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Abstract: The present inquiry studies the influence of mass transfer in magnetohydrodynamics (MHD)
upper-convected Maxwell (UCM) fluid flow on a stretchable, porous subsurface. The governing
partial differential equations for the flow problem are reformed to ordinary differential equations
through similarity transformations. The numerical outcomes for the arising non-linear boundary
value problem are determined by implementing the successive linearization method (SLM) via
Matlab software. The accuracy of the SLM is confirmed through known methods, and convergence
analysis is also presented. The graphical behavior for all the parametric quantities in the governing
equations across the velocity and concentration magnitudes, as well as the skin friction and Sherwood
number, is presented and debated in detail. A comparability inquiry of the novel proposed technique,
along with the preceding explored literature, is also provided. It is expected that the current
achieved results will furnish fruitful knowledge in industrious utilities and correlate with the
prevailing literature.
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1. Introduction

The earth demonstrates various exemplars of flows, regarding non-Newtonian fluids. Recently,
the study of such fluids has been captivating researchers, being extensively studied throughout
the last two decades. Indubitably, the developing governing equations for non-Newtonian fluids
are strongly non-linear, high-order, and often more complicated than the Navier–Stokes equations.
The flow of non-Newtonian fluids has importance in an expanded category of utilities, being involved
in processing in industries including synthetic fibers, the squeezing of melted plastics, oil, gas well
drilling, windup processes, and in certain flows of polymer solutions. An immense category of
liquids and commercial usages has motivated investigators to analyze non-Newtonian fluid conduct.
Non-Newtonian fluids have dissimilar features from Newtonian fluids. To understand comprehensively
non-Newtonian fluids and their usages, it is essential to investigate their flow conduct. Researchers
have performed analyses on the modeling of second-grade and third-grade fluids, which could not
foretell the influence of stress relaxation. The Maxwell model, which is a sub-categorization of the
rate-type fluid, has gained preference. Tan et al. [1] analyzed the unsteady, viscoelastic fluid flow of
a fractional Maxwell model through parallel plates. Fetecau and Fetecau [2] performed a study in
order to attain exact solutions for the Maxwell fluid flow through an infinite surface. Mokhopadhyay
et al. [3] elaborated on the transpiration impact into unsteady magnetohydrodynamics (MHD) flow
for an upper-convected Maxwell (UCM) fluid on a stretchable subsurface with a chemical reaction.
The MHD flow and heat transferal for a UCM fluid past a stretched plate with varying thermophysical
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characteristics were presented by Prasad et al. [4]. Anwar et al. [5] recorded the impact of the ramped
wall temperature and ramped wall velocity for an unsteady MHD convective Maxwell fluid flow.
The recent inquiries demonstrating the flows of Maxwell fluid can be found in [6–10].

The MHD fluid flows over a permeable medium, acting as a momentous function in agricultural
and mechanical technologies, squeezing out petrol from fossil oils in petrol industries. The MHD tools
have discovered extensive utilities in material sciences, and also in biomedical sciences. The usage
of MHD microfluid tools has been massively utilized in numerous grasslands. The tri-biological
efficiency of MHD nanofluids was discussed by Andablo-Reyes et al. [11]. Ellahi [12] scrutinized
the non-Newtonian MHD nanofluid flowing through a pipe and recorded that the MHD parametric
quantity decelerated the movement of fluid particles. For a varying viscosity, the velocity distribution
was bigger, compared with the temperature distribution. Bhatti et al. [13] inspected the influence of
varying magnetic fields in the peristaltic flow on a Jeffery fluid through a non-uniform rectangular duct.
The impact of joule heating on the MHD flow of an upper-convected Maxwell fluid was elucidated by
Zaidi and Mohyud-Din [14]. Furthermore, Hassan et al. [15] considered the impact of an oscillating
magnetic field on ferrofluid. Mahabaleshwar et al. [16] investigated the effects of radiation and the
Navier slip boundary on Walters’ liquid B flow over a stretching sheet and through a porous medium.
The systematic solutions for the time-dependent average velocity in the MHD peristaltic rotated flow of
a couple stress fluids through a uniformly elastic pervious channel were analyzed by Krishna et al. [17].
Makinde et al. [18] explored the reactive MHD variant viscosity while flowing on a convectively heated
subsurface from porous media, alongside radiative heat transfer and thermophoresis. Shah et al. [19]
explored the numerical simulation of entropy optimization and the thermal conduct of a nanofluid
through a permeable medium. Khan et al. [20] recorded MHD nanofluid flow, along with non-linear
radiation, through a non-linear stretching and shrinking wedge. A few relevant studies on MHD
non-Newtonian fluids flow can be found in [21–23].

The phenomenon of mass transportation in a system is the shifting of mass from one locale
to another locale. This phenomenon has been utilized scientifically in diverse fields of science for
assorted structures and systems, associating the molecular and convective transmission of molecules
and atoms. Part of the ordinary specimen of mass transport procedures includes the vaporization of
liquids, diffusing of chemical impurities into oceans and river-systems through artificially or naturally
occurring reservoirs, and the segregation of compounds in the purification process. Mass transfer has
expanded usage in industries and chemical engineering, too. In general, the transport of chemical
species occurs via diffusion in a state, or via an interface within phases. The pushing efficacy of mass
transferal is due to concentration variance, or the random movement of molecules, generating a net
transfer of mass from one locality of a higher concentration to another locality of a lower concentration.
The rate of mass transfer is computed via computations and coefficients of the mass transfer’s utilities.
Several researchers have exposed many more concerns about mass transfer when subjected to various
features. For an instance, Liu [24] and Cortell [25] inquired into the hydromagnetic flow past a stretched
subsurface, along with heat and mass transfer. The problem of a second-grade fluid saturating a
permeable medium was examined by Akyildiz et al. [26]. Layek et al. [27] inspected the heat and
mass transferal analysis of boundary value flow in a heated, stretched, permeable plate with heat
absorption. Makinde [28] explored the combination of mixed convection, thermal radiation, and a
chemical reaction through a vertically pervious subsurface. The viscoelastic flow and species transfer
into a Darcian high-porous channel was studied by Anwer and Makinde [29]. Abbas et al. [30]
examined the peristaltic propulsion for a Jeffrey nanofluid, along with the thermal radiation and
chemical reaction influence. Khan et al. [31] elaborated on the combination of heat and mass transport
for third-grade nanofluids on a convective heating, stretchable, pervious plate. Deebani et al. [32]
presented the hall effect on radiative Casson fluid flow with a chemical reaction over a rotating cone
through entropy optimization. Al-Khaled and Khan [33] inspected the thermal features of a Casson
nanofluid, comprising microorganisms along with the temperature-dependent viscosity and variant
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thermal conductivity. A few relevant inquiries on the transfer of mass and fluid flow through stretched
surfaces can be found in [34–36].

Keeping in mind the above discussion, the objective of the present study for the Maxwell fluid
model is to identify non-Newtonian fluid behaviors and analyze the impact of mass transfer in
the MHD upper-convected Maxwell (UCM) fluid flow in the vicinity of the stagnation point past a
stretched, permeable subsurface. The analysis of mass transfer past permeable surfaces has considerable
significance as a result of its vast utilities. The preceding investigations were based on the continual
physical aspects of the fluid. The current flow problem is reduced to non-linear ordinary differential
equations through appropriate similarity transformations and resolved by employing the successive
linearization method (SLM), providing purposeful results numerically [37–42]. The current technique
proved to be very efficient and has a fast convergence rate in comparison with various numerical
schemes. The impact of governing physical parametric quantities of concern is shown through graph
curves and explicitly discussed.

2. Mathematical Formulation

Consider the incompressible and steady stagnation point flow of an upper-convected Maxwell
(UCM) fluid constricted by a porous, stretched sheet on y = 0. The flow engrosses the range y > 0.
The x and y axes are assumed to be alongside and perpendicular to the sheet, respectively, as shown in
Figure 1. An external magnetic field B0 is exerted in a transverse direction to the flow, and the electric
and magnetic field is desolated due to the minimal magnetic Reynolds number. Additionally, the mass
transfer factors are esteemed. The mass transferal is the flow incorporating the species A that is barely
solvable in fluid B. The concentration over the sheet subsurface and the solubility of A into B is C̃w,
the part traveling through the sheet is C̃∞, and the reaction rate is k1. The velocity magnitudes of the
stagnation point on x = 0, y = 0 are expressed as

ũe(x) = ax, ũe(y) = ay, (1)
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Here, the constant a > 0 is proportional to the free stream velocity parting through the stretched sheet.
Through boundary layer approximations [43–45], the consequent flow equations are

∂ũ
∂x

+
∂ṽ
∂y

= 0 (2)
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ũ∂ũ
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∂y2 + ũe

dũe
dx −

B2
0σ
ρ

[
ũ− ũe + λ1ṽ∂ũ

∂y

]
−
µ f

k
ũ

(3)

ũ
∂C̃
∂x

+ ṽ
∂C̃
∂y

= DB
∂2C̃
∂y2 − k1

(
C̃− C̃∞

)
(4)

Their boundary conditions are

ũ = ũw(x) = dx, ṽ = −ṽw, C̃ = C̃w on y = 0 (5)

ũ = ax, C̃ = C̃∞ at y→∞ (6)

where ũ and ṽ are the velocity constituents alongside the x- and y-axis, ν is the kinematic viscosity, ρ is
the density, σ is the electrical conductivity of the fluid, the relaxation time is λ1, the mass diffusion
is DB, the concentration field is C̃, d is the stretching rate, and the reaction rate is k1. It has been

mentioned previously [44–47] that the extra expression
B2

0σ
ρ

[
−ũe + λ1ṽ∂ũ

∂y

]
is in the momentum equation.

This investigation embodies similar deduction to the MHD two-phase Maxwell fluid flow in the
flourishing explorations.

The following expression was introduced in [45,46]:

ũ = dxg′(η), ṽ = −
√

dν g(η), η =

√
d
ν

y, φ(η) =
C̃− C̃∞

C̃w − C̃∞
(7)

where a and d are positive constants with dimensional reciprocals of time.
Equation (2) satisfies them equally, and Equations (3)–(6) arrive at

g′′′ +
{
Mβ1 + 1

}
gg′′ − g′2 + β1

{
2gg′g′′ − g2g′′′

}
−M(g′ − α) −Kg′ + α2 = 0 (8)

φ′′ + Scgφ′ − ScKcφ = 0 (9)

The associated boundary conditions are

g′(η) = 1, g(η) = S, φ(η) = 1, on η = 0 (10)

g′(η) = α, φ(η) = 0, as η→∞ (11)

where S = −v0
√

aυ
, K =

µ f

kd
, M = σB0

2

ρd , β1 = λ1d, α = a
d , Sc = υ

DB
and Kc = k1

d are the suction,
porosity parameter, magnetic parametric quantity, Deborah number, Schmidt number, and chemical
reaction parametric quantity, respectively. Further, Kc > 0 or Kc < 0 stands for destructive or generative
chemical reactions, whereas Kc = 0 stands for non-reactive species.

Physical Quantities

The surface skin friction coefficient Cg and local Sherwood number Shx are described as

Cg =
2τw

ρũw2 , Shx =
xjw

DB
(
C̃w − C̃∞

) (12)

where τw is the wall shear stress and mw is the mass flux, with solutions for both presented below:

τw = µ

∂ũ

∂y


y=0

, mw = −DB

∂C̃

∂y


y=0

(13)
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Placing Equation (13) into Equation (12) yields

1
2

Cg
√

Rex = g′′ (0),
Shx√
Rex

= −φ′ (0) (14)

where Rex is the local Reynolds number.

3. Numerical Technique

We implemented the successive linearization method (SLM), assuming expansion [37–42], which is
given as

g(η) = gi(η) +
∑i−1

n=0
gn(η), (i = 1, 2, 3, . . .) (15)

where gi is the undetermined function, which is to be achieved iteratively. Presuming the earliest
hypothesis g0 of the mode, then

g0 = S + αη+ {1− α}(1− e−η) (16)

We write Equation (8) as
L = g′′′ −M(g′ − α) −Kg′ (17)

In addition, we can say

N =
{
Mβ1 + 1

}
gg′′ + β1

{
2gg′g′′ − g2g′′′

}
− (g′)2 + α2 (18)

where L and N are the linear and non-linear segments, respectively. By inserting Equation (15) into
Equation (8) and conceding the linear segment, we arrive at

g′′′i + C0,i−1g′′′i + C1,i−1g′′i + C2,i−1g′i − [M + K]g′i + C3,i−1gi + Mα = ri−1 (19)

The respective boundary conditions become

gi(0) = 0 = g′i (0) = g′i (∞) (20)

Equation (19) is solved through the Chebyshev spectral collocation technique. The conversion of a
physical part toward a finite part [−1, 1] is brought by applying a transformation of the following form:

Γ =
2η− 1

Θ
(21)

The [−1, 1] is discretized. To make the nodal points into [−1, 1], the Gause–Lobatto collocation
is utilized:

ΓI = cos
πi
N

, (I = 0, 1, . . .N) (22)

This expression holds (N + 1) collocation points. The differential matrix D is the basic theme
fundamental to this scheme. Pursuing a differential matrix involves further mapping into a vector
function H(= [G(Γ0), . . . , G(ΓN)]

T). The collocation points are specified as

H′ =
∑N

K=0
DKiG(ΓK) = DH (23)

The function G(Γ) for the qth order derivatives is described as

Gq(Γ) = DqH (24)



Inventions 2020, 5, 64 6 of 15

The matrix D is computable, utilizing a similar strategy conferred by Bhatti et al. [37–39]. Now,
the spectral collocation method is employed on linearized Equations (19) and (20) to arrive at

Bi−1Hi = Ri−1 (25)

Gi(ΓN) = 0,
N∑

K=0

DNKGi(ΓK) = 0,
N∑

K=0

D0KGi(ΓK) = 0,
N∑

K=0

D2
0KGi(ΓK) = 0 (26)

Additionally, we get

Bi−1 = D3 + C0,i−1D3 + C1,i−1D2 + C2,i−1D− (M + K)D + C3,i−1 + Mα (27)

where bS,i−1(S = 0, 1, . . . 3) are (N + 1)× (N + 1) diagonal matrices along the main diagonal bS,i−1(ΓN).
Therefore, we get

Hi = Gi(ΓI), Ri−1 = ri(ΓI). (I = 0, 1, 2, 3, . . .N) (28)

The solutions for gi are attained using Equations (25) and (26), and Equation (9) becomes linearized.
Thus, the Chebyshev pseudo-spectral method is applied in a straightforward fashion to get

B = H−1S (29)

φ(ΓN) = 1, φ(Γ0) = 0 (30)

B = D2 + ScgD− ScKc (31)

where H = φ(ΓI). The vectors of zeros are defined by S, and Equation (31) is further transformed
into the diagonal matrices. Equation (30) is employed over the foremost and last row of B and S,
subsequently.

4. Numerical Results and Consultation

This segment premeditates the approximated outcomes for the overall parameters held within the
governing equations. Matlab software resorted to exploring the anomalies for the overall effectiveness
of the prominent parametric quantities numerically. Figures 2–16 show the prominent parametric
quantities of the flow profiles, subsequently. Table 1 portrays the comparative outcomes for g′′ (0)
and −φ′(0), along with the preceding inquiries across Sc and Kc and the previously published
study, while adjusting the prevailing parameters of the governing equations. In Figures 2 and 3,
the variation in M for the velocity and concentration distribution is portrayed, and it was noted that
the velocity remarkably slowed down and fell with the boundary layer thickness while enhancing the
concentration magnitudes by enlarging the values in M. This signifies that the transversal magnetic
field resisted the transport phenomenon when an increase resulted in an enhancement of the Lorentz
force, which opposed the transport process. An increase in M produced an increase in the Lorentz force
due to the interaction of electric and magnetic fields in the electrically conductive fluid. A stronger
Lorentz force such as this yielded more resistance to transport. The larger the value of M, the greater
the diminution in the hydrodynamic boundary layer thickness. It was also recorded that the variation
of M was quietly contrasting to that of g′. Through Figures 4 and 5, the alteration in β1 for the velocity
and concentration distribution is portrayed, and it was recorded that the velocity notably slowed
down and the boundary layer thickness increased, although it enhanced the concentration magnitudes
by enlarging the values in β1. The concentration boundary layer thickness was increasingly thicker,
and the concentration transmission slowed down by enlarging β1. The figures also depict that more
time will be required to induce the concentration boundary layer by enhancing the values in β1; in other
words, the delayed response seemed to be in concentration transport. In Figures 6 and 7, the variation
in α for the velocity and concentration distribution is portrayed, and it is shown that the velocity field
remarkably boosted and enhanced the boundary layer thickness while slowing down the concentration
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magnitudes by raising the values in α. In Figures 8 and 9, the distant numeric value in K for the velocity
and concentration distribution is portrayed, and it was found that the velocity remarkably slowed
down while enhancing the concentration magnitudes by adding the values in K. We found out through
Figures 10 and 11 that the variation in S exceptionally decelerated the velocity and concentration
distribution, but enhanced the boundary layer thickness for the raising amounts found in S. Larger
suction generated stronger adherence of the boundary layer to the wall over the stretching sheet regime.
This caused an increase in the momentum and boundary layer thickness and decelerated the flow.

Figures 12–14 annotate the influence of Sc and Kc on species concentration successively and
show both the recorded parametric quantities slowing down the concentration and the decelerating
concentration of the boundary layer thickness. Physically, an increase in the value of Sc reduces the
molecular diffusivity that causes a decrease in the thickness of the concentration’s boundary layer.
Therefore, for the higher values of Sc, the concentration of chemically reactive species was bigger
and lower for smaller values of the Schmidt number Sc. The chemical reaction parameter Kc had
a remarkable influence on the concentration, to the point that the chemical reaction benefitted the
interface mass transfer. The species concentration fell when Kc reached large values as the destructive
chemicals receded. By raising numeric value in Kc, the concentration magnitudes were recorded to
increase for (Kc < 0), and decelerate for (Kc > 0). It is worth pointing out that the variation noticed for
(Kc < 0) was huge compared with the variation for (Kc > 0). It can be noticed that the rate of mass
transfer was enhanced greatly as the values of the chemical reaction rate rose. Additionally, the rate
of mass transfer enhanced when the volume fraction rose. For Figures 15 and 16, it is observed that
by taking high values of β1 across K, the skin friction coefficient deescalates, whereas the Sherwood
number escalates.

In the current study, the successive linearization method was employed as it was easy to apply
and did not contain rigorous mathematical manipulations, as in the case of some other numerical
schemes. All functions of the governing equations were replaced by a power series function expression,
which was further expanded and neglected its higher powers. The linearized systems were attained
after a slight amount of work to make it useful for solving highly non-linear differential equations.
Increasing the number of collocation points N and the number of iterations improved the accuracy of
the method. It is also noted that the solutions converged rapidly after putting N = 60, N = 65, N = 70,
and so on. The accuracy of the obtained solutions was resolved by comparing them to the previously
published results in the literature. The successive linearization method (SLM) converged after 4–5
iterations. The method demonstrated enormous accuracy when compared to other methods adopted
in the literature.
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• The variation in  decelerated the velocity profile, although it enhanced the concentration 
magnitudes. 

• The variation in  notably boosted the velocity magnitudes while it slowed down the 
concentration magnitudes. 

• Raising the numeric value in  turned out to decelerate the distribution while enhancing the 
concentration magnitudes. 

• By enlarging , there were significant slowdowns in the velocity and concentration 
distributions. 

• The concentration magnitudes successively decelerated across both parametric quantities  
and . 

• The concentration field had contradictory conduct across ( > 0) and ( < 0). 

Figure 16. Sherwood number with the variation of β1.

Table 1. Comparability for the current outcomes of g′′ (0) and −φ′(0), along with the preceding
inquiries across Sc and Kc by setting the values M = 1, β1 = α = 0.2, and K = S = 0.

Sc Kc Current Results for g”(0) [48] Current Results for −φ
′

(0) [48]

1.0 1.0 1.272470 1.272469 1.167862 1.16786
1.2 1.0 1.284681 1.28467
1.5 1.0 1.443482 1.44347
1.0 1.2 1.252273 1.25226
1.0 1.5 1.368854 1.36885

5. Conclusions

The current analysis demonstrates the impact of mass transfer into MHD upper-convected Maxwell
(UCM) fluid flow on a stretched, permeable plate in the vicinity of the stagnation point. The impacts
of porosity and suction were also investigated. The governing partial differential equations for the
flow problem were reformed into ordinary differential equations by using similarity transformations.
The numerical outcomes for the uprising non-linear boundary value problem were determined by
implementing the successive linearization method (SLM), which utilizes both Chebyshev interpolating
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polynomials and Gauss–Lobatto collocation points via Matlab software. The approximated results
were sketched as graphs and compared with the preceding investigated literature. The succeeding
attentions are recorded as follows:

• The variation in M for the velocity distribution remarkably slowed down while enhancing the
concentration magnitude.

• The variation in β1 decelerated the velocity profile, although it enhanced the
concentration magnitudes.

• The variation in α notably boosted the velocity magnitudes while it slowed down the
concentration magnitudes.

• Raising the numeric value in K turned out to decelerate the distribution while enhancing the
concentration magnitudes.

• By enlarging S, there were significant slowdowns in the velocity and concentration distributions.
• The concentration magnitudes successively decelerated across both parametric quantities Sc

and Kc.
• The concentration field had contradictory conduct across (Kc > 0) and (Kc < 0).
• The skin friction coefficient decelerated, whereas the Sherwood number enhanced across the

variation in β1.
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