanyl HCl JWH-018 Butalbital

7 2,5-Dimethoxy-4-Chloro-
amphetamine HCl

Despropionyl
para-fluorofentanyl JWH-307 Boldenone Acetate

8 2,5-Dimethoxy
phenethylamine HCl

Despropionyl
ortho-fluorofentanyl JWH-081 Cocaine HCl

9 3,4-Dimethoxy
amphetamine HCl cis-3-Methyl fentanyl HCl JWH-022 Safrole

10 2,5-Dimethoxyamphetamine HCl Norfentanyl JWH-210 Phenazepam

11 DOI HCl trans-3-Methyl fentanyl HCl JWH-019 Methenolone

12 d,l-4-Bromo-2,5-
dimethoxyamphetamine HCl para-Methoxy fentanyl HCl JWH-073 Methaqualone base

13 4-Chloro-2,5-dimethoxyamphetamine
HCl (DOC)

para-Chloroisobutyryl
fentanyl HCl JWH-018 Benzimidazole MBZP HCl

14 25B-NBOMe HCl ortho-Methylacetyl
fentanyl HCl FUB-JWH-018 Diazepam

15 25C-NBOMe HCl Heptanoyl fentanyl HCl JWH-249 Etaqualone HCl

16 25I-NBOMe Base beta-Hydroxy fentanyl HCl JWH-018 indazole Oxazepam

17 25E-NBOMe HCl 3-Methyl butyryl fentanyl HCl AB-FUBICA

18 25D-NBOMe HCl beta’-Phenyl fentanyl ADB-PINACA

19 25H-NBOMe HCl ortho-Fluoroisobutyryl
fentanyl HCl

20 25N-NBOMe HCl para-Fluoroacetyl
fentanyl HCl

21 25C-NB3OMe HCl meta-Fluoroisobutyryl
fentanyl HCl

22 25C-NB4OMe HCl
Tetrahydrofuran fentanyl 3-

tetrahydrofurancarboxamide
HCl

23 25I-NBOMe HCl para-Methyl cyclopropyl
fentanyl HCl

24 25I-NB3OMe HCl para-Methoxy
furanyl fentanyl HCl

25 25I-NB4OMe HCl ortho-Methyl cyclopropyl
fentanyl HCl
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Table 1. Cont.

Nr. crt. Amphetamines Opioids Cannabinoids Negatives

26 ortho-Fluoro furanyl
fentanyl HCl

27 N-benzyl para-fluoro
norfentanyl HCl

28 N-Benzyl para-fluoro
cyclopropyl norfentanyl HCl

29 Despropionyl meta-
Fluorofentanyl

30 para-Fluoro
fentanyl HCl

31 ortho-Methoxy
furanyl fentanyl

32 Heroin Hydrochloride
Monohydrate

33 W-18

34 W-15

35 06-Monoacetyl
morphine HCl

36 Morphine HCl
trihydrate

The skewness considers the extremes of the dataset. A distribution is considered
symmetrical if the skewness is between −0.5 and 0.5, moderately skewed if the skewness is
between −1 and −0.5 or 0.5 and 1, and highly skewed if the skewness is less than −1 or
greater than 1. In his paper on series analysis, Grigoletto [15] argued that the more skewed
the data, either positive or negative, the less accurate the analysis is.

Excess kurtosis indicates how much the dataset resembles a normal distribution. This
parameter has been successfully used by Loperfido [16] for outlier detection. Distributions
similar to the normal distribution are called mesokurtic; those with positive excess kurtosis
are referred to as leptokurtic, while distributions with negative excess kurtosis are called
platykurtic [17]. Minimum and maximum values were also calculated to account for the
peaks of the spectra.

3.2.2. Principal Component Analysis (PCA)

PCA is a multivariate technique [18] that accomplishes dimensionality reduction by
linearly transforming the data into a new coordinate system, where the variation in the data
can be described with a set of new orthogonal variables, called principal components (PCs).
Its advantage is the ability to plot combinations of PC scores in order to identify clusters of
closely related data points. PCA was also used as an exploratory analysis method, in order
to evaluate to what extent the chosen classes form well-defined clusters.

3.2.3. Independent Component Analysis (ICA)

ICA is a technique often used in signal processing and presumes to separate a multi-
variate signal into additive subcomponents by making the hypothesis that one subcom-
ponent is Gaussian and all other subcomponents are statistically independent of each
other [19]. ICA can also be used for signals that are not generated by mixing, such as our
case, where we consider each ATR-FTIR spectrum as a complex multivariate signal. This
technique also uses graphical tools to plot combinations of components to identify clusters
of similar objects (compounds in our case).

Similarly to PCA, ICA was used as an exploratory method. Even if PCA and ICA have
the same role, they differentiate one from another. An important difference is that PCA is
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focused on dimension reduction, while ICA concentrates on separating information into
independent components [20].

3.2.4. Autoencoders

Autoencoders represent a subset of ANN used to obtain efficient representations of
data. The algorithm extracts several features and then attempts to recreate the original input
from these features [21]. The autoencoder is defined by two functions, i.e., the encoder
function and the decoder function. The first step in using these networks is to train both
the encoder and the decoder at the same time through gradient descent. The second step
consists of removing the decoder part of the model, leaving only the encoder. Thus, the
output of a model consists of the key features of the input. Those features can be used
in the same way as with PCA or ICA for a two-dimensional representation of spectra. In
our paper, we used a linear autoencoder trained on the whole dataset with an encoding
dimension of 10. For the graphical representation, we chose the best features for cluster
formation.

3.3. Machine Learning Methods (MLM)

Multiclass classification of the analyzed spectra was then performed with five machine
learning models, i.e., SVM [22], eXtreme Gradient Boosting (XGB) [23], Random Forest [24],
Gradient Boosting [25], and KNN [26]. These models were chosen due to their efficiency,
simplicity, and their fast implementation. Such models have been successfully used to
classify counterfeit drugs based on their infrared spectra [27].

For all the models, the dataset was randomly split into two partitions, summing up
60% of all spectra for training and 40% for testing. Each model was then trained on the
training set and evaluated on the testing set. The model, training, and test datasets were
then deleted. We define this process as a training session. Although the initial dataset for
each session was the same, the training and testing sets were different at each iteration,
because the entries were randomly selected each time. In other words, the models were
trained and evaluated each time on different selections of the same dataset. Each training
session was repeated 10 times. Furthermore, the hyperparameter selection was performed
using the Optuna 3.1.0 hyperparameter optimization framework.

The following parameters were calculated in order to assess and compare the perfor-
mances of the models:

Sensitivity(TPR) =
TP

TP + FN
(1)

Specificity(TNR) =
TN

TN + FP
(2)

Balanced accuracy(TNR) =
TPR + TNR

2
(3)

Matthews correlation coefficient =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

4. Results and Discussions
4.1. Exploratory Data Analysis
4.1.1. Statistical Measures

The purpose of the statistical analysis was to better understand the relationship be-
tween the three classes of drugs of abuse and the class of negatives. First, the mean
ATR-FTIR spectrum was calculated for each class for the qualitative assessment of the
data. The results, illustrated in Figure 1, indicate that all the targeted classes have the main
peak near 2800 cm−1. The strongest peak characterizes the amphetamines, followed by
the cannabinoids, opioids, and negatives. Although the peak at 2800 cm−1 of opioids and
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negatives have nearly the same intensity, their mean spectra can be easily differentiated
because the opioids have a second relatively strong peak at 2400 cm−1.
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Figure 1. Mean ATR-FTIR spectrum calculated for the amphetamines (blue), opioids (orange),
cannabinoids (green), and negatives (red) included in the database.

The statistical parameters calculated for the mean spectra are presented in Table 2. In
terms of the central tendency of the spectra, the mean values vary only between 0.0338
and 0.0452. The data dispersion shows that the class of amphetamines stands out with
a standard deviation of 0.0263, almost double of the next one, determined for the class
of cannabinoids. The relatively large standard deviation of the class of amphetamines
indicates that the spectra of these compounds are less similar than those included in the
other classes. This is probably due to the fact that the class of hallucinogenic amphetamines
is formed by three subclasses of compounds, i.e., 2C-x, DOx, and NBOMe amphetamines.

Table 2. Statistical parameters calculated based on the mean ATR-FTIR spectra of the targeted classes
of compounds, between 1500 and 4000 cm−1, with a resolution of 1.92 cm−1.

Amphetamines Opioids Cannabinoids Negatives

Mean 0.0338 0.0393 0.0452 0.0341

Standard Deviation 0.0263 0.0126 0.0128 0.0105

Skewness 1.877 1.261 2.567 0.7721

Excess Kurtosis 2.760 1.276 8.098 0.2311

Minimum 0.0126 0.0254 0.0258 0.0186

Maximum 0.135 0.0744 0.1072 0.0678

The skewness of the spectra of each class indicates that none ranges between −0.5 and
0.5, so none of the analyzed classes of compounds has a symmetrical distribution. The class
of negatives is a moderately skewed dataset, as its skewness ranges between 0.5 and 1. The
sets formed by the spectra of the three modeled classes of positives have skewness values
larger than 1, so they are highly skewed.

The distributions of the spectra of the three classes of positives are leptokurtic, as they
have large excess kurtosis. The largest excess kurtosis is recorded for the cannabinoids.
The negatives have a mesokurtic distribution. The excess kurtosis of this group being very
small (close to zero), their distribution may be considered practically normal. The results
obtained for the negatives are consistent with the fact that it contains the highest diversity of
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substances, with the rest of the classes consisting of substances with very similar molecular
structures and hence very similar ATR-FTIR spectra.

4.1.2. Principal Component Analysis

A two-component PCA was then performed as a preliminary exploratory analysis.
Figure 2 displays the score plot obtained for the first two PCs, which indicates that the
amphetamines form the most compact cluster. The points associated with the opioid and
cannabinoid compounds are much more spread out. Many of the points associated with
the negatives are overlying the clusters formed by the positives, especially the cluster
of opioids.
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4.1.3. Independent Component Analysis

The score plot obtained with a three-component ICA is displayed in Figure 3. It
indicates that ICA leads to better clustering, especially for the class of amphetamines. The
opioids and the cannabinoids also show a better grouping than in the case of PCA. There
is practically no improvement in the group of negatives, their associated points being
scattered on nearly the whole plot.

4.1.4. Transformers

The results obtained with 10 component transformers are presented in Figure 4. For
the class of amphetamines, this method leads to results similar to those obtained with
ICA. However, there is an improvement in the other three modeled classes: the opioid
and cannabinoid classes are more clearly separated, and the negatives tend to be better
discriminated as well.
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4.2. Classification Models

SVM, XGB, Random Forest, Gradient Boosting, and KNN were then used for classifica-
tion purposes. In order to assess the overall performances of the models, as measured based
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on the average values obtained for 10 runs, it is useful to analyze Table 3 in conjunction
with the confusion matrices that were determined for each model, which are displayed
in Figures 5–9. Table 3 indicates that the SVM and the XGB models are the most accurate,
their accuracy being nearly the same. At the same time, SVM has the highest specificity,
while XGB is the most sensitive model, all other models being significantly less specific or
sensitive. SVM and XGB have the best (and comparable) Matthews correlation coefficient,
while the coefficient determined for the other models is significantly smaller. The value
of this coefficient is positive for all the models, which indicates positive correlations in all
cases. The SVM and XGB models also have the highest ROC AUC, which has the same
value (of 0.91) for both models. The ROC AUC being very high (very close to 1), we may
conclude that these two models have a very good prediction rate.

Table 3. Standard performance metrics calculated for the machine learning models.

Model Balanced
Accuracy (%) Sensitivity (%) Specificity (%)

Matthews
Correlation
Coefficient

ROC AUC

SVM 92.08 ± 5.41 87.91 ± 5.16 96.25 ± 4.13 0.86 ± 0.04 0.91

XGBoost 91.99 ± 7.33 95.29 ± 7.59 88.69 ± 6.11 0.81 ± 0.05 0.91

Random forest 81.57 ± 8.66 71.15 ± 7.55 92.00 ± 8.74 0.67 ± 0.09 0.81

Gradient Boosting 76.46 ± 5.86 64.64 ± 4.95 88.28 ± 5.47 0.53 ± 0.05 0.76

K-Nearest Neighbors 66.88 ± 10.20 69.84 ± 10.20 90.64 ± 9.66 0.49 ± 0.12 0.80
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If we take into account that the tested models are tree-based models (XGB, Random
Forest, and Gradient Boosting), decision boundary models (SVM), and non-parametric
models (KNN), we may conclude that the decision boundary models performed best,
followed by the tree-based models and the non-parametric models.

The confusion matrices (Figures 5–9) indicate that, except for the Gradient Boosting
model, all the models classify the amphetamines with 100% accuracy. The Gradient Boost-
ing model is not that far behind, with an accuracy of 85.71%. The main difference between
the models, regarding the class of amphetamines, is related to the rate of false positives,
which is 11.11% for the SVM model, 33.33% for the XGB model, 60% for the Random Forest
model, 50.29% for the Gradient Boosting model, and 67.27% for the KNN model. In other
words, the classification of amphetamines with the Random Forest, Gradient Boosting, and
KNN models is only marginally better than a random guess.

The opioids are 100% correctly classified by the XGB model. The second-best correct
classification rate (90%) is recorded for the SVM model, with 10% of the opioids being
misclassified as negatives. The other models fail to assign the correct class identity for a
significant number of opioids.

The cannabinoids are recognized as such with 100% accuracy only by the SVM model.
The second-best model is the XGB model, the rest of the models often failing to distinguish
them, especially from the opioids. The other models have significantly lower performances
in the case of the cannabinoids as well.

Taking into account both the accuracy and the misclassification rates, the negatives
seem to be the hardest to classify correctly for all models, most probably because of the
large variety of substances that are forming this class in the dataset.

The availability of screening tools able to screen for illicit substances harmful to
humans in a fast and reliable way is essential for public safety. The models presented in
this paper can work in harmony with the currently recommended methodology of designer
drug detection.

We explored the use of five distinct and highly different multivariate models and
discussed their classification performance, next to the interpretation of the confusion matrix
for addressing the specifics of each class of substances used in the classification. All the
models are more specific than sensitive (see Table 3).

Both SVM and XGB models yielded accuracy results close to other systems previ-
ously built for screening for drugs of abuse [28,29]. However, it should be noted that
the later systems were built to detect only one (cannabinoids) [28] or two (hallucinogenic
amphetamines and cannabinoids [29]) classes of illicit drugs. In our case, the balanced accu-
racy is calculated for three classes of positives (amphetamines, opioids, and cannabinoids).
Hence, the results obtained with SVM and XGB may be considered very good, as both
models screen simultaneously for a larger number of classes of drugs of abuse, i.e., (2C-x,
DOx, and NBOMe) hallucinogenic amphetamines, cannabinoids, and opioids. Moreover,
it is reasonable to expect that their accuracy will increase once more ATR-FTIR spectra of
substances belonging to the targeted classes of compounds become available.

From the point of view of overall accuracy, the best-performing model was SVM. As
forensic screening systems designed to operate ATR-FTIR field (portable) analytical instru-
ments, the developed models should be able to perform cost-effective, non-destructive,
real-time, direct, on-site tests. However, the main objective of these models is to narrow
down the number of samples further subjected to in-depth analysis with more sophisti-
cated stationary analytical instruments in the laboratory. Only the samples tested on-site
and assigned a positive class identity (hallucinogenic amphetamines, cannabinoids, and
opioids) will be analyzed in the laboratory in order to determine their individual identity
(not only their class membership).

Hence, the essential feature of such a screening system is its efficiency in detecting
positives. In our case, no hallucinogenic amphetamine, cannabinoid, or opioid should be
misclassified as a (false) negative. For this reason, XGB is a better fit for the purpose than
SVM, as XGB yields no false negatives. While 10% of the opioids are erroneously classified
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as negatives by SVM, no amphetamine, opioid, or cannabinoid is misclassified as a negative
by XGB.

It is true that XGB has a higher rate of misclassified positives than the SVM model.
XGB misclassifies 33% of the negatives as amphetamines and 20% of the cannabinoids as
opioids, while SVM misclassifies only 11.11% of the negatives as amphetamines and 11.11%
as opioids. However, the false positives (false hallucinogenic amphetamines, cannabinoids,
and opioids), although also not desirable, are less important. As mentioned before, their
individual identity (molecular structure) will be determined during the tests subsequently
performed in the laboratory, based on a series of analytical methods that are recommended
for each class of drugs of abuse by specialized international agencies such as the United
Nations Office on Drugs and Crime [30,31]. In conclusion, SVM performs better than the
other tested models, but XGB is a better choice from a forensic point of view.

5. Conclusions

The high classification accuracy of the presented models indicates that artificial
intelligence-based strategies represent an important route to follow in the context of au-
tomatizing the processing of ATR-FTIR spectra during field operations. The model which
performs best under the classification strategy that takes into account only the overall
accuracy is SVM. However, as these are forensic tools, the classification strategy should
also consider the false negative rate. For this reason, XGB was found to be the best choice,
as it has a significantly lower false negative rate, while its overall accuracy is only very
slightly lower than that of SVM.

We believe that the screening systems presented in this paper still have an important
potential for improvement, especially in terms of distinguishing better between the classes
of positives (amphetamines, cannabinoids, and opioids). We aim to continue our work by
using strategies such as the following: increasing the number of positives included in the
training set; applying the classification algorithms not to their spectra, but to the PCA or
ICA scores derived from these spectra [32]; preprocessing the input with a feature weight
that enhances the variables having the largest modeling and/or discriminating power [33];
and using as input only the most relevant variables, as selected with techniques such as
Genetic Algorithms (GA) [29].
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