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Abstract: Aiming at the problem of low intelligence in the automatic navigation of the cuttage
and film covering multi-functional machine for low tunnels, this study proposed a navigation line
extraction method based on the improved YOLOv5s model, which can achieve the accurate extraction
of navigation lines based on two planting methods of seedling transplanting and direct seeding.
Firstly, we pre-processed the acquired images using inverse perspective transformation. Next,
the Coordinate Attention and Ghost modules were applied to improve the YOLOv5s architecture,
increasing the detection accuracy and speed of field targets. Finally, we extracted the feature points
and fit the navigation lines based on the shape features of the targets using the geometric method.
The experimental results showed that, compared with other algorithms, the accuracy of the proposed
algorithm could reach more than 96%, the accuracy of navigation line extraction reached 98%, and
the average detection time was 51 ms. The proposed method was robust and universal, and it can
provide reliable navigation paths for the cuttage and film covering multi-functional machine.

Keywords: navigation line; YOLOv5; image processing; computer vision

1. Introduction

The key to realize the intelligent operation of cuttage and film covering multi-functional
machines for low tunnels is automatic navigation technology. Machine vision navigation
is the focus of research to realize the automatic navigation of cuttage and film covering
multi-functional machines for low tunnels due to its high accuracy, low cost, better flexibil-
ity and continuity [1–3]. The key of machine vision navigation is the accurate extraction
of navigation lines in the complex field environment [4–7]. Currently, the extraction of
navigation lines in the field is mainly applied for mature crops, where crop row lines are
extracted while identifying crop features, and then navigation lines are fitted [8]. The
operation time of cuttage and film covering multi-functional machines for low tunnels is
usually during the seed sowing period and the early stage of crop growth. The reference
targets for extracting navigation lines are seed pits, field monopolies and seedlings. The
target features are similar to farmland features, and it is difficult to extract navigation lines
accurately and quickly using existing methods.

Deep learning techniques are capable of mining deep features of collected data in
complex farming environments with high robustness. Therefore, deep learning techniques
are widely used in various aspects of agriculture [9]. Many deep learning algorithms,
such as YOLO [10–12], Faster R-CNN [13], Mask R-CNN [14] and UNet [15], have been
applied to tasks such as weed localization [16], pest and disease identification [17] and fruit
ripeness detection [18]. In addition, deep learning techniques have been applied to field
navigation line extraction due to their advantages of high detection accuracy as well as fast
detection speed.

There has been a great deal of research on deep learning techniques in field navigation
line extraction to improve the detection accuracy while making the selection of target feature
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points more realistic. Zongbin Gao used an optimized pair of YOLOv3 Tiny-3p models
for kiwifruit trunk detection, and used a visualization method to analyze the features of
kiwifruit trunk images to effectively distinguish feature differences between trunks and
water pipes, improving the detection accuracy [19]. Bell et al. used a semantic segmentation
method based on convolutional neural networks to segment kiwifruit orchard roads or
trees for navigation path extraction [20]. André et al. used a deep learning approach to
detect grape trunk and vine trunk features to solve the problem of feature extraction in
vineyards [21]. Tan et al. performed the detection of seedling targets and were able to
obtain information on the location of seedlings while counting [22], by calculating the
centroid of the seedling detection frame to fit the navigation line. Louis et al. simplified the
CSP network in the YOLOv4 model for the early stages of maize and bean crops, added
an anchor point-based prediction head and implemented stem detection and localization
based on the stem localization method to make the feature points more closely match
the seed sowing position and improve the reliability of the navigation line fitting [23].
However, the target detection algorithms for field monopoles, seedlings and seed pits still
have the problem of low detection accuracy. In addition, the high complexity and many
parameters of many models lead to their insufficient real-time performance. Therefore,
it is necessary to design a field target detection algorithm that meets the requirements of
real-time recognition while ensuring the detection accuracy. In this paper, we propose
a navigation line extraction method based on an improved YOLOv5s model for field
target recognition and navigation line extraction, taking different planting methods of
direct seeding and seedling transplanting as the research objects. This method can provide
technical support for the real-time and accurate extraction of navigation lines for the cuttage
and film covering multi-functional machine.

2. Materials and Methods
2.1. Image Acquisition

In the study, we use a cuttage and film covering multi-functional machine for low
tunnels (Figure 1) as the image acquisition platform. The image acquisition equipment
uses an easy-to-disassemble and portable Jereh Microcom DW800_2.9 mm camera, which
is installed in the front of the self-propelled trellis machine frame at a distance of 0.8 m
from the ground; the horizontal angle between the camera’s optical axis and the ground is
35 degrees, and the specific installation details are shown in Figure 2. Image acquisition
was performed using VideoCap software, and the hardware was a Lenovo laptop with an
Intel Core i5-4200 CPU, 8 G of RAM and Windows 10 64-bit system.
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Figure 2. Field images: (a) direct seeding strip sowing method; (b) direct seeding hole sowing
method; (c) seedling transplanting method; (d) seedling transplanting method with weeds.

The images were collected at the agronomy experimental station of Shandong Agri-
cultural University with a resolution of 800 × 600 pixels and a format of JPG, totaling
1000 images. The images were classified into four types of planting methods: direct seeding
strip sowing method, as shown in Figure 2a; direct seeding hole sowing method, as shown
in Figure 2b; seedling transplanting method without weeds, as shown in Figure 2c; and
seedling transplanting method with weeds, as shown in Figure 2d. The distance between
the center line of each planting row and plant spacing was 60 cm and the field ridge spacing
was 200 cm.

2.2. Image Pre-Processing

For the problem wherein the feature area and scale of the field ridge target vary greatly,
the shape distortion caused by the camera distortion and shooting angle, etc., if the target
is directly labeled and detected, there are some irrelevant areas in the labeled frame with
similar features to the field ridge target, which affects the detection accuracy of the field
ridge target. Therefore, inverse perspective transformation is used to process the field
image dataset, as shown in Figure 3. In the top view of the obtained field image, the
field ridge targets are in a regular rectangular shape, and the shape features of the field
ridge targets can be accurately extracted while the irrelevant areas are eliminated during
labeling, which eliminates the influence of the above factors and improves the detection
accuracy of the field ridge targets. The detection accuracy of other targets is not affected,
while the detection accuracy of field ridge targets is improved because the features of
other targets, such as seedlings and seed pits, change less before and after the inverse
perspective transformation.

The pre-processed images were divided into a training set, validation set and test set
according to 5:3:2. The minimum outer rectangular box of the field targets in the images
was labeled using Labelimg to ensure that the rectangle contained as little background area
as possible; then, the field ridge, seed pit, seedling without weed, seedling with weed and
weed targets were named “ridge”, “seed”, “plant-1”, “plant-2” and “plant”, respectively.

Due to uncertainties such as shooting angles and weather, resulting in a complex
environment for image acquisition, a large number of images containing field ridges,
seedlings and seed pit targets are required in the training process in order to improve the
accuracy and robustness of the training model, enhance the generalization ability of the
model and prevent overfitting, which leads to poor detection. The number of images in
the dataset was increased using image augmentation methods such as panning, changing
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brightness, rotating angle and mirroring. The image augmentation results are shown
in Figure 4.
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2.3. Improved YOLOv5s Model

The convolutional neural network can not only extract low-level features such as
texture, shape, contour and color, but also can further extract abstract features with strong
classification and detection capabilities. YOLOv5s is the smallest version of the YOLOv5
series, with a size of only 14.50 Mb. On the other hand, the YOLOv5s algorithm uses neural
networks to learn the features needed for each type of target adaptively, with high detection
accuracy and fast inference, with the fastest detection speed reaching 140 frames/s. The
main structure of YOLOv5s consists of the input, backbone, neck network layer and head
detection. As the navigation line extraction of the cuttage and film covering multi-functional
machine for low tunnels possesses high requirements in terms of the accuracy and real-time
nature of the field target detection model, in order to improve the detection accuracy and
detection speed of field ridge, seedling and seed pit targets, two improvements are designed
for the field target awareness detection model based on the YOLOv5s architecture.
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(1) To solve the problem of false or missed detection of field targets in images due to scale
changes and different shapes, the Coordinate Attention (CA) mechanism is introduced
into the YOLOv5s architecture to improve the detection accuracy of field targets by
learning target features while suppressing non-target features.

(2) The backbone network of the YOLOv5s architecture is improved by using the Ghost
module to reduce the number of parameters and computation while eliminating
invalid and duplicate feature maps to achieve an effective increase in detection speed
while taking into account the detection accuracy.

The improved YOLOv5s architecture is shown in Figure 5
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2.3.1. Attention Mechanism

Since field ridge and seed pit targets are susceptible to the influence of a similar
environment within the labeled frame, which can lead to false detection and missed
detection, in order to further improve the accuracy and model performance of field target
detection, the CA mechanism is introduced into the YOLOv5s architecture to learn and
assign weights to the importance of each local feature, to achieve the purpose of enhancing
the attention of field targets while suppressing the influence of similar environments.

The CA mechanism is able to consider both the inter-channel relationships and location
information of features. It can capture long-term dependencies along one spatial direction
while retaining accurate location information along another spatial direction, which helps
to locate the target of interest more accurately. The CA module is added at the end of the
backbone. Firstly, to obtain the aggregated feature maps of the image width and height,
the CA module divides the input feature maps into two directions—width and height,
respectively—for global average pooling to obtain a pair of direction-aware output feature
maps. This path can be calculated based on Equations (1) and (2), as shown below.

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)

where W, H and c are the width, height and dimension of the input feature map, respectively.
x is the given input. zh

c (h), zw
c (w) are the outputs of the c-channel with height h and width

w, respectively.
Then, the feature maps in the width and height directions of the obtained global

perceptual field are stitched together, after which they are fed into a convolution module
with a shared convolution kernel of 1 × 1 to reduce their dimensionality to the original
C/r. The batch-normalized feature map F1 is then fed into the sigmoid activation function
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to obtain a feature map f in the shape of 1 × (W + H) × C/r. This path can be calculated
based on Equation (3).

f = δ(F1(
[
zh, zw

]
)) (3)

where [,] is the concatenate operation along the spatial dimension, δ is the nonlinear activa-
tion function, f is the intermediate feature mapping that encodes the spatial information in
the horizontal and vertical directions, F1 is the 1 × 1 convolutional transform function, and
r is the scaling rate.

Then, we decompose f into 2 separate tensors along the spatial dimensions f h ∈ RC/r∗H

and f w ∈ RC/r∗W . We use the other two 1 × 1 convolution transforms Fh and Fw to trans-
form fh and fw into tensors with the same number of channels as the input X, respectively.
The output is as shown in Equation (4).

gh = σ(Fh( f h))
gw = σ(Fw( f w))

(4)

where σ is the sigmoid activation function.
In order to reduce the complexity and computational effort of the model, the number

of channels is reduced by using an appropriate reduction ratio. The output gh and gw is
expanded and used as the weight of attention, respectively. Then, the final output Y of the
CA module can be written as shown in Equation (5).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (5)

The YOLOv5s architecture, with the introduction of the CA module, is able to ac-
curately identify seedling and seed pit features with small features while detecting field
ridges that are easily missed. The structure of the CA module is shown in Figure 6.
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Figure 6. CA module structure diagram.

2.3.2. Backbone Network Optimization

Since the field target detection model of the cuttage and film covering multi-functional
machine for low tunnels not only needs to accurately identify field targets in various
situations in complex field environments, but also needs to compress the size of the model
as much as possible to facilitate deployment in hardware devices, the study optimizes and
improves the backbone network of the YOLOv5s architecture. The number of network
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weight parameters and their size are reduced to achieve a lightweight and improved design
of its field target recognition network while ensuring detection accuracy.

The backbone network of the YOLOv5s architecture contains four bottleneck CSP
modules containing multiple convolutional layers. Although the convolutional operation
can extract features in the image, the large number of convolutional kernels will lead to
an increase in the number of parameters in the recognition model, while the CA module
added in the YOLOv5s architecture increases the computational volume and detection time,
although it can improve the accuracy of target detection. To ensure the target detection
accuracy while reducing the detection time and computation, the backbone network needs
to be optimized. The backbone network in the YOLOv5s architecture, when extracting
feature maps from the input images, will have a large number of duplicate or feature-
obscure feature maps that can be eliminated, as shown in Figure 7. To reduce the processing
of such redundant feature maps, a lightweight convolutional network Ghost module
that obtains a large number of feature maps through a small number of calculations is
used to generate a large number of feature maps by combining feature maps using linear
convolution while reducing the number of convolutional operation channels, and Figure 8
shows the structure of the Ghost module schematically. Compared with other networks, it
is able to obtain higher accuracy with the same amount of computation, and it requires less
computation with similar accuracy in the image classification task.
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2.3.3. Network Training Hyperparameters

The improved YOLOv5s model is built on Win10 with Python 3.8, Pytorch 1.9.0
and Cuda 11.1. The hardware device GPU is RTX3060, and the CPU is Core i7, with
64 GB RAM. The program code is written in the Python language, using CUDA, Cudnn,
OpenCV and other required libraries to realize the training and testing of the field target
recognition model.

In the training process, the improved YOLOv5s model is trained by setting the batch
size of the model training to 4. The regularization is performed by the BN layer each time to
update the weights of the model. The momentum factor (momentum) is set to 0.937 and the
weight decay rate (decay) is set to 0.0005. Both the initial vector and IOU (joint intersection)
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thresholds are set to 0.01. The number of training steps is set to 1000. After training, the
obtained weight files of the recognition model are saved and the performance of the model
is evaluated using a test set.

2.4. Navigation Line Fitting Method

After obtaining the target detection results, the planting method is determined using
the detection labels. For the direct seeding hole sowing method and seedling transplanting
planting method, extracting the location information of seed pits and seedlings’ target
detection frames, the center of the detection frame is used as the feature point, and the
feature points within 50 pixels of the center of the image are grouped; if the number of
feature points is greater than 4, the planting row is judged to be odd, and the center line of
the planting row is fitted with least squares for the grouped feature points as the navigation
line; in other cases, the planting row is judged to be even, and the feature points are fitted.
The difference between the feature points and the horizontal coordinates of the poles is
calculated, the center line of the planting rows in each group is fitted by the least squares
method according to the positive and negative of the difference, and the angle bisector of
the two is extracted as the navigation line. For the direct seeding method, if there are odd
planting rows in the image, i.e., there is a field ridge in the center of the image, the border
line on the left and right sides of the detection frame is used as the characteristic straight
line, and the angle bisector of the two is the navigation line; if there are even planting rows
in the image, i.e., the field ridges are distributed on both sides of the image, the diagonal
line of the detection frame on the left and right sides of the calculated center is used as
the characteristic straight line, and the angle bisector of the two is the navigation line. The
actual target detection results of the improved YOLOv5s model and the navigation line
extraction results are shown in Figure 9.
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Figure 9. The actual detection effect of YOLOv5s model and the results of navigation line extraction:
(a) the results of direct seeding hole sowing method with odd planting rows; (b) the results of direct
seeding strip sowing method with odd planting rows; (c) the results of seedling transplanting method
with odd planting rows; (d) the results of direct seeding hole sowing method with even planting
rows; (e) the results of direct seeding strip sowing method with even planting rows; (f) the results of
seedling transplanting method with even planting rows.

3. Results
3.1. Improved YOLOv5s Model Training Results

In the study, the detection performance of the improved YOLOv5s model was evalu-
ated using the mean average precision (mAP) and average detection time. The training
results are shown in Figure 10. The detection frame loss value (Box_loss) was 0.02, and the
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classified loss value (cls_loss) was 0.001, which indicated that the model could correctly
frame the detection targets and also could accurately classify seedlings and weeds in the
images. The detection accuracy of seedlings and weeds was 99% and 92%, respectively. For
the seed pit target, its detection accuracy was 96%, and the system could accurately detect
the small area and irregularly shaped seed pit target from a long distance. The detection
accuracy of the field ridge target was only 94%, but in the actual target detection process,
only the main location information of field ridges in the center or on both sides of the image
is needed. The field ridges, which could not be detected, are at the edge of the image. This
does not adversely affect the accuracy of the navigation line extraction. The number of
images detected per second was 55, which improved the accuracy of target detection while
ensuring the detection speed.
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Figure 10. Training results: (a) evaluation of loss function curves for classification (cls_loss curve);
(b) evaluation of loss function curves for detection frame positioning (Box_loss curve); (c) mean aver-
age precision at IoU value of 0.5 (mAP_0.5 curve); (d) precision–recall curves of each detection target.

3.2. Ablation Experiments

To verify the effectiveness of using different improvement methods, ablation experi-
ments were performed on the improved YOLOv5s model, including the CA mechanism,
Ghost module and image pre-processing. During training, the initial hyperparameters of
each model were consistent, and the results are shown in Table 1. The detection accuracy of
the YOLOv5s model with the CA module increased by 4.7 compared with the unimproved
YOLOv5s model, but the detection time increased and the effect of invalid features was
effectively suppressed. The detection accuracy of the YOLOv5s model with the inverse
perspective transformation processing dataset was improved by 1.1% and the detection
speed was reduced by 4 ms. It effectively reduces the influence of non-target regions in the
detection frame; in addition, the detection speed is improved by 6 ms after adding the Ghost
model, although the detection accuracy is reduced by 1.8%. The final results show that the
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improved YOLOv5s has improved the detection accuracy by 5% and detection speed by
3 ms; thus, it can reduce the detection speed while maintaining the detection accuracy.

Table 1. Graph of ablation experiment results.

CA Module Ghost Module Inverse Perspective
Transformation mAP/% Average Detection

Time/ms

91.2 21√
95.9 25√
89.4 15√
92.3 17√ √ √
96.2 18

3.3. Comparison Experiments with Different Networks

To further analyze the recognition performance of the proposed algorithm for field
targets, we compared the recognition results using different target detection algorithms.
The improved YOLOv5s model was compared with the unimproved YOLOv5s, YOLOX-
s, YOLOv3, YOLOv7 and Faster-RCNN. The mAP value and the average recognition
speed of the models were used as evaluation metrics, which are shown in Table 2. The
improved YOLOv5s recognition model proposed in the study possessed the highest mAP
value, which was 5% higher than that of the unimproved YOLOv5s network, and 13.5%,
8.3%, 7.6% and 1.6% higher than the values for the Faster-RCNN, YOLOv3, YOLOX-s and
YOLOv7 networks, respectively. This indicated that the proposed algorithm was the most
suitable for field target recognition among the five methods. Regarding the recognition
speed of the model, the average detection speed of the improved YOLOv5s model was
18 ms, which was 2.4, 2, 1.8, 1.4 and 1.2 times higher than the efficiency of the Faster-RCNN,
YOLOv3, YOLOX-s, YOLOv7 and unimproved YOLOv5s networks, respectively, indicating
that the model could meet the detection requirements of field targets.

Table 2. Object detection network test results.

Object Detection Network Map/% Average Detection Time/ms

Faster-RCNN 82.7 43
YOLOv5s 91.2 21
YOLOv3 87.9 36
YOLOX-s 88.6 32
YOLOv7 94.6 26

Improved YOLOv5s 96.2 18

3.4. Test Results of Navigation Line Extraction Method

The images in the test set were selected as the object of the navigation line extraction
test. The heading angle parameters of the navigation line were obtained and compared
with the manually observed heading angle, which was greater than 2◦ and was judged to
be an extraction error. The test results of navigation line extraction method are shown in
Table 3. After comparing each image, the images could be divided into three categories:
(1) if the key target (the center of the image and the targets near the center on both sides) in
the image was detected accurately, then the navigation line could be extracted accurately;
(2) if the key target in the image was missed, there was little effect on the navigation line
extraction when it occurred in the image of the direct seeding hole sowing method and
seedling transplanting planting method; navigation lines could be extracted incorrectly
or even impossible to extract when it occurred in the image of the direct seeding strip
planting method; (3) if the key target in the image was misidentified, the image could not
be determined as the planting method and the navigation line could not be extracted. The
average processing time was 51 ms, and no weed and seedling misclassification occurred
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in the experiment, which effectively proved the accuracy of the navigation line extraction
of field ridge targets.

Table 3. Navigation line extraction test results.

Image Type Accuracy/% Average Processing Time/ms

direct seeding strip sowing method 96 86
direct seeding hole sowing method 97 47

seedling transplanting method without weeds 99 31
seedling transplanting method with weeds 99 39

4. Conclusions

In the study, a navigation line extraction method based on the improved YOLOv5s
model was proposed to achieve the fast and accurate detection of field targets and improve
the accuracy of navigation line extraction. The Ghost module was used in the improved
YOLOv5s model to optimize the network architecture, which reduced the computation
of the feature map extraction step and improved the real-time target detection; the CA
module was introduced in the backbone network to improve the target detection accuracy
while reducing the occurrence of missed and false detections. In addition, the study used
the inverse perspective transformation to pre-process the acquired images, in order to
reduce the invalid areas in the labeled frame. The ablation test results showed that the
proposed improved YOLOv5s model possessed a slightly lower average detection speed
compared with the unimproved YOLOv5s model, but the detection accuracy was improved
by 9.7 percentage points. To verify the detection effectiveness of the improved YOLOv5s
model field target detection model, the study compared it with Faster-RCNN, YOLOv3,
YOLOv7 and YOLOX-s. The results showed that the improved YOLOv5s model possessed
the best detection accuracy and detection speed. The morphology-based navigation line
fitting method was also proposed to achieve navigation line fitting under different planting
methods for different types of field targets by extracting feature points based on the mor-
phological features of the targets, with average accuracy of 98% and an average processing
time of 51 ms. However, due to the large similarity between ridge target features and the
background, it is still possible to improve the accuracy of target detection. It is planned to
reduce the impact of the field image background on image processing in the future, and
further improve the accuracy of navigation line extraction.

The proposed method was applicable to the detection of the navigation path of the
cuttage and film covering multi-functional machine under different planting methods. Its
accuracy rate met the requirements of operation, and it will provide a theoretical basis
for realizing the automatic driving of visual navigation for cuttage and film covering
multi-functional machines.
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