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Abstract: Currently, one of the most effective algorithms for state estimation of stochastic systems
is a Kalman filter. This filter provides an optimal root-mean-square error in state vector estimation
only when the parameters of the dynamic system and its observer are precisely known. In real
conditions, the observer’s parameters are often inaccurately known; moreover, they change randomly
over time. This in turn leads to the divergence of the Kalman estimation process. The problem
is currently being solved in a variety of ways. They include the use of interval observers, the use
of an extended Kalman filter, the introduction of an additional evaluating observer by nonlinear
programming methods, robust scaling of the observer’s transmission coefficient, etc. At the same
time, it should be borne in mind that, firstly, all of the above ways are focused on application in
specific technical systems and complexes, and secondly, they fundamentally do not allow estimating
errors in determining the parameters of the observer themselves in order to compensate them for
further improving the accuracy and stability of the filtration process of the state vector. To solve
this problem, this paper proposes the use of accurate observations that are irregularly received in
a complex measuring system (for example, navigation) for adaptive evaluation of the observer’s
true parameters of the stochastic system state vector. The development of the proposed algorithm is
based on the analytical dependence of the Kalman estimate variation on the observer’s parameters
disturbances obtained using the mathematical apparatus for the study of perturbed multidimensional
dynamical systems. The developed algorithm for observer’s parameters adaptive estimation makes
it possible to significantly increase the accuracy and stability of the stochastic estimation process as a
whole in the time intervals between accurate observations, which is illustrated by the corresponding
numerical example.

Keywords: complexing measurement system; disturbances; Kalman filter; measurement matrix;
multidimensional dynamical systems; system state vector; unmanned vehicle; navigation

1. Introduction

To assess the stochastic systems state, a significant number of different algorithms
and techniques [1] have been developed, among which one of the most effective is the
Kalman filter [2]. However, often, a problem arises with the practical application of the
Kalman filter. It is due to the fact that this filter calculates an optimal root-mean-square
error (RMS-error) of state vector estimation only when both the parameters—system and
state vector observer—are known exactly [3]. When operating real systems—control,
communications, navigation, etc.—the parameters of both the system itself and its state
vector meters, as a rule, change randomly over time. This is especially evident in imperfect
dynamical systems, the interest in the study of which has only been increasing lately [4–8].
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Such instability of the system parameters when trying to assess its current state causes
the divergence of the Kalman estimation process. This disadvantage of the Kalman filter
requires the development of appropriate methods to ensure, with random variations of
the observer’s parameters, a given accuracy in system state estimation [9]. To date, the
following approaches are known to solve this issue:

1. Synthesis of observers with the property of invariance to disturbances of their own
parameters [10].

2. Extending the state vector estimated by the Kalman filter due to undefined parame-
ters [10,11].

3. Two-stage estimation of the system state parameters using the extended Kalman filter,
which reduces its computational complexity when expanding the state vector [12].

4. Complexing of filtering algorithms with fuzzy logic algorithms [13] or control algo-
rithms [14] to compensate for random disturbances.

5. Development of so-called “interval observers” for systems with nonstationary fluctu-
ating parameters whose variations are within the specified intervals [15,16].

6. Extension of the observation vector based on an additional evaluating observer
formed using nonlinear programming [17].

7. Robust scaling of the observer’s transmission coefficient, which increases the stability
of the evaluation process [18].

8. Ensuring the invariance of the Kalman filtering process to parametric disturbances of
the observer through the use of integrated neural networks [19], etc.

Each of the above approaches is focused, as a rule, on use in a specific technical system,
which is due to the significantly nonlinear type and the complexity of latter dynamics. The
analysis of the practical use of adaptive assessment methods allows us to conclude about
their effectiveness only under the condition of their problem-oriented development for
a specific class of information and measurement systems, among which the most widely
used in practice is the class of complexing measurement systems. For these systems, it
is characteristic to process measurements both according to the primary indications of
“rough” sensors (sensors of low accuracy) and according to the indications of high-precision
sensors, according to which the correction of primary measurements is carried out. Such a
correction is made, as a rule, at certain (often random) time intervals that exceed the clock
cycle of “rough” measurements. As such systems, the following can be cited:

1. Integrated inertial-satellite navigation systems, in which the measurements of the iner-
tial navigation systems, whose errors grow over time, are corrected according to the in-
dications of the satellite navigation systems which in this case is the reference [20–23].

2. Orientation and navigation systems of mobile robots, in which the navigation pa-
rameters of the robot are adjusted based on taking into account the zero speed of the
lower point of the wheel (or the robot’s foot) at the moment of contact with the earth’s
surface [24].

3. Transport information and measurement systems of various types—railway, auto-
mobile, marine, unmanned aerial vehicle (UAV), etc., in which the orientation and
navigation parameters of an object are corrected at the time of passing reference
points with precisely known coordinates (for example, traffic lights, eurobalises, radio
frequency tags, buoys, etc.) [25–30].

4. Complexing orientation and navigation systems based on inertial sensing elements,
allowing to solve the navigation problem inside confined rooms [31] and so on.

Currently, the estimated state parameters are adjusted, as a rule, by directly replacing
their current estimates with their corresponding accurate measurements without any
change in the estimation algorithm or its parameters. With such an approach, firstly,
estimation errors do not decrease in the time interval following the moment of the current
accurate measurement (which is observed in the measurement and navigation systems
listed above) [20–25], and, secondly, it is impossible to estimate the errors in determining
the observer’s parameters itself.
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Due to the need to solve this problem, the possibility of using accurate observations
received at some (irregular) points in time in the measurement system is considered below
to develop an algorithm for adaptive evaluation of the true observer’s parameters of
the object state vector, the use of which in the structure of the filtering algorithm will
significantly increase its accuracy and stability.

Previously, the idea of using accurate observations entering the measuring system at
irregular (including random) points of time was considered during adaptive estimation
of the a posteriori covariance matrix [32,33], as well as measurement noise covariance
matrix in the Kalman filter [34], which, compared with the traditional scheme, significantly
reduced estimation errors. Unfortunately, the approach described in Sokolov et al. (2018,
2021), Sokolov and Novikov (2021) [32–34], cannot be applied to solving the problem of
estimating the matrix of itself observer’s parameters, since the right part of the filter equa-
tion depends on the matrix significantly nonlinearly. In this regard, a different approach
to solving this problem is considered below, based on a mathematical apparatus that is
fundamentally different from the one used in [32–34]—on the mathematical apparatus
for studying disturbed multidimensional linear systems [35]. As shown below, the use
of this mathematical apparatus can significantly improve the accuracy and stability of
the Kalman filtering process under the conditions of the observer’s parametric distur-
bances. However, at the same time, the major difficulty of using it is the impossibility of
approximating the variations of the observer’s parameters with white Gaussian noise, as
shown in Reference [35] and allowed us to obtain simple recurrent dependences of the
estimation error on the variations of the filter parameters there. In the vast majority of
practical applications, a random change in the observer’s parameters over time occurs
rather slowly [10–16], which makes it impossible to use the previously obtained ratios
and requires the derivation of fundamentally new dependencies of estimation errors on
variations in the observer’s parameters. In this regard, the problem solution was further
considered on the basis of joint integration of the two approaches mentioned above, which
are fundamentally different from each other—the use of irregular accurate observations of
the state vector of the object and the mathematical apparatus for the study of disturbed
multidimensional linear systems.

2. Theoretical Assumptions
2.1. Task Definition

Since accurate observations are made at discrete points in time, the adaptation of the
state vector estimation process is further considered for a discrete stochastic system

ξi+1 = Φi+1/i · ξi + Wi+1, ξ(0) = ξ0, (1)

where ξi is the N-dimensional state vector at a discrete time i, Φi+1/i is the transition state
matrix of N × N dimension, and Wi+1 is the N-dimensional vector of white Gaussian noise
of an object with zero mean and a known intensity matrix Gi+1·δi+1,j+1 (δi,j is the Kronecker
Delta function). For a discrete stochastic meter, the vector of the output signals of the meter
is described by the equation

zi+1 = Hi+1ξi+1 + Vi+1, (2)

where zi+1 is the M-dimensional measurement vector, Hi+1 is the measurement matrix of
M × N dimensions, and Vi+1 is the M-dimensional vector of white Gaussian noise of an
object with zero mean and a known intensity matrix Ri+1·δi+1,j+1.

For the “object–observer” system (Equations (1) and (2)), the estimation of the state
vector is performed by an optimal discrete Kalman filter [3,32,34]:



Inventions 2021, 6, 80 4 of 12

ξ̂i+1 = Φ i+1
i

ξ̂i + Ki+1

(
zi+1 − Hi+1Φ i+1

i
ξ̂i

)
,

Ki+1 = Pi+1
i
· HT

i+1

(
Hi+1 · Pi+1

i
HT

i+1 + Ri+1

)−1
,

Pi+1
i
= Φ i+1

i
PiΦT

i+1
i
+ Gi+1,

Pi+1 = (E− Ki+1Hi+1)Pi+1
i

,

ξ̂0 = M(ξ0),
P0 = M

{(
ξ0 − ξ̂0

)(
ξ0 − ξ̂0

)T
}

.

(3)

where E is the unit matrix of the relevant dimension, and M is the dimension of the
measurement vector.

As follows from the analysis of Equation (3), the error in determining the a posteriori
covariance matrix, and therefore both the gain error and the discrepancy error in the
estimation equation, depend significantly nonlinearly on the error δH in determining the
measurement matrix Hi. In the direct formulation, calculating the true values of the Hi
matrix from accurate observations of the state vector is a solution to the inverse dynamics
problem, computationally unrealizable in real time with existing iterative procedures for
solving systems of nonlinear equations due to the essentially nonlinear dependence of the
evaluation vector on the measurement matrix.

In order to develop an effective computational algorithm that provides a real-time
adaptive assessment of the system state under the uncertainty of the measurement matrix,
two assumptions are made. The first is on the interval between accurate measurements,
the error δH in determining the measurement matrix is constant, and the second is that
its variations of the smallness second-order δ(2)H can be neglected. These assumptions
allow us to use for the development of the desired algorithm the method of studying
disturbed multidimensional linear systems described by Chernov and Yastrebov [35]. For
its application, it is predefined for an arbitrary matrix A of m × n dimension a column
vector A(ν) formed from its elements as follows [35]:

A(ν) = |a11a21 . . . am1a12a22 . . . am2 . . . a1na2n . . . amn|T

The above conversion will be used later for the vector recording of the disturbed
system estimation error.

2.2. Task Solution

Earlier, when task setting, Equation (3) of the filter error caused by the disturbance
δH was written down. Since in general, the equation of the disturbed Kalman filter was
obtained earlier in papers [35], then for the case under study it was written, taking into
account only the disturbance δH:

δξ̂i+1 = A(1)i+1δξ̂i + A(2)i+1δH(ν) + A(3)i+1δP(ν)
i , (4)

where

A(1)i+1 = (E− Ki+1Hi+1)Φi+1/i,

A(2)i+1 = Pi ⊗ rTS−1 − ξ̂T
i+1 ⊗ Ki+1 = Pi ⊗ rTS−1 −

(
Φi+1/i ξ̂i + Ki+1r

)T ⊗ Ki+1,
A(3)i+1 = rTS−1Hi+1Φi+1/i ⊗ (E− Ki+1Hi+1)Φi+1/i,

S = Hi+1Pi+1/i HT
i+1 + Ri+1,

r = zi+1 − Hi+1Φi+1/i ξ̂i,

⊗ is the block matrix multiplication symbol, and E is the unit matrix.
The random vector δP(ν)

i included in the right part of Equation (4), also depends on

fluctuations of the measurement matrix. Therefore, the equation of the vector δP(ν)
i , taking

into account only the disturbance δH, was written in the following form:
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δP(ν)
i = B(1)iδP(ν)

i−1 + B(2)iδH(ν), (5)

where δP(ν)
0 is the error vector of elements of the a priori covariance matrix (equal to 0),

B(1)i = [(E− Ki Hi)Φi/i−1EV1 ⊗ (E− Ki Hi)Φi/i−1]⊗̂E(ν);
B(2)i = −(KiEV2 ⊗ Pi)⊗̂E(ν) − (PiEV1 ⊗ Ki)⊗̂E(ν);

EV1 =

∣∣∣∣E(1)
n ⊗ Em(1)

...E(2)
n ⊗ Em(1)

... . . .
... E(n)

n ⊗ Em(m)

∣∣∣∣.
E(j)

K is the j-th row of the unit matrix E of k × k dimension; EK(j) is the j-th column,

EV2 =

∣∣∣∣En(1) ⊗ E(1)
m

...En(2) ⊗ E(1)
m

... . . .
... En(n) ⊗ E(1)

m
... . . .

... En(1) ⊗ E(2)
m

... . . .
...En(n) ⊗ E(m)

m

∣∣∣∣.
Based on the recurrent relations arising from Equation (5), the vector δP(v)

i equations
for each point of time i, starting from the initial one, were written in the following form:

δP(ν)
1 = B(1)1δP(ν)

0 + B(2)1δH(ν) = B(2)1δH(ν),

δP(ν)
2 = B(1)2δP(ν)

1 + B(2)2δH(ν) = B(1)2B(2)1δH(ν) + B(2)2δH(ν),

δP(ν)
3 = B(1)3δP(ν)

2 + B(2)3δH(ν) =

= B(1)3B(1)2B(2)1δH(ν) + B(1)3B(2)2δH(ν) + B(2)3δH(ν),
...

δP(ν)
i =

i
∑

j=1
(

i
∏

k=j+1
B(1)K)B(2)j · δH(ν) = BiH · δH(ν),

(6)

where BiH =
i

∑
j=1

(
i

∏
k=j+1

B(1)K)B(2)j. In turn, the expression of the current vector δξ̂i+1, taking

into account the Equation (6) obtained above, was previously presented as

δξ̂i+1 = A(1)i+1δξ̂i + A(2)i+1δH(ν) + A(3)i+1δP(ν)
i =

= A(1)i+1δξ̂i + A(2)i+1δH(ν) + A(3)i+1BiHδH(ν) =

= A(1)i+1δξ̂i +
(

A(2)i+1 + A(3)i+1BiH

)
δH(ν).

(7)
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Equation (7) allows, using the recurrent relations derived from it,

δξ̂1 = A(1)1δξ̂0 +
(

A(2)1 + A(3)1B0H

)
δH(ν) = A(2)1 · δH(ν);

δξ̂2 = A(1)2δξ̂1 +
(

A(2)2 + A(3)2B1H

)
δH(ν) =

= A(1)2 A(2)1 · δH(ν) +
(

A(2)2 + A(3)2B1H

)
δH(ν) =

=
(

A(1)2 A(2)1 + A(2)2 + A(3)2B1H

)
δH(ν);

δξ̂3 = A(1)3δξ̂2 +
(

A(2)3 + A(3)3B2H

)
δH(ν) =

= A(1)3

(
A(1)2 A(2)1 + A(2)2 + A(3)2B1H

)
δH(ν)+

+
(

A(2)3 + A(3)3B2H

)
δH(ν) =

= (A(1)3

(
A(1)2 A(2)1 + A(2)2 + A(3)2B1H

)
+

+A(2)3 + A(3)3B2H)δH(ν);
· · ·

δξ̂i =
i

∑
j=1

(
i

∏
k=j+1

A(1)K

)
A2j · δH(ν)+

+
i−1
∑

j=1

(
i

∏
k=j+2

A(1)K

)
A3(j+1) · BjHδH(ν) =

=

[
i

∑
j=1

(
i

∏
k=j+1

A(1)K

)
A2j+

+
i−1
∑

j=1

(
i

∏
k=j+2

A(1)K

)
A3(j+1) · BjH

]
δH(ν)

to express by induction the current value of the estimation error vector δξ̂i+1

δξ̂i+1 =

[
i+1

∑
j=1

(
i+1

∏
k=j+1

A(1)K

)
A2j +

i

∑
j=1

(
i+1

∏
k=j+2

A(1)K

)
A3(j+1) · BjH

]
δH(ν) = A(i+1)HδH(ν), (8)

where A(i+1)H = ∑i+1
j=1

(
∏i+1

k=j+1 A(1)K

)
A2j + ∑i

j=1

(
∏i+1

k=j+2 A(1)K

)
A3(j+1) · BjH Since the

found dependence of the disturbance of the estimate on the variations of the measurement
matrix that caused it

δξ̂i+1 = A(i+1)HδH(ν) (9)

is linear, then after obtaining an accurate measurement of the state vector ξi+1 using the
standard matrix inversion procedure and taking into account equality δξ̂i+1 = ξi+1 − ξ̂i+1,
the error vector of the measurement matrix δH(ν) components is easily determined. At the
same time, in order to be able to correctly apply such a procedure, the dimensions of the
vectors δξ̂i+1, δH(ν) must match. In the presence of a single accurate measurement of the
state vector, this is possible only in the case of a scalar observer (see Equation (2))—when
the measurement matrix has 1 × N dimension. Then, the vector δH(ν) is defined directly
from Equation system (9):

δH(ν) = A−1
(i+1)H (ξi+1 − ξ̂i+1)

If the measurement matrix has M × N dimension, then the number of accurate
measurements should be increased to M—in general, at random times: I + 1 + s1, i + 1 + s2,
i + 1 + s3, . . . , i + 1 + sM, where si are random time intervals. Then, the Equation system (9)
is converted to the following form:
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∣∣∣∣∣∣∣∣∣∣∣

δξ̂i+1+s1

δξ̂i+1+s2

δξ̂i+1+s3
...
δξ̂i+1+sM

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

A(i+1+s1)H
A(i+1+s2)H
A(i+1+s3)H
...
A(i+1+sM)H

∣∣∣∣∣∣∣∣∣∣∣∣
δH(ν),

Which allows to correctly apply the matrix reversal procedure already for a general
form measurement matrix:

δH(ν) =

∣∣∣∣∣∣∣∣∣∣∣∣

A(i+1+s1)H
A(i+1+s2)H
A(i+1+s3)H
...
A(i+1+sM)H

∣∣∣∣∣∣∣∣∣∣∣∣

−1∣∣∣∣∣∣∣∣∣∣∣

δξ̂i+1+s1

δξ̂i+1+s2

δξ̂i+1+s3
...
δξ̂i+1+sM

∣∣∣∣∣∣∣∣∣∣∣
,

having finally solved the task in general case.
The found value of the vector δH(ν) makes it possible to correct the measurement

matrix, thereby increasing the accuracy and stability of the Kalman filtering process as
a whole.

Analyzing the aspects of the computational implementation of the proposed algorithm,
it should be borne in mind that with the sequential execution of the recurrence relations
given in Equations (6) and (8)—at each step of measurement, the calculation of matrices
A(i+1)H and BiH require only three matrix multiplications and additions, which does not
present any difficulties for modern estimator. To illustrate the effectiveness of the proposed
approach, the following example was considered.

3. Results and Discussions
Numerical Solving the Adaptive Assessment of Navigation Parameters of an Unmanned Vehicle

Currently, one of the problems hindering the widespread use of an unmanned vehicle
(UV) is the problem of ensuring their high-precision positioning by noisy measurements of
the satellite navigation system in conditions of intense urban interference. At the same time,
in urban conditions, it is easy to organize active information points with precisely known
coordinates (beacons, optical reference points, etc.), which can provide the navigation
system of unmanned vehicles with additional accurate positional measurements. In this
regard, we will consider in this aspect the possibility of improving the accuracy of solving
the navigation problem of an unmanned vehicle based on the proposed approach.

When solving the navigation problem, the UV-Equations of its navigation parameters
(latitude and longitude) in the geographical coordinate system (GCS) had the follow-
ing form:

.
ϕ =

Vy
(r+h) ,

.
λ = Vx

cos φ(r+h) ,
(10)

where ϕ and λ are geographical UV-latitude and UV-longitude, r is the radius of the Earth,
h is the UV-altitude above sea level, and Vy, Vx are the linear UV-velocity projections on
the GCS-axes.

The following data were determined as the initial data for modeling:

• Starting point coordinates of the UV-movement ϕ0 = 0.76 rad and λ0 = 0.32 rad;
• Time interval [0; 1000] s;
• UV-movement constant velocity V = 18 m s−1;
• UV-trajectory along the Earth’s surface is loxodromic with an azimuthal angle A = 0.23 rad;
• Random height h changes generated by the trajectory relief are distributed according

to the Gaussian law with zero mean and dispersion Gh = (0.14 m)2;
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• Type of UV navigation system is satellite-based.

Based on the initial conditions, the UV-velocity projections on the GSK-axis are deter-
mined as follows:

Vx = V · sin A,
Vy = V · cos A.

According to satellite messages received by the UV navigation system with a τ = 0.1 s
clock cycle, navigation measurements are formed along longitude λ and latitudeϕ channels

with a covariance matrix of measurement noise R =

∣∣∣∣ 4 · 10−10 0
0 9 · 10−10

∣∣∣∣.
Since a given UV-movement velocity causes a slight change in its coordinates at a

given time interval, it turns out to be advisable to use instead of the general navigation
Equation (10) their linearized version:

.
ϕ(t) = Vy ·(r+2h0)

(r+h0)
2 −

Vy

(r+h0)
2 · h ,

.
λ(t) = Vx

cos ϕ0·(r+h0)
·
[

r+2h0
r+h0

− sinϕ0·ϕ0
cos ϕ0

]
− Vx

cos ϕ0·(r+h0)
2 · h+

+ Vx ·sinϕ0
cos2 ϕ0·(r+h0)

· ϕ,

(11)

where h0 = 0.
Equation (11) of true UV-movement was integrated by the Runge–Kutta method of

the fourth order with a step of 0.001 s. Each 100th value was used to form satellite measure-
ments (additive overlay of the corresponding noise of satellite navigation measurements)
and for subsequent comparison with the estimates obtained.

The discrete Kalman filter, constructed according to the linearized equation (11) of
UV-movement, has the following form:

ξ̂i+1 = Φi+1/i ξ̂i + Ωi+1 + Ki+1
(
zi+1 − Hi+1Φi+1/i ξ̂i

)
,

ξ̂i =

∣∣∣∣ ϕ̂i
λ̂i

∣∣∣∣,
Φi+ 1

i
=

∣∣∣∣∣ 10
τ

Vxtgϕ0
r cos ϕ0

1

∣∣∣∣∣,
Ωi+1 =

∣∣∣∣∣ τ
Vy
r

τ Vx
r cos ϕ0

(1− ϕ0tgϕ0)

∣∣∣∣∣,
Gi+1 =

∣∣∣∣∣∣ (
Vy
r2 )

2
τ2Gh

Vy
r2 · Vx

r2 cos ϕ0
· τ2Gh

Vy
r2 · Vx

r2 cos ϕ0
· τ2Gh(

Vx
r2 cos ϕ0

)
2
τ2Gh

∣∣∣∣∣∣,
Hi+1 =

∣∣∣∣ 1 0
0 1

∣∣∣∣.

(12)

When moving along the trajectory, the UV crossed points with exactly known co-
ordinates λ and ϕ (traffic lights—radio beacons) at 150, 158, 250, and 255 s. Up to
158 s, the error δH in determining the measurement matrix was set as an additive matrix

δH =

∣∣∣∣ 0.31 0.04
0.05 0.28

∣∣∣∣, from the 200th to the 255th s, respectively, as δH =

∣∣∣∣ 0.11 0.015
0.03 0.12

∣∣∣∣.
According to the proposed approach, the exact values of λ and ϕ at the 158th and 255th s
were used to determine the values of the components of the δH matrices, which were then
used to correct the measurement matrix in the filter (12).

Modeling of the UV-movement and evaluation of its navigation parameters was
carried out for 100 variants of trajectory modeling and evaluation of its parameters for both
correctable and noncorrectable measurement matrices.

The graphs of errors in estimating navigation parameters obtained by implementing
the filter (12) for a typical case of estimation with an uncorrectable measurement matrix are
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shown in Figure 1. In this case, the errors in the estimates of the current coordinates of the
BA are very significant: at the end of the modeling interval, the error in estimating latitude
reached 33.8 m, with a tendency for a further sharp increase (longitude—9 m), also having
a divergent character. Moreover, the statistical analysis of estimation errors carried out for
all modeling variants showed that the average variance of the deviation relative to the true
values of the navigation parameters reaches 650 m2.
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Figure 2. Graphs of latitude ϕ (a) and longitude λ (b) estimation errors obtained when implementing
the adaptive filter.

In this case, it can be seen that the use of the proposed algorithm led to a sharp
decrease in estimation errors compared to the traditional Kalman filter—up to 1.2 m in
latitude and 1.12 m in longitude. At the same time, such a sharp decrease in errors begins
already from about the 500th s while having a pronounced stable character until the end of
the modeling interval. Statistical analysis of estimation errors for the proposed algorithm
showed that in this case, the average variance of the deviation relative to the true values of
the navigation parameters does not exceed 3 m2, which is much more accurate than the
traditional filtering scheme.

4. Conclusions

The sharp difference between the statistical estimates of the average variances of
deviations relative to the true values of the navigation parameters obtained using the
classical Kalman and the proposed filtering algorithms allows us to conclude about the
advantages of the latter, despite such a disadvantage as a slight increase in computational
costs. In general, the simplicity and accuracy of the proposed algorithm provide the
possibility of its effective application for the widest class of information and measurement
systems. Moreover, based on this approach, developed by complexing two fundamentally
different methods, the use of irregular accurate observations of the object’s state vector and
the mathematical apparatus for the study of disturbed multidimensional linear systems, it
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is possible to further generalize the identification procedure to the remaining parameters of
the Kalman filter, in particular the covariance matrices of object noise and measurements,
which will further improve the accuracy and stability of the filtration process as a whole.
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