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Abstract: In this paper, the structure of a separable convolutional neural network that consists of an
embedding layer, separable convolutional layers, convolutional layer and global average pooling is
represented for binary and multiclass text classifications. The advantage of the proposed structure is
the absence of multiple fully connected layers, which is used to increase the classification accuracy
but raises the computational cost. The combination of low-cost separable convolutional layers and a
convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity
of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written
texts by means of the proposed networks under the sigmoid and Softmax activation functions in
convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable
convolutional neural networks is higher in comparison with some investigated types of recurrent
neural networks and fully connected networks.

Keywords: text classification; natural language processing; machine learning; neural network;
separable convolutional neural network; deep learning; nonlinear model

1. Introduction

Written texts are the best way to communicate, save and pass knowledge from one
age to another. It allows humans to develop themselves and everything they invent and
produce in human or applied sciences. Texts are always meant to tell and express something
of significance. Written language proved that we could discover much information from
texts. To perform different analyses over a huge number of texts, we have to solve the
fundamental problem, which is categorizing texts and classifying them.

The application field of text classification is very vast:

• Putting content in categories to enhance browsing or distinguish related content
during internet search or web browsing. Many platforms such as Google and Facebook
use automated technologies to classify and trace content and products, which reduces
manual work thus highly time-efficient [1]. It helps them drag websites quickly, which
eventually assists all other processes like search or answering questions. Furthermore,
automating the content tags on internet sites and mobile applications can make the
user practice better and helps to standardize them. In other fields which consider
emergency response systems, text classification makes these responses more accurate
and faster.

• Text classification also plays a significant role in other fields, for instance, economy [2];
wherein marketing text classification is becoming more targeted and automatic. Mar-
keters can observe and match users based on how they speak about a product or
trademark online, where classifiers would be trained to recognize promoters or detrac-
tors. Doctors, academic researchers, lawyers even governments can all benefit from
text classification technology.

• With the expansion of information fed by the mass of text data, it is no longer possible
for a human observer to understand or even categorize all of the data coming in.
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Automatic classification of data, especially textual data, is becoming increasingly
important as the amount of information available grows in tandem with the amount
of computing power available. It also allows many other different processes to be
developed like text prediction, question answering, sentence completion, information
extraction, machine translation, text generation, and language understanding [3].

Exceptionally, artificial intelligence and deep learning establish sources in text classifi-
cation because texts are a prosperous source of information that can originate from different
roots, including the internet, such as emails, chats, social media, reviews, etc. Since the
text is unstructured, the reading of it may be difficult and tedious, yet taking meaningful
statements from it requires minimal effort. However, this process is a standard query in
natural language processing, which tries to attach labels to texts such as letters, articles, and
reports that have many purposes, including question answering, spam detection, sentiment
analysis, news categorization, predictions, etc.

Many algorithms and approaches are used to achieve classifications, such as:

1. Logistic regression, which is a fundamental classification approach and a linear
classification model [4,5]. In this model, the probabilities describing a single trial’s
possible outcomes are modeled using a logistic function [6].

2. The Naïve Bayes method comprises the Naïve Bayes techniques as a group of super-
vised learning algorithms, which are sets of uncomplicated and sufficient machine
learning approaches for binary classifications [7,8]. It produces classifications based
on Bayes’ theorem and the “naïve” presumption of conditional freedom between any
two features as long as the class variable has a definition. This method can also be
illustrated using a straightforward Bayesian network [9]. The goal of the naive base
classifier is to select the probability of the features appearing in each class and select
the higher probability from the classes. It takes the probability of a word feature as
the number of a word appears in a document over the word’s appearance in all of the
documents.

3. The linear support vector machine algorithm is a supervised and linear machine
learning algorithm that is often used to divide data into two groups [10]. This
classification algorithm is capable of representing a vector in multidimensional space.
It focuses on the observations on each class’s edges and uses the midpoint between
them as the threshold. The margin is described as the least distance between the
class’s edge and the threshold. If the threshold is placed in the middle of the distance
between the class’s edges, the margin will be as significant as it can be. It aims to find
the maximum-margin hyperplane that separates the group of word features into two
classes [11].

4. Stochastic gradient descent (SGD) is a straightforward and efficient method for classi-
fications. It can use logistic regression, linear support vector machine, and different
cost functions. Despite that, SGD, an old machine learning technique, has acquired a
significant amount of attention just lately in the context of large-scale learning. SGD
is successfully applied to sparse machine learning situations and is often engaged in
text classification and natural language processing [12].

In machine learning, classification is an important area where many models are
based on algorithms that define relations among data and make predictions, which class
or type of a commodity belongs to depending on its features. These features can be
independent variables (inputs features) or dependent variables (outputs depend on inputs).
The classification models of supervised learning analyze observations and express the
dependency between the input and the output mathematically. Research from many
different backgrounds has started using deep neural networks to solve a wide range of
classification tasks, including image classifications, dynamic system classifications, and
lately, texts classifications [13]. This development opened new doors to investigate the
problem of classifications by means of deep neural networks. Many researchers started to
use fully connected networks (FCN) [14–19], recurrent neural networks (RNN) [20–23], and
convolutional neural networks (CNN) [24–26] to classify different texts. The researchers
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who applied fully connected neural networks achieved approximately the same accuracy,
around 81% using different activation functions linear, sigmoid, and tanh [27]. Moreover,
researchers who used recurrent neural networks and convolutional neural networks or
a combination of them achieved a higher accuracy, around 91% in comparison to 84%
accuracy when using convolutional neural networks alone or 86% accuracy when using
recurrent neural networks alone. However, this high accuracy comes at a more significant
cost related to the number of parameters and training time [28].

For achieving a high classification accuracy with a lower mathematical complexity of
the model and smaller size of the neural networks and the number of their parameters, we
propose to combine low-cost separable convolutional neural networks (SCNN) [29–33] and
ordinary convolutional neural networks [24–26]. This combination allows to significantly
reduce the epochs of learning and the number of parameters and get high accuracy of both
binary and multiclass classifications based on simpler models. We investigate two kinds of
activation functions (sigmoid and Softmax) at the output of a neural network to study effect
when dealing with binary classification with two outputs as a multiclass (multi-output)
classification problem to turn further to the study of the multiclass classification of texts. In
general, we solve two types of classification problems binary (classification between two
classes) and multi-output (classification between more than two classes).

The paper comprises four sections. The importance of text classification and its
application fields, the main mathematical methods, especially those based on neural
networks, are mentioned in an introduction. The structure of the proposed SCNN and
its different layers are descripted in Section 2. The results of text classification, their
comparison and corresponding conclusion are represented in Sections 3 and 4.

2. Materials and Methods
2.1. Embedding and Pooling Layers in Convolutional Neural Network

Convolutional neural networks have accelerated advancements in the fields of ma-
chine vision and data analysis. The CNN is composed of the following layers: an embed-
ding layer, a convolutional layer, a pooling layer, and a fully connected layer [34]. We
describe these layers below.

2.1.1. Word Embedding Layer

The embedding layer contains a dense representation of words and their associated
semantic relationships. Dense representation is encoding each word with a unique real
number [35]. For example, if we have a sentence consists of six words as following “word1
word2 word3 word1 word4 word5”, each word will be encoded with a unique number, and
the previous sentence would be represented as the following dense vector of [1 2 3 1 4 5].
The embedding layer encodes each word from the dense representation of N words in a
fixed-length embedding vector of length m in real numbers, where N is the number of the
words or features as the input of the network and m is the dimension of the embedding
(Figure 1).

In this method, related words have close or similar encoding after training [36]. This
is accomplished by predicting the context words associated with a given center word
within a window of fixed size k. For example, if we have a window of size k = 3 we would
have through the text three words inside this window

[
. . . , wj−1, wj, wj+1, . . .

]
, where wj−1

and wj+1 are context words symbolized as wo and wc is a center word symbolized as
wc. Following that, a vector representation is assigned to each word w a vector V when
the word is a center word wc and a vector U when the word is a context word wo. The
length of vectors V and U is equal to the fixed-length embedding m. By combining these
vectors, the word embedding is built. The prediction process is defined by finding the



Inventions 2021, 6, 70 4 of 16

possibility that a context word wo is in the connection of center word wc and calculated as
the following [37,38]:

P(wo|wc) =
exp(UT

woVwc)
N
∑

w=1
exp(UT

wVwc)

, (1)

where P(wo|wc) is the vector of possibilities that a context word wo is in the connection
of center word wc; UT

wo is the transpose of the embedding vector representation of the
context word wo; Vwc is the embedding vector representation of the center word wc; w is
the location of the word in the text of N number of words; N is the number of words in the
text, and UT

w is the transpose of the embedding vector representation of the word in the
location w as a context word.
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Figure 1. The embedding layer illustration.

The learning process in words embedding aims at calculating the vectors V and U,
as well as building the embedding. To get a high probability using Equation (1), we
want to maximize the objective function in a fixed window of the size equal to k along
with the whole set of the N size words. The objective function equation is giving as the
following [38]:

O =
N

∏
i=1

∏
−k≤j≤k

P(wi+j
∣∣wi) , (2)

where O is the objective function; N is the number of words in the text; i and j are counters;
k is the size of the window, and P(wi+j

∣∣wi) is the vector of possibilities that a context word
wi+j is in the connection of center word wi.

To aid estimation, instead of maximizing Equation (2), we take the average negative
logarithm of Equation (2) to derive the loss function and attempt to minimize it. The loss
function equation is now given as the following [38]:

L = − 1
N

N

∑
i=1

∑
−k≤j≤k

log(P(wi+j
∣∣wi)) (3)

where L is the loss function; N is the number of words in the text; i and j are counters; k is
the size of the window, and P(wi+j

∣∣wi) is the vector of possibilities that a context word
wi+j is in the connection of center word wi.

Using Equations (1) and (3), the model builds the embedding vectors of the words
to be ready to send to convolutional and separable convolutional layers in the next steps.
Essentially, the embedding layer stores the words embedding, and it is capable of looking
up words embedding for a given word and compute gradients in the backward pass. Due
to the fixed length of word vectors (words embedding), we can more accurately describe
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words while still reducing their dimensions. In this way, the embedding layer helps to
reduce dimensionality by controlling the number of the features used in training (the
features are the input words chosen because of their high frequency of appearing in the
training texts). Also, they are able to discover contextual relationships, which means close
words; for example, the word “nice” and the word “good” would have close vectors [39].
Words embedding can be discovered and reused by the model across projects using text
data. Additionally, it is possible to generate content and language features that can be
learned in conjunction with neural network training: they can be learned as a part of the
process of adapting a neural network to text [40].

2.1.2. Convolutional, Pooling and Fully Connected Layers

The convolutional layer exhibits high adaptability and is especially adept at mining
data with local characteristics. The shared network structure’s weights make it more
analogous to the brain’s neural networks, simplifies the network model, and reduces the
number of weights. Usually, before performing the convolution product, padding is added
around the input matrix to account for the elements on the edges. By convention, padding
is done with zeros, and the padding parameter is referred to as p. The padding parameter
specifies the number of elements added to each of the input’s four sides. The stride s in
the convolution product is the step taken from the filter or the kernel on the input matrix;
therefore, a big stride enables the output to be shrunk in size and vice versa. After that,
a sampling process is achieved, where the number of elements of each neighborhood go
through a pooling process and become one element. Convolution neural layers’ defining
technology is the local receptive field, weight sharing, and subsampling by time or space,
which extract features and reduce the size of the training parameters, and text feature
extraction is critical for text classification because it directly affects the classification’s
accuracy [41].

Convolutional, pooling and fully connected layers are shown in Figure 2. The convo-
lutional layer performs a convolution product on two matrices, one of which (K) contains
the learnable parameters known as a kernel or filter, and the other of which (Al−1) contains
the layer’s data or the input layer, (l − 1) is devoted to the input layer of the l-th layer.
The kernel is a trainable filter K with a size smaller than the input’s size. A convolution
feature map results from the following sequential operations: the convolution of the input
Al−1 and the kernel K, adding bias b and then passing through an activation function ϕ
(Figure 2). A pooling process is achieved on the convolution feature map to get the matrix
C then this matrix is sent to a fully connected layer to give the final output Al [41,42].
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To calculate the convolution product between the input matrix Al−1 and the kernel
matrix K is used the following equation:

Conv(Al−1, K) = ϕ(
nh

∑
i=1

nw

∑
j=1

Al−1
i,j K + b), (4)

where Conv(Al−1, K) is the convolution product of the input matrix Al−1 of size (nh × nw)
with the kernel (filter) matrix K of size ( f × f ); Al−1

i,j is a partial matrix of the size of ( f × f )

that is designed in the position (i, j) of matrix Al−1; b is the bias of the convolution product;
ϕ is the activation function.
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The dimension of the resulting product from Equation (4) is given as follows:

Dim
(

Conv(Al−1, K)
)
=

(
nh + 2p− f

s
+ 1,

nw + 2p− f
s

+ 1
)

, (5)

where Dim(Conv(Al−1, K)) is the dimension of the convolution product; p is the padding
parameter; and s is the number of strides.

After calculating the output based on Equation (4), we pass it through a pooling
process. Parameters are not required to be learned for the pooling process. It is a step in
which the matrix features are downsampled by summing the data based on the dimensions
determined by Equation (5). The output of the pooling layer is considered to be matrix C
(Figure 2). Output C is sent to the fully connected layer shown in Figure 2 to calculate the
final output Al . The final output Al is calculated according to equation:

Al = ϕ(CW + d), (6)

where C is the output matrix of the pooling layer; W, d, ϕ are the matrix of weights, the
bias and the activation function of the fully connected layer, respectively.

2.2. Separable Convolutional Neural Network with Embedding Layer and Global Average Pooling

The text classification model in our work uses the network layers, which are depicted
in Figure 3. We see the embedding layer like in Figure 2 that is described in Section 2.1,
three deep layers (two separable and one normal convolutional layers), as well as a global
average pooling that replaces two blocks (“Pooling process” and “Fully connected layer”)
in Figure 2. We call the network with structure the separable convolutional neural network
in Figure 3.
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Two deep neural layers for the main feature extraction of the input are separable
convolutional layers instead of one normal convolutional layer. The aim of these deep
layers is to reduce the model complexity and to decrease the required amount of training.
The third deep layer is a convolutional layer with several neurons corresponding to the
output categories. The third convolutional layer produces an output on the shape of
feature maps. Therefore, to transfer each feature map to a single output, a global average
pooling layer in Figure 3 is used to achieve the goal of classification without adding extra
trainable parameters to the model. Furthermore, we describe separable layer and global
average pooling.

The following is a comparison of the proposed SCNN structure with the structure
represented in [31] and emphasizes their differences. The SCNN structure in [31] composes
the unit named “Multiple separable convolutional blocks,” which means a depthwise sepa-
rable convolution [29,30]. This convolution is fulfilled independently over each channel
of an input signal. The parting into some channels is applied, as a rule, in the case of
image processing, which is why we did not include this unit in our structure. However,
for generality, this unit can be placed in the structure shown in Figure 3. Separable con-
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volutional layers, which are used in Figure 3 and in [31], execute a pointwise separable
convolution [32,33] and make a neural network simpler. However, sometimes this ap-
proach does not provide enough accuracy. We included a convolutional layer in addition
to separable convolutional layers in order to increase the classification accuracy. This way
is more preferable in comparison with the use of multiple fully connected layers, which are
placed behind the unit “Global average pooling and dropout” [31] and serve to increase
accuracy. The number of parameters in a convolutional layer is known to be much less
than in a multiple fully connected layer.

2.2.1. Separable Convolutional Layer

Separable convolutional layers are exclusively associated with dimensions related to
the spatial dimensions and are also known as the separable spatial convolution, as it is
focused on one of the widths and one of the heights. They were developed because an
issue arises when deep neural networks have many convolutional layers; this is especially
true for multilayer networks. For these procedures, a significant amount of training is
required [43]. Spatial separable convolution calculates a filter by recursively breaking a
kernel into two pieces. For example, the ( f × f ) size of kernel K can be done with ( f × 1)
of kernel K1 and (1× f ) of kernel K2 (Figure 4), where K = K1 ×K2.
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Thus, instead of doing one iteration of nine multiplications, we do two convolutions,
which have the same effect. In other words, rather than doing a two-dimensional convolu-
tion with K, the same result is attended by doing two one-dimensional convolutions with
K1 and K2. Therefore, computational complexity goes down, and the network is able to
run faster. This process will have two steps, as shown in Figure 5.
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The number of multiplications is reduced, and so computational complexity is also
reduced, allowing the network to run faster [44]. Spatially separable convolutions relieve
the need for material resources to training standard convolutional networks. To describe
the separable convolution product, we have two equations:

–
Al−1 = Conv(Al−1, K1) =

nh

∑
i=1

nw

∑
j=1

Al−1
i,j K1, (7)

Conv(
–
Al−1, K2) =

(nh+2p− f )/s+1

∑
i=1

nw

∑
j=1

K2
–
Al−1

i,j , (8)

where
–
Al−1 is the convolution product of the input matrix Al−1 with the kernel or filter

K1, it is a matrix of size (((nh + 2p− f )/s + 1)× nw); p is the padding parameter; s is the
number of strides; K1 is the kernel vector of size ( f × 1); Al−1 is the input matrix of size
(nh × nw); Al−1

i,j is a partial column vector of size ( f × 1), that is designed in the position

(i, j) of matrix Al−1; K2 is the kernel vector of size (1× f );
–
Al−1

i,j is a partial row vector of

size (1× f ), that is designed in the position (i, j) of matrix
–
Al−1.The convolution products

of Equations (7) and (8) replace the convolution product in Equation (4), and the process
follows the same calculation of Equations (5) and (6).

Due to their ability to separate convolutional layers along their spatial axis, they enable
the splitting of large convolutional layers into smaller ones that produce the same result
when convolved sequentially. As a result, the number of times that must be multiplied to
obtain the same result decreases [45,46]. Separable convolutions begin with a depth wise-
spatial convolution (which acts separately on each input channel) and end with a pointwise
convolution that mixes the resulting output channels, and separable convolutional neural
networks can fully exploit the inherent characteristics of the data, such as localization,
optimize the network structure, and maintain a degree of displacement invariance.

2.2.2. Global Average Pooling

Global average pooling can be used instead of “Pooling process” and “Fully connected
layer” in Figure 2, and it determines the average output of each feature map in the preceding
layer. The aim of the final convolutional layer is to produce a feature map for each
category in the classification task. The pool size is equal to the size of the output of the
last convolutional layer (Figure 6). Instead of stacking layers on top of fully connected
networks, the Softmax function is applied on all of the feature maps and inserts them in
the output, resulting in a vector [47,48].
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In contrast to the fully connected layer, which could cause some issues with the
feature maps not being highly local, global average pooling has better performance since it
imposes a direct correspondence between feature map/categorical representation [49]. In
addition, it can be concluded that function maps can easily be interpreted as trusted maps
for categories. To this extent, since there is no ability to fine-tune the global averaging, this
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pooling layer has no problem with overfitting. Additionally, since global average pooling
aggregates spatial information, it is more resilient to input spatial translations [50].

3. Results of Binary and Multiclass Text Classifications

In our practical experiment, we used Python 3.7.9 and TensorFlow 2.3.0 with a Py-
charm.3.1 2019 environment on Asus X556U Core i7 7500U 3.5 Hz.

We start with the binary classification using the IMDB database from the TensorFlow
library database for training our neural networks and the IMDB database from the NLTK
corpus library database for testing our neural networks. The binary classification criteria
are based on two sets of movie reviews, the first set is positive reviews of movies, and the
second is negative movie reviews. The multiclass classification criteria are based on five
sets of articles in the fields of business, entertainment, politics, sport, and technology. For
binary sentiment classification, the IMDB database extracted from TensorFlow’s database
is a substantial movie review dataset with significantly more data than other available
benchmark datasets. It includes a training set of 25,000 movie reviews, a testing set of
25,000 movie reviews, and more unlabeled data for use. However, we used both the
training set and testing set as a large training set of 50,000 reviews for training our neural
networks. On the other hand, our testing data consist of 2000 files from the IMDB of the
NLTK corpus library. For the multiclass classification problem, the BBC database was
used. With regards to this database, there are very dense collections of text documents that
business organizations can use as a large source of data. This collection of articles contains a
total of 2225 articles organized into five broad categories: business, entertainment, politics,
sport, and technology. Each category contains 445 big articles; these articles were divided
into 1557 ones for training and 668 ones for testing.

In our study, we compared the performance of our suggested model of separable
convolutional neural networks and convolutional neural networks with four other types of
neural networks: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU), and Fully Connected Network (FCN). Both the LSTM and
the GRU are recurrent neural networks where each recurrent layer contains feedback loops.
This enables them to retain data in memory over time. Nevertheless, training standard the
RNNs to resolve difficulties needing the acquisition of long-term temporal dependencies
can be difficult. As the loss function’s gradient decays exponentially with time, the loss
function should lose precision rapidly. The LSTM is a type of recurrent neural network that
applies non-standard units in addition to standard ones. The LSTM units incorporate a
memory cell capable of storing data for an outspread duration. A series of gates are used
to control the flow of information into and out of the memory and when it is forgotten.
This architecture enables them to develop longer-term reliance. GRUs, like LSTMs, employ
a set of gates to regulate information flow, but they do so without using separate memory
cells and with fewer gates.

The LSTM addresses the issues of gradient vanishing in the standard RNN by in-
cluding new gates, such as input gate and forget gate, which improves the gradient flow
and preserves long-range dependencies. The long-range dependence existing in the RNN
is solved in the LSTM by means of the addition of the repeating layers. The critical dis-
tinction between the GRU and the LSTM is that the GRU holds two gates: reset gate and
update gate, whereas the LSTM has three gates: input, output, and forget. The GRU is
less complicated than the LSTM because it uses only two gates, therefore fewer training
parameters. As a result, it consumes less memory, executes faster, and trains faster than the
LSTM, whereas the LSTM is more accurate on datasets with longer sequences. In short, if
the sequence is lengthy or precision is critical.

We used two types of activation functions in the last layer; for sigmoid, see Equation
(9), and for Softmax, see Equation (10) for the binary classification. The sigmoid function is
calculated from equation:

S(x) =
1

1 + e−x (9)
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where S(x) is the output of the sigmoid function; x is a scalar argument of the sigmoid
function. The Softmax function is calculated from the equation:

Y =
exp(X)

K
∑

j=1
exp(xj)

, (10)

where Y = [y1, y2, . . . , yK], X = [x1, x2, . . . , xK] are the output and input vectors of the
Softmax function, respectively; k is the number of the multiclass classes of the classification;
j is a counter.

While in the multiclass classifications, we used the Softmax activation function. The
sigmoid activation function has a value in the range of 0 to 1, and it is implemented
individually to each component of the output. On the other hand, in the Softmax activation
function, each element has a value between 0 and 1, but all elements sum to 1. This can be
understood as a probability distribution. When given a vector of real numbers, Softmax
normalizes it to a probability distribution proportional to the exponential of the input
values. Before its application, some of the input values may be negative or larger than 1.
As a result, the greater the input number, the greater the probabilities. In conclusion, the
main difference between the Softmax and the sigmoid activation function is that we add all
of the values in the denominator in Softmax. When computing the value of Softmax on a
single vector output, it is not applied independently to each output element but rather to
all of the output data, as Softmax activation distributes the probability evenly across each
output node.

To study the efficiency of our SCNN, we compare it in the accuracy and the total
training and testing time with the FCN, the RNN, the LSTM and the GRU. The models that
we build for the comparison have the same number of neurons and the same number of
layers as the suggested model. All the described networks have the same first layer. The
first layer is the words embedding layer, which contains a dense representation of words
and their associated semantic relationships. It has an input of 5000 and an embedding
size of 16. In the following is the description of all the above-mentioned networks. This
description starts from the second layer.

The FCN used in our comparison consists of five layers. The second layer is a global
average pooling layer to reshape the output of the embedding and send this output to the
next layer. The third and fourth layers are fully connected layers with 32 and 64 neurons,
respectively, and the Relu activation function. For the binary classification, the fifth (the
last) layer consists of, in the first case, one neuron with the sigmoid function and, in the
second case, two neurons with the Softmax functions. For the multiclass classifications, the
fifth layer contains six neurons with the Softmax functions.

The RNN, the LSTM, and the GRU consist of five layers. The embedding layer is
followed by two layers with 32 and 64 neurons, respectively, and the tangent activation
function. After the two layers are designed according to the RNN, LSTM and GRU
structures [51], there is the fourth layer, which is a global average pooling layer, to reshape
the output and send it to the fifth layer. The fifth layer is a fully connected network. For the
binary classification, the fifth (the last) layer consists of, in the first case, one neuron with the
sigmoid function and, in the second case, two neurons with the Softmax functions. For the
multiclass classifications, the fifth layer contains six neurons with the Softmax functions.

The SCNN consists of five layers as we can see in Figure 3. The first layer is the
embedding layer. The second layer is a separable convolutional layer with 32 neurons;
every neuron is described by two separated kernels of the 2 × 1 and the 1 × 2 sizes and the
Relu activation function. The third layer is a separable convolutional layer with 64 neurons;
every neuron is described by two separable kernels of the 8 × 1 and the 1 × 8 sizes and the
Relu activation function. The fourth layer is a convolutional layer, including one neuron
with the sigmoid function for the first binary classification, two neurons with the Softmax
function for the second binary classification, and six neurons with the Softmax function
for the multiclass classification. Every neuron of the convolutional layer is described by
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the kernel of the 3 × 3 size. The fifth (the last) layer is a global average pooling layer to
reshape the output of the convolutional layer.

To compare the above-mentioned neural networks, we calculate the number of the
network parameters, the sum of training and testing time and the accuracy of the written
test texts’ classification. The accuracy D is defined in the testing stage as follows:

D =
Nc

Nt
× 100 %, (11)

where Nc is the number of the correct (true) predictions and Nt is the number of the total
elements of the testing set.

The training and testing process of each model consists of epochs. An epoch is a
terminology used in machine learning that refers to the number of times the machine
learning model has crossed the whole training dataset and after that performed testing on
the whole testing dataset. In each epoch, the weights of the neural network of the models
get updated using the training set. Then at the end of each epoch, the model performs a
prediction process or a testing process on the testing dataset using Equation (11) to calculate
the accuracy of the performance at each epoch. Nevertheless, the testing set is not included
in the training set, and it is completely unknown for the model.

The development of accuracy is illustrated in Figure 7 for the binary classification
with sigmoid activation function, Figure 8 for the binary classification with the Softmax
activation function, and Figure 9 for the multiclass classification. The parameters of
training and the final testing accuracies are shown in Table 1 for the binary classification
with sigmoid activation function, Table 2 for the binary classification with the Softmax
activation function, and Table 3 for the multiclass classification.
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Table 1. The parameters number of the LSTM, GRU, RNN, FCN and SCNN with the sigmoid
activation function as the last one, the total time of training and testing during eight epochs, and
accuracy D in the 8th epoch of binary classification.

Type of Network Number of Parameters Total Time (s) D (%)

LSTM 131,681 599.9 68.89

GRU 124,065 567.18 67.88

RNN 107,969 239.2 68.35

FCN 198,209 25.6 76.40

SCNN 103,466 149.8 78.60
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Table 2. The parameters number of the LSTM, GRU, RNN, FCN and SCNN with the Softmax
activation function as the last one, the total time of training and testing during 16 epochs, and
accuracy D in the 16th epoch of binary classification.

Type of Network Number of Parameters Total Time (s) D (%)

LSTM 131,746 2242.8 77.75

GRU 124,130 2286.45 79.25

RNN 108,034 1877.36 78.25

FCN 102,914 42.73 76.95

SCNN 103,466 311.92 79.40

Table 3. The parameters number of the LSTM, GRU, RNN, FCN and SCNN, the total time of training
and testing during 20 epochs, and accuracy D in the 20th epoch of multiclass classification.

Type of Network Number of Parameters Total Time (s) D (%)

LSTM 111,494 125.5 87.13

GRU 104,006 117.14 84.13

RNN 88,166 64.55 83.53

FCN 83,046 4.14 89.52

SCNN 84,102 12.84 92.81

In our experiment, we fulfilled three training processes. In the binary classification
under the sigmoid activation function of neural networks, the training and testing processes
last eight epochs (Figure 7). As can be seen from Table 1, the proposed SCNN reached the
highest accuracy with 78.6% in 150 s, while the other networks achieved a lower accuracy
and more calculation time. Thus, the RNN, the GRU, and the LSTM have a close accuracy
of around 68%, with a calculation time above 560 s for the GRU and the LSTM and about
240 s for the RNN. In this part of the study, the FCN reached a better accuracy with 76.4%
and the lowest calculation time, around 25 s in comparison with the three different types of
recurrent neural networks.

In the binary classification with Softmax function, the training process lasts 16 epochs
(Figure 8). We can see from Table 2 that the proposed SCNN model reached the highest
accuracy with 79.4% in 312 s. The other networks achieved a lower accuracy in the same
number of epochs and more calculation time. The RNN, the GRU, and the LSTM have a
close accuracy of around 78%, with a training time above 1850 s. The FCN reached the
lowest accuracy with 76.95% and the lowest time of calculation (around 43 s) in comparison
to the mentioned recurrent neural networks. We notice that using the Softmax activation
function to deal with the binary classification as multiclass classifications with two classes
improves the accuracy in all the represented neural networks.

In the multiclass classification, the calculation process lasts 20 epochs. We can see
from Table 3 that the proposed SCNN reached the highest accuracy with 92.81% in 13 s,
while the other networks achieved a lower accuracy and more calculation time. The FCN
achieved 89.5% in 4 s of calculation. The LTSM achieved 87% in 126 s. The GRU and the
RNN achieved a close accuracy of 84% in 117 s for the GRU and 65 s for the RNN.

As follows from the analysis of Tables 1–3, the design of the SCNN provides the
quality to be more specialized and efficient than the other represented neural networks. In
the SCNN, the number of parameters is reduced and the learning process is accelerated.

4. Conclusions

Texts constantly tell and express something of importance. Written language showed
that we could find sufficient information from texts. In order to achieve different analyses
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over a vast number of texts, we have to solve the fundamental problem, which is cate-
gorizing texts and classifying them. In natural language processing, we achieved three
classifications of written texts: a binary classification with the sigmoid activation function
in the last layer of the neural network, a binary classification with the Softmax activation
function in the last layer, and multiclass classifications with the Softmax activation function.
We proposed combining the convolutional and separable convolutional layers to solve the
classification problem and compare the SCNN with the other neural network such as the
RNN, the GRU, the LSTM, and the FCN.

The results of the investigation show that using the SCNN for binary and multiclass
classifications gives

• Higher accuracy reached 79.4% in the case of the Softmax activation function in the last
layer of the network (this accuracy exceeds 78.6% in the case of the sigmoid activation
function), and 92.81% for the multiclass classification.

• Lower computation complexity. Using the separable convolutional layer reduced
the learning parameters of the network with keeping its ability of feature extraction
enabling the data to be expressed as spatial with the locally and equally possible to
occur extracted features at any input.

• Fast calculation time. The lower computation complexity reduced the training and
testing time of the SCNN without affecting its quality and accuracy.

The study’s results show how the combination of separable and normal convolutional
layers in deep learning with the field of natural language processing and data mining
expands the possibilities for achieving better quality demonstrated with the high accuracy,
low complexity, and fast calculation. At the same time, the SCNN has a connection pattern
formed as a grid of neurons where each neuron is connected with all the surrounding
neurons. The connectivity pattern between neurons inspires this connection pattern that
matches the organization of the human brain cortex. This increases its accuracy in com-
parison with the other neural networks because this pattern provides the ability of feature
extraction allowing the data to be expressed as spatial with the locally and equally possible
to occur extracted features at any input.

The RNN, the LSTM, and the GRU have a recurrent methodology which makes the
computational process slower. Using tanh as activation functions makes the training
difficult to process very long sequences. The LSTM is inclined to overfitting, even more so
when the input and recurrent connections to long short-term memory units are eliminated
from activation and weight updates during network training. The GRU shares many of
the downsides of the RNN and the LSTM; it also has a slow convergence rate and a low
learning efficiency. The FCN lacks the ability of feature extraction of the CNN and the
ability to process long related inputs like the RNN, the GRU, and the LSTM. Eventually,
due to the architecture of the FCN, each node is connected to another via a dense web,
resulting in redundancy and inefficiency.
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