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Abstract: A solution is given to the spatial-temporary distribution of temperature in the volume of
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Keywords: Earth’s core; thermal conductivity equation; thermal radiation power; Laplace conversion;
Green function; Helmholtz equation

1. Introduction

The question considered in this paper is related to the analysis of the distribution of
temperature within the Earth’s surface. Ideally, we believe that it should only be caused by
thermal radiation coming from the nucleus, the temperature of which, according to some
independent, objective sources [1–3], is approximately equal to 5000÷ 6000 K.

Based on the estimates given, for example, by the authors of [4–6] (see also [7–9]), the
size of the inner core may vary slightly, but the approximate value of its average radius can
be considered equal to about rN = 1000 km. It is quite clear that the point source model
does not “work” here; therefore, the use of the thermal conductivity equation

.
QN(t)δ(r),

where
.

QN(t)—is a power of thermal radiation core, is not acceptable. This means that to
adequately account for the effect of thermal radiation of the core on the spatial-temporal
distribution of temperature throughout the internal volume of the Earth V −VN , where

V = 4πR3

3 —its volume, R—is its radius, and VN =
4πr3

N
3 —the volume of the spherical core,

provided that the surface temperature can be considered constant, we need to consider the
final value rN (see Formula (18)).

Formally, this is not difficult to do if you use any local distribution, which is the most
convenient for task at hand. From our perspective, the most suited to such a trial function
may well be Gauss’s distribution, which, in a three-dimensional symmetrical case, can be
presented in the following form

.
QN =

.
Q0(t)e

− r2

r2
N (1)

where the central distance r is calculated from the center of the core, which we choose as
the beginning of the coordinates. That is, the radius-the vector at an arbitrary point of the
region r ∈ [V −VN ] has coordinates r = (x, y, z). The power of radiation attributed to the
unit of the volume of the nucleus, which is marked as

.
Q0(t), is generally a function of time,

which will then be accurately taken into account. In accordance with this equation, thermal
conductivity can then be presented in the form of

cP
∂T
∂t

= κ∆T −
.

Q0(t)e
− r2

r2
N (2)

where cP—the average volume of the Earth is its isobaric heat capacity, classified as a unit
of volume and κ—is the average coefficient of thermal conductivity of the Earth. It is
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necessary to underline here that the average thermal conductivity of the Earth is a rather
complex function of temperature, pressure, and other physical parameters. Note that
the temperature appearing in κ is the constant temperature of the Earth’s crust T0, which
does not affect the distribution of temperature over the volume of the Earth according to
Equation (2). An analogical approach was used, for example, in the work of [10], where the
formation process of thermodynamic equilibrium in solids was investigated, considering
the connection with the thermostat, a role played by the external environment.

Note also that for Boltzmann’s constant kB in Equation (2), we used an equal unit. In
the final response, this will be taken into account.

The Equation (2) should be decided on the basis of the initial and boundary conditions
that can be formulated, for example, as follows. The initial distribution of temperature by
the volume of the Earth outside the core will be set in the form of anisotropic law

T(r, t)|t=0 = 〈T〉+ T0 sin θ cos ϕ (3)

On the Earth’s surface, which we consider spherical, the temperature will be set in the
form of

T(r, t)|r=R = 〈T〉+ T1(R)− (T0 sin θ cos ϕ + T1(R))e−αt (4)

where θ is the azimuth angle of the spherical coordinate system is, and the ϕ—is a polar
angle, temperature 〈T〉 represents a very definite temperature of the countdown, starting
from which we can correctly estimate the temperature at any point on the Earth’s surface,
depending on the azimuth angle θ and polar ϕ angle.

The simplest dependence on angular variables we choose will have little impact on
the subsequent estimate of the coefficient α, which will be calculated below, as well as the
radial dependence T1(r) after the equation is solved (2).

2. Methods. Solving the Equation (2)

To solve problems (2)–(4), it is convenient to use the decomposition method of the
searchable function T(r, t) in Laplace integral over time.

Indeed, according to well-known formulas of direct and reverse decomposition [10],
we have the following transformation

Tp(r) =
+∞∫
0

T(r, t)e−ptdt (5)

and

T(r, t) =
1

2πi

i∞+σ∫
−i∞+σ

Tp(r)eptdp (6)

where σ > 0, Tp(t)—is a Laplace’s image of the function you are after, and Re p > 0.
After substitution (6), in Equation (2), we obtain

∆Tp + λ2Tp =

.
Qp

κ
e
− r2

r2
N (7)

where the parameter λ =
√

p
χ , χ = κ

cP
—is an average temperature conductivity coefficient

of Earth and
.

Qp—Laplace–image of the function of the power of thermal radiation
.

Q0(t),
that is

.
Qp =

+∞∫
0

.
Q0(t)e

−ptdt (8)



Inventions 2021, 6, 90 3 of 6

Equation (7) is easily solved by the Green function method [11,12] (see also the
papers [13–17]), which, in the results, provide a solution to the species

Tp(r) = Tp(r)−
.

Qp

4πκ

∫
V−VN

cos λ
∣∣∣r− r

′
∣∣∣e− r′2

r2
N dV′∣∣r− r′

∣∣ (9)

where Tp(r)—solves homogeneous Equation (7), i.e.,

Tp(r) =
(

C1pr +
C2p

r2

)
sin θ cos ϕ (10)

where C1p, C2p—are the integration constants.
To convert the internal integral to (9), it is convenient to move to a spherical system of

coordinates with a polar axis directed along a fixed radius-a vector r.
As a result, we obtain

Jvn =

R∫
rN

π∫
0

2π∫
0

r′2 cos λ
∣∣∣r− r

′
∣∣∣e− r′2

r2
N∣∣r− r′

∣∣ dr′ sin θdθdϕ = 2π

R∫
rN

r′e
− r′2

r2
N
[
sin λ

(
r + r′

)
− sin λ

∣∣r− r′
∣∣]dr′ (11)

Substituting expression (11) in image (9), we find

Tp(r) = Tp(r)−
.

Qp

2κ

R∫
rN

r′e
− r′2

r2
N
[
sin λ

(
r + r′

)
− sin λ

∣∣r− r′
∣∣]dr′

Performing simple transformations associated with the difference in sinuses, bringing
them to a factorized appearance, and applying the acceptance of integration into parts as a
result of simple calculations, we find

Tp = Tp(r)−

−
.

Qpr2
N

κλr

 cos λr sin λrN
e − e

− R2

r2
N sin λr cos λR + λ

cos λr
r∫

rN

e
− r′2

r2
N cos λr′dr′ − sin λr

R∫
r

e
− r′2

r2
N sin λr′dr′

.
(12)

Recall that here rN ≤ r ≤ R.
After substitution of the image (12) in the conversion (6) with the view (10), we come

to the next solution

T(r, t) = 〈T〉+
(

C1(t)r +
C2(t)

r2

)
sin θ cos ϕ− 1

2πi
r2

N
κλr

i∞+σ∫
−i∞+σ

.
Qp

 cos λr sin λrN
e − e

− R2

r2
N sin λr cos λR+

+λ

cos λr
r∫

rN

e
− r′2

r2
N cos λr′dr′ − sin λr

R∫
r

e
− r′2

r2
N sin λr′dr′

 eptdp.

(13)

To clarify the nature of temperature distribution by Earth volume, we need to know
the temporal dependence of the power of the thermal radiation core. As a reasonable
assumption, we may choose a function

.
Q0(t) in the form of exponential dependence (see

condition (4)) as
.

Q0(t) =
.

Q0e−αt (14)

where α—means that there is a small radiation fading factor.
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As a result of the substitution of dependence (14) in the definition for the image of
Laplace (8), we find that

.
Qp =

.
Q0

α + p

Consequently, the general expression (13) becomes quite specific and is easily cal-
culated by the theory of deductions, according to which the only simple pole of under
integration expression is located on the actual axis of a complex argument p in the point
p = −α.

Thus, in accordance with (13), we come to the next analytical answer to the ques-
tion posed at the beginning of the article regarding the spatial-temporal distribution of
temperature in the volume of the Earth

T(r, t) = 〈T〉+
(

C1(t)r +
C2(t)

r2

)
sin θ cos ϕ−

− r2
N

.
Q0e−αt

rκ

√
χ
α

 ch
(

r
√

α
χ

)
sh
(

rN

√
α
χ

)
e − e

− R2

r2
N ch

(
R
√

α
χ

)
sh
(

r
√

α
χ

)
+

+
√

α
χ

ch
(

r
√

α
χ

) r∫
rN

e
− r′2

r2
N ch

(
r′
√

α
χ

)
dr′ + sh

(
r
√

α
χ

) R∫
r

e
− r′2

r2
N ch

(
r′
√

α
χ

)
dr′

 .

(15)

Accounting for the boundary condition (4), decision (15) should be rewritten as

T(r, t) = 〈T〉+ T0(r, t) sin θ cos ϕ+

+
r2

N

.
Q0(1−e−αt)

rκ

√
χ
α

 ch
(

r
√

α
χ

)
sh
(

rN

√
α
χ

)
e − e

− R2

r2
N ch

(
R
√

α
χ

)
sh
(

r
√

α
χ

)
+

+
√

α
χ

ch
(

r
√

α
χ

) r∫
rN

e
− r′2

r2
N ch

(
r′
√

α
χ

)
dr′ + sh

(
r
√

α
χ

) R∫
r

e
− r′2

r2
N ch

(
r′
√

α
χ

)
dr′

 .

(16)

3. Results
Assessment of the Time of the “Life” of the Earth

The fading rate α can be calculated based on the condition

lim
t→∞

T(r, t)|r=R = 〈T〉 (17)

where the right part of this equality, according to decision (16), has a very transparent
physical meaning, as it represents the difference between stationary temperatures, namely

〈T〉 = T0(R)− T1(R, ∞)

The solution (16) can be reduced to the expression

〈T〉 = T0 +
r2

N

.
Q0

Rκ
ch
(

R
√

α

χ

) R∫
rN

e
− r′2

r2
N ch

(
r′
√

α

χ

)
dr′,

From which, we can see that

α =
χ

(R− rN)
2 ln2

(
Rκ(〈T〉 − T0)

.
Q0r3

N

)
(18)
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Magnitude
.

Q0 is worth further discussion. The energy of radiant radiation according
to the Planck formula, related to the unit of volume, is given by a known dependence [18]

ε = σT4,

where σ =
k4

Bπ2

30(}c)3 is a Stefan-Boltzmann’s constant; c—speed of light; }—Planck’s constant.

On this basis, it is possible to write down that
.

Q0 =
4πr2

N cε
VN

= 3cε
rN

or

.
Q0 =

3cσT4
N

rN
(19)

Substituting (19) in (18) obtains

α =
χ

(R− rN)
2 ln2

(
Rκ(〈T〉 − T0)

3cσT4
Nr2

N

)
(20)

It should be noted here that radiant heat exchange is a rather slow process. If there
are other efficient mechanisms for the return of thermal energy from the core, Formula
(20) can only estimate the upper limit of the cooling time of the Earth’s core, which will
lead to a natural stop of its rotation around its axis; for example, endothermic chemical
reactions occurring in the Earth’s core or the purely hydrodynamic inhibition of the nucleus
in the surrounding melt. However, both of these effects can only lead to a slight change in
attenuation coefficient α.

To numerically estimate the maximum “lifetime” of the core, which is obviously
determined by reverse dependence τN = 1

α , we can use numerical values, as given, for
example, in [19].

Indeed, believing that χ = 1.4 · 10−3 cm2/s, R = 6.4 · 108 cm, rN ∼ 1000 km = 108 cm,
c = 3 · 1010 cm/s, σ ≈ 10−15 SGS, TN = 5000 K, κ = 3 · 10191/cm·s, 〈T〉 ∼ T0 ∼ 300 K
∼ 4 · 10−14 erg.

After their substitution in Formula (20), we find

1
τN

=
χ

(R− rN)
2 ln2

(
Rκ(〈T〉 − T0)

3cσT4
Nr2

N

)
∼ 1.4 · 10−3

25 · 1016 ln2
(

6.4 · 108 · 3 · 1019 · 3 · 10−14

9 · 1010 · 10−15 · 625 · 1012 · 1016

)
≈ 2 · 10−18 (1/s) (21)

That is, the maximum allotted “time of life” of the Earth’s core should be approxi-
mately τN = 5 · 1017 s. In terms of years, this will be about 16 billion years.

4. Discussion

The analytical approach proposed in the paper can be used as the basis for experimen-
tal verification of the results to obtain more accurate information about the cooling time of
the Earth’s core.

The calculated value of the cooling time of the core showed a quite optimistic and
reasonable value (about 16 billion years), which correlates with the results of other authors,
according to which this time ranges from 12 to 20 billion years.

For example, in the work of [5], the mobility of the Earth’s core was investigated. Ac-
cording to the results obtained by the authors, the attenuation time of the nuclei oscillations
correlates well with the above estimate (21). The authors of [6] studied the dynamics of the
nucleus in the surrounding melt, and, according to the authors, the time they obtained is
also consistent with the result (21).

It is worth paying attention, however, to the fact that the analytical approach proposed
above, based on an alternative method of calculation, is based not on the evaluative, as
in many authors, but on the exact solution to the problem. This, in our opinion, is very
important from a methodological perspective.
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Moreover, it should be underlined that the resulting assessment does not contradict
the results of hydrocarbon analysis (see, for example, [1,2,20,21]).

5. Conclusions

At the end of the article, it is worth paying attention to several important results:

1. An analytical description of the distribution of temperature by Earth volume, caused
by thermal radiation of the hot core, is proposed.

2. The distribution of temperature by Earth volume, in the form of a function from the
radial coordinate r and the moment of time t, was found.

3. A numerical estimate is made of the upper limit of the Earth’s “life” time, which,
according to the above result, may correspond to about sixteen billion years.

Funding: This research received no external funding.
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