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Abstract: Some of the most promising distributed recycling and additive manufacturing (DRAM)
technical systems use fused particle fabrication (FPF) or fused granular fabrication (FGF),
where compression screws force post-consumer waste plastic through a heated nozzle for direct
3D printing. To assist the technical evolution of these systems, this study provided the details of
an invention for a low-cost, easily replicable open-source grinding machine for compression screw
manufacturing. The system itself can be largely fabricated using FPF/FGF following the self-replicating
rapid prototyper (RepRap) methodology. This grinding machine can be made from a cordless cut-off

grinder and < $155 in parts. The new invention is demonstrated to be able to cut custom screws with
variable (i) channel depths, (ii) screw diameters, (iii) screw lengths, (iv) pitches, (v) abrasive disk
thicknesses, (vi) handedness of the screws, (vii) and materials (three types of steel tested: 1045 steel,
1144 steel, and 416 stainless steel). The results show that the device is more than capable of replicating
commercial screws as well as providing makers with a much greater flexibility to make custom screws.
This invention enables the DRAM toolchain to become even more self-sufficient, which assists the
goals of the circular economy.

Keywords: grinding machine; open hardware; open-source hardware; open-source appropriate
technology; compression screw; grinding; cylindrical grinding machine; recycling; material extrusion;
angle grinder

1. Introduction

The proven effectiveness of the free and open-source software movement [1,2] is being replicated
by the open-hardware community [3] with an approximately 15-year lag [4]. Open hardware is
accelerated by platform technologies such as the Arduino electronics rapid prototyping platform [5,6]
and its derivative, the self-replicating rapid prototyper (RepRap) project [7–9]. The goal of the RepRap
project is to create 3D printers that can 3D print their own components [7–9]. Open-source RepRap
material extrusion-based 3D printing substantially enlarged access to additive manufacturing (AM)
due to radical cost declines and an enormous expansion in the market for desktop 3D printing [10,11].
RepRap technology in turn catalyzed millions of free and open-source 3D-printable designs and created
a consumer (or prosumer) form of distributed manufacturing [12–14]. RepRaps and their derivatives
are now used to manufacture a wide range of products from household items [15–18] to high-end
scientific tools [19–23], generally far less expensively than available commercially [24–26]. The business
community understands the widespread impact this potential shift in manufacturing represents [27–33],
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whether the 3D printers are used in libraries [34–36] or at consumers’ own homes [37,38]. It appears
that all types of products used at the beginning of life, such as toys [39], to those generally used by the
elderly, such as arthritic adaptive aids [40] can save consumer money by distributed manufacturing.
This is remarkable because these savings are based on fused filament fabrication (FFF) and commercial
3D printing filament is generally sold for ~$20USD/kg while the cost of the raw materials of virgin
plastic pellets is only $1–5 USD/kg.

Previous research has shown that it is both technically viable and less expensive to use
distributed manufacturing to fabricate filament with an open-source waste plastic extruder
(or recyclebot) [41,42]). Combined, these concepts provide for the possibility of distributed recycling
and additive manufacturing (DRAM) in a circular economy [43–46]. The environmental benefits of both
distributed recycling [47–49] and distributed manufacturing [50,51] are clear because the embodied
energy and pollution from transportation between processing steps are eliminated. Substantial research
has shown that many waste polymers can be recycled into filament for FFF:

• polylactic acid (PLA) [42,52–56];
• acrylonitrile butadiene-styrene (ABS) [44,57–59];
• elastomers [15];
• high-density polyethylene (HDPE) [41,60,61];
• polypropylene (PP) and polystyrene (PS) [61];
• polyethylene terephthalate (PET) [62,63];
• linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) [64];
• polymer blends [65], composites [66] and various mixtures with waste wood fiber [47,63,67,68].

Unfortunately, for all of these polymers, the melt solidification during the recyclebot fabrication
of filament degrades the mechanical properties of the resultant 3D-printed object [69,70], which limits
recycling following this method to approximately five cycles before mechanical reinforcing is
needed [52,53].

It is possible, however, to eliminate the filament entirely for material extrusion-based AM by
grinding post-consumer waste with an open-source waste plastic granulator [71] to make flakes or
particles and directly printing from these, regrind, or shreds of recycled plastic with fused particle
fabrication (FPF) (also sometimes called fused granular fabrication (FGF)). FPF/FGF 3D printers are being
developed in the academics [71–76], maker communities [77–79], and by businesses (e.g., Cheetah Pro,
David, Erecto-Struder, GigabotX, and PartDaddy). The GigabotX, an open-source industrial 3D printer,
has, for example, been demonstrated to FPF/FGF print recycled PLA ABS, PP, PET and polycarbonate
(PC) [80–83]. In general, FGF/FPF 3D printers are far more expensive than their FFF counterparts in
large part due to the expense of a precision machined compression screw. These compression screws
also impact the cost of commercial recyclebots (e.g., the filabot extruder screw costs $749 USD [84],
which is approximately the cost of an entire open-source recyclebot). In addition, preliminary results
for desktop-sized open-source FPF 3D printers are promising [85], but the ability for the printer to
handle larger pellets is restricted because of the commercially-available small-scale compression screw
designs. In order for DRAM to reach its fullest potential, a low-cost open-source method is needed to
drive down the costs of compression screws for both FPF/FGF 3D printers and recyclebots.

To fulfill this need, this study provides the designs for a low-cost, easily replicable open-source
grinding machine for compression screw manufacturing. Following the RepRap methodology, many of
the components of this grinding machine can be fabricated using FPF/FGF. This new invention is tested
and characterized in terms of costs, screw section length able to be cut, potential diameter rod range,
and battery-life test for grinding screws 110 mm in length. Then validation tests were performed to
demonstrate screw grinding with variation in (i) channel depth, (ii) screw diameter, (iii) screw length,
(iv) change in pitch, (v) abrasive disk thickness, (vi) the handedness of the threaded rod, vii) and three
types of steel, 1045 steel, 1144 steel, and 416 stainless steel. The results are presented and discussed
in the context to adding this machine to the DRAM toolchain by enabling makerspaces, fab labs,
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companies and universities to fabricate compression screws rapidly for approximately the cost of the
bar stock.

2. Materials and Methods

2.1. Design

The design for this compression screw manufacturing machine was inspired by the common
lathe machine used in wood and metal working. The design followed the design procedure for
open-hardware development [3,86,87]. The components used were chosen for both their functionality
and cost efficiency. The bill of materials for constructing the machine is provided below in Table 1 and
a list of all tools used are shown in Table 2. A detailed bill of materials (BOM) with all manufactured
components used can be found in [88] in addition to all design files.

Table 1. Bill of Materials (BOM) for the Open-Source Grinding Machine for Compression Screw Manufacturing.

Type Item Count Length
(Inches) Cost Purpose

Raw Material PLA filament ~1 kg 1 $19.00 Material used to 3D print all
components other than the belt

Raw Material Nijatek Ninjaflex 85
A~12 g 1 $1.08 3D-printed belt to connect

threaded rod and chuck pulleys

Hardware Conduit 49.5 $2.68 Rails for the X and Y sliders to
move on

Fastener M8 × 30 mm hex
head bolt 28 $6.40 Axle and secures M8 Bearings

Fastener M8 nylon insert
locknut 28 $2.93 Secures M8 Bearings

Fastener M7 × 16 mm hex head
bolt 8 $2.17 Mounting the flange bearings

Fastener M7 hex nut 8 $0.36 Mounting the flange bearings

Fastener M3 × 12 mm 36 $3.12 Fasten 3D-printed parts

Fastener M3 hex nut 36 $2.00 Fasten 3D-printed parts

Fastener 5/16”–18 × 1–1/4”
grade 5 hex head bolt 1 $0.17 Mounting angle grinder

(dependent on angle grinder used)

Linear Motion 3/8”–16 left-hand
threaded rod 36 $21.24 Moves X slider for left-hand

threaded compression screws

Linear Motion 3/8”–16 left-hand
threaded hex nut 9 $1.81 Moves X slider for left-hand

threaded compression screws

Linear Motion 3/8”–16 right-hand
threaded rod 36 $9.18 Moves X slider for right-hand

threaded compression screws

Linear Motion 3/8”–16 right-hand
threaded hex nut 9 $0.79 Moves X slider for right-hand hex

nu compression screws

Hardware
10 mm self-aligning
pillow block flange

bearing
4 $20.18 Secures threaded rod and chuck

Hardware 3–16 mm drill chuck
with SDS-plus shank 1 $19.00 Holds the stock material

being machined

Hardware 608 ZZ bearings 24 $8.40 Linear motion, stock support

Raw Material 20” × 20” Baltic birch 3 $12.00 Frame of the machine

Fastener Flat-head wood screws
#6 × 3/4” in length 36 $1.50 Secures individual pieces of

plywood together
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Table 1. Cont.

Type Item Count Length
(Inches) Cost Purpose

Fastener Flat-head wood screws
#6 × 1–1/4” in length 4 $0.22 Secures the plywood

subassemblies

Fastener Wood glue 8OZ.
(Titebond II) 1 $4.00 Secures all plywood

pieces together

Consumable
Type 27 ceramic

grinding wheel 4–1/2”,
1/4” thickness

2 $12.00 Machining the round stock

Consumable 4–1/2” aluminum
oxide cut-off wheel 1 $3.00 Cut conduit, threaded rod, and

round stock

Total ◦ $153.23

Table 2. Tools Used for the Fabrication of the Open-Source Grinding Machine for Compression
Screw Manufacturing.

Description Use

Desktop FFF 3D printer Part manufacturing

CNC wood router with 20” × 20” work area Cut out plywood components

3175 × 17 mm compression wood end mill Used in CNC wood router to cut out plywood components

4–1/2” angle grinder Cutting metal conduit, round stock, and used in the machine

Construction speed square Frame construction, round stock setup

2.5 mm hex key Fastening M3 socket cap screws

2 mm hex key Used on the flange pillow block bearings

13 mm socket Fastening M8 hardware

Ratchet Tightening fasteners

13 mm box wrench Fastening M8 hardware

9/16” box wrench Used for tightening threaded rod nuts

Crescent wrench Tightening jam nuts on threaded rod and with
free-end support

All 3D-printed components are printable on most desktop 3D printers using polylactic acid (PLA)
and thermoplastic elastomer (TPE), as seen in Appendix A Table A1.

The frame of the machine is currently manufactured out of plywood for its low cost and ability to
conform to the dimensional constraints of the 3D printer. Linear motion relies on the use of a metal
pipe. The design files were developed parametrically such that the dimensions of the pipe used can be
adjusted within the FreeCAD [89] files to the dimension of a pipe that is commonly available in the
user’s region and all other dimensions will adjust accordingly.

Manufacturing

The 3D-printable parts were manufactured on a Lulzbot Taz 6 (FAME 3D, Fargo, ND, USA).
Print parameters for all PLA components were as follows: 30% gyroid infill, 4 perimeters, 5 top
layers, and 4 bottom layers. TPE parts were printed with 6 perimeters at 100% gyroid infill. To make
the plywood parts, a CNC wood router was used. The CNC had a cutting area of 500 × 500 mm,
however any dimensionally accurate CNC router with a 450 × 450 mm cutting area could be used.
Alternatively, if a CNC router is unavailable, a wood working saw capable of cutting curves in plywood
such as a jigsaw or a bandsaw could be used to cut the parts out. The most important dimensions
are the position and fit of the holes that secure the metal pipe and the top holes that secure the
pillow block flange bearings. While there are several ways to accomplish cutting out the holes with
correct dimensions, if not using a CNC, a drill press will provide the best results given that it is
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capable of drilling perpendicular to the plywood. Once all parts are 3D printed, cut out, or purchased,
assembly can begin.

2.2. Assembly

Detailed assembly instructions are provided on Appropedia.org [90]. The main assembly steps
are summarized here:

1 Building the frame

All plywood components must be cut out prior to beginning assembly of the machine. For gluing
together plywood, use wood glue in the areas where two pieces of plywood are in contact only.
After they are glued, parts should be pressed together by driving wood screws through them to help
clamp the two boards together. Use the conduit passing through specified boards to keep the glued
boards lined up with one another. The plywood pieces must be glued together in three subassemblies
(chuck end, free end, and back cross-section). These subassemblies can then be placed on the base and
secured together using wood glue and screws. The fully assembled frame is shown in Figure 1.
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2 Assembling 3D-printed components

a In all three sliders, bolt in the 608ZZ bearing with M8 bolts and a lock nut shown in Figure 2.
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Figure 2. (a) X-axis and Y-axis sliders with all the bearings, bolts, and locknuts; (b) X-axis and Y-axis
sliders with bearings installed.

b On the Y-axis slider, install:

i. Tool quick-release mounting hardware,
ii. Probe mount, and
iii. Threaded rod with the pointed end into the probe mount.

c On the X sliders install:

i. Y-axis tube lower mount, and
ii. Threaded rod coupler to connect the two X sliders.

d On the angle grinder install:
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i. Required tool mounting hardware which will vary based on what model angle grinder is
being used.

e On the free-end support, attach two bearings to the top holes and one to the top clamp with an
M8 bolt and lock nut. The top clamp should be mounted on the same M8 bolt that secures the
two lower bearings.

f Attach 1 flange pillow block bearing on each threaded rod tension slide, leaving it loose enough
to slide the bearing.

g On both pulleys, insert M3 nuts and start M3 × 12 mm bolts into the nuts.
h Using M3 hardware, connect the desired profile to the profile mount.

3 Combining assembled parts

a X-axis assembly.

i. Insert X-axis tube through the open holes on the end-cap subassembly.

b Push the X sliders onto the tube and insert the tube all the way into the chuck-end assembly until
it reaches the backing board C5.

c Install the drill chuck assembly with the desired chuck side pulley mounted onto the shaft of
the chuck.

i. Make sure the belt is looped around the chuck shaft.

d Install the threaded rod tension slide on both ends with M8 bolts and M8 lock nuts, as shown in
Figure 3.
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e Threaded rod installation

i. Insert the threaded rod through the free-end side pillow block bearing and move it up to
the X slider. Insert a hex nut on each side and a spring in the middle to reduce backlash.
Screw the threaded rod onto both nuts. Continue rotating the rod, moving it closer to
the front of the chuck assembly. Screw on a pair of hex nuts, lower pulley, and then add
another pair of hex nuts. Push the threaded rod through the other pillow block bearing
and check that the pulley is lined up with the pulley attached to the chuck. Tighten the
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nuts on both sides of the pulley and tighten the M3 bolts on the pulley itself to secure it in
place. Reinsert the threaded rod through the pillow block bearing and secure a pair of
hex nuts on both ends of the threaded rod to help keep the threaded rod from moving.
Install the belt on both pulleys, slide the threaded rod equally on both sides, and tighten
the pillow block bearings.

f Installing the Y-axis subassembly

i. Slide on the Y slider onto the Y-axis tubes.
ii. Insert the Y-axis tubes and secure with the 3D-printed tube clamp.

g Install the free-end support, leaving it loose enough to be able to adjust it when adding round stock.
h Install angle grinder with appropriate grinding disk onto the Y slider.
i Install the profile mount onto the back cross-section and adjust to align with the cutter disk and

the round stock.

4 Assembly is now complete. The completely assembled machine is shown in Figure 4.
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2.3. Operation

2.3.1. Machine Operation

Operation of the machine can be seen in Video S1 in the Supplementary Materials and is detailed
in Appendix B. The basic operation follows five steps:

1. Install desired round stock.
2. Check that a proper abrasive grinding disk is installed on the angle grinder for the material

being cut.

a It is economically advantageous to employ a more heavily used grinding disk for roughing
passes and a new disk for finishing passes.
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3. To move the tool, rotate the threaded rod. The direction of rotation is dependent on the handedness
of the threaded rod used.

a. Rotation can be achieved by attaching a drill onto the hex nuts at the end of the threaded
rod. Alternatively, if a drill is unavailable, a ratchet wrench, or a 3D-printed crank could be
used to rotate the threaded rod. While operating by hand is possible, it will take much
longer to move the tool along the X-axis.

4. For the initial operation cycle, the grinder motion in both axes must be checked to ensure the
grinder is able to move freely.

5. Setting the angle grinder to the Y-axis position:

a. Align the angle grinder with the round stock that is installed in the chuck at the starting point.
b. Move the profile mount to where the starting point on the profile is aligned with the probe.
c. Move the probe such that it is in contact with the pad to the left of the starting point.

i. It is important that the profile is designed for the diameter of the round stock.
Using a profile designed for 10 mm round stock on 8 mm round stock could result
in cutting through the round stock depending on the profile.

d. Once the probe is set, run the grinder while the machine is off down the length of the round
stock to check that it is just contacting the round stock.

e. At this point, return the grinder to the starting point for the shaping process.

i. Make a shallow first cut that should only be approximately 0.5 mm in depth.
ii. Once at the end of the screw, return the grinder back to the start.

1. The grinder can remain on or off.

iii. Make several passes, removing approximately 1 mm of material in each pass.

1. Repeat until the probe is in contact with the profile for the entire pass.

f. Once the screw has been cut, it is now time to move onto finishing the finishing steps.
Finish the screw by sanding down the burrs and polishing.

2.3.2. Machine Performance Requirements

This machine is capable of machining compression screws with similar characteristics as the
available micro compression screws on the market [91–93] and allows for optimization of the screw
geometry [94,95]. Micro compression screws that are currently on the market have very shallow
channel depths rendering them incapable of processing most virgin plastic pellets. Figure 5 shows
the purchased screw [93] with virgin PLA plastic pellets, demonstrating how standard pellets have
difficulty feeding into extrusion systems using this screw.

This open-source grinding machine can create a more functional screw by allowing the operator
to have more control over channel depth, screw diameter, and other parameters relevant to screw
optimization including screw length, channel width, and compression ratio.

2.4. Validation Tests

To test the open-source grinder, the following tests were performed:

1. Machine characterization for costs, screw section length cut, diameter rod range, and battery-life
test for grinding screws 110 mm in length.

2. Demonstration of screw cutting with variation in (i) channel depth, (ii) screw diameter, (iii) screw
length, (iv) change in pitch, (v) abrasive disk thickness, (vi) the handedness of the threaded rod,
(vii) and various materials including 1045 steel, 1144 steel, and 416 stainless steel.
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Figure 5. Image of the purchased micro compression screw with virgin PLA pellets that would typically
be used for fused particle fabrication or filament manufacturing. Take note that the channel depth is
significantly smaller than the diameter of the pellets.

3. Results

3.1. Machine Characterization

The fully assembled compression screw manufacturing machine is pictured in Figure 6. The total
cost of the machine is approximately $160USD, not including the cutting tool used for machining the
compression screws. The machine in its current configuration can cut a screw section up to 110 mm
in length. It is also capable of cutting up 4–16 mm diameter round stock. The cutting tool used in
this machine is a battery-operated angle grinder [96]. One 18 volt 4.0 AH, 72 Wh battery will last for
two complete screws. The machine is designed to be compatible with most 4–1/2” angle grinders after
redesigning the tool mounting bracket and angle brackets for the particular angle grinder being used.
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3.2. Machined Compression Screws

Several example screws have been manufactured to showcase the different parameters that can
be changed by simply changing the handedness of the threaded rod, pulleys, tool mounting angles,
and abrasive disk thickness. The diameter of the manufactured screw pictured in Figure 7 is identical
to the purchased screw, however it features improved channel depth to allow larger plastic pellets
to enter the extruder. The greater feed zone channel depth will also allow a broader range of plastic
materials to be used with the manufactured screw.
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Figure 7. The top screw is the original purchased screw with a channel depth of 1.6 mm. The bottom
screw was manufactured with the machine detailed in this report and has a channel depth of 2.5 mm.
Both screws have an outer diameter of 8 mm.

While channel depth can be improved in the 8 mm screw as demonstrated in Figure 7, the 8 mm
diameter constraint limits the total achievable channel depth. A larger diameter can facilitate a deeper
channel depth while reducing torsional shear stress. Given that the common virgin plastics available
on the market are intended to be used in larger extrusion systems, an 8 mm diameter screw is simply
not large enough for pellets to adequately feed into the system. Increasing the diameter of the screw to
10 mm allows for enough channel depth to feed standard PLA pellets as shown in Figure 8.

Inventions 2020, 5, x FOR PEER REVIEW 12 of 28 

channel depth while reducing torsional shear stress. Given that the common virgin plastics available 

on the market are intended to be used in larger extrusion systems, an 8 mm diameter screw is simply 

not large enough for pellets to adequately feed into the system. Increasing the diameter of the screw 

to 10 mm allows for enough channel depth to feed standard PLA pellets as shown in Figure 8. 

 

Figure 8. This screw was manufactured with a 10 mm diameter and a channel depth of 3.8 mm. Virgin 

PLA pellets fit nicely with these screw dimensions. 

The length of the screw offers another area of customization using this machine. In Figure 9, a 

comparison of the purchased compression screw with a custom-manufactured screw is pictured. The 

longer screw section increases the length of the feed zone, compression zone, and metering zone. The 

screw length parameter is limited only by the length of the machine itself and the profile design used. 

 

Figure 9. Comparison between the purchased screw (top) and a machined screw with an extended 

length (bottom). 

Using the proposed machine, the pitch and helix of the angle is also customizable. The desired 

pitch and helix angle can be accomplished by changing out the pulleys for a different tooth count to 

change the distance traveled by the tool per rotation of the round stock. When changing the pitch, 

the angle of the tool will also have to be adjusted to match the helix angle for the new pitch as well 

as the stock diameter. In Figure 10, two 10 mm diameter screws with different pitches are shown. A 

higher-pitch screw will have a thicker flight width. If the pitch is too low for the abrasive disk 

thickness, it will pass over the flights of the screw, rendering the screw unusable. 

  

Figure 8. This screw was manufactured with a 10 mm diameter and a channel depth of 3.8 mm. Virgin
PLA pellets fit nicely with these screw dimensions.

The length of the screw offers another area of customization using this machine. In Figure 9,
a comparison of the purchased compression screw with a custom-manufactured screw is pictured.
The longer screw section increases the length of the feed zone, compression zone, and metering
zone. The screw length parameter is limited only by the length of the machine itself and the profile
design used.

Using the proposed machine, the pitch and helix of the angle is also customizable. The desired
pitch and helix angle can be accomplished by changing out the pulleys for a different tooth count to
change the distance traveled by the tool per rotation of the round stock. When changing the pitch,
the angle of the tool will also have to be adjusted to match the helix angle for the new pitch as well
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as the stock diameter. In Figure 10, two 10 mm diameter screws with different pitches are shown.
A higher-pitch screw will have a thicker flight width. If the pitch is too low for the abrasive disk
thickness, it will pass over the flights of the screw, rendering the screw unusable.
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Figure 9. Comparison between the purchased screw (top) and a machined screw with an extended
length (bottom).
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Figure 10. Comparison of two screws with a 10 mm diameter and different pitches. The top and bottom
screws were manufactured using a 10 and 11.4 mm pitch, respectively.

Another screw variation made with the machine was using a 3.175 mm thickness abrasive wheel,
creating a channel width of 4.75 mm compared to the 8 mm channel width created by a 6.35 mm thick
abrasive wheel. The comparison of the different abrasive wheel thicknesses is shown in Figure 11.
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The handedness of the threaded rod used is identical to the handedness of the screw being
machined. An example of a left-hand threaded screw and a right-hand threaded screw are shown in
Figure 12.
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The last variation made utilized a new material, 416 stainless steel. The two stainless steel screws
are shown in Figure 13. All other 8 mm screws were manufactured using 1045 steel. The 1144 steel
was used for the 10 mm diameter screws.

Inventions 2020, 5, x FOR PEER REVIEW 14 of 28 

The last variation made utilized a new material, 416 stainless steel. The two stainless steel screws 

are shown in Figure 13. All other 8 mm screws were manufactured using 1045 steel. The 1144 steel 

was used for the 10 mm diameter screws. 

 

Figure 13. An example of two screws manufactured from 416 stainless steel. 

4. Discussion 

4.1. Machine Limitations 

While use of abrasive grinding disks can remove material from the round stock in a controlled 

manner, the profile of the abrasive wheel changes with extensive use. As material is removed, the 

wheel diameter is reduced over time which can cause the channel depth to be shallower than desired 

unless the probe is adjusted before the final pass to correct this issue. Another problem with the 

abrasive wheels is a changing profile from a squared to rounded edge over time as shown in Figure 

14. 

 
Figure 14. Comparison of a disk after 10 screws (bottom) and an unused disk (top). 

A potential countermeasure for this issue is to use a new abrasive wheel for a final pass over the 

part. In Figure 15, before and after images of a screw that has had a finishing pass are shown. 
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4. Discussion

Machine Limitations

While use of abrasive grinding disks can remove material from the round stock in a controlled
manner, the profile of the abrasive wheel changes with extensive use. As material is removed, the wheel
diameter is reduced over time which can cause the channel depth to be shallower than desired unless
the probe is adjusted before the final pass to correct this issue. Another problem with the abrasive
wheels is a changing profile from a squared to rounded edge over time as shown in Figure 14.

A potential countermeasure for this issue is to use a new abrasive wheel for a final pass over the
part. In Figure 15, before and after images of a screw that has had a finishing pass are shown.

In addition, the use of common abrasive grinding disks available at most hardware stores for
angle grinders is only recommended to cut steel and stainless steel. Discs specifically designed for use
with soft metals may be found at specialty suppliers.

The maximum diameter stock size constrained to under 16 mm by the purchased drill chuck
presents another potential limitation of this machine. For most micro compression screw designs,
a 16 mm diameter is sufficient and will not present an issue. If for some reason the manufacturer
desired larger-diameter round stock, a round stock with a diameter greater than 16 mm would not be
able to fit in the current drill chuck specified in the BOM.
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Figure 15. (a) Compression screw ground using a worn-down abrasive disk. (b) Compression screw
with a finishing pass using a new abrasive disk.

Lastly, in its current state, the machine relies on mechanical gearing to determine the screw
parameters. Experimentation with different screw parameters while necessary can be a bit tedious,
especially as adjusting screw pitch requires removal of the chuck to change pulleys and undoing the
chuck side of the threaded rod to remove the pulley. Future work is needed to make this process
less time consuming. Compression screws could be manufactured using a CNC mill with a fourth
axis, or a CNC lathe. Industrial extrusion screws are manufactured using a cylindrical grinding
machine [97]. The machine developed in this work is classified as an outside diameter cylindrical
grinding machine [98].

In the future, this invention can be improved in several ways. First, this machine could be improved
to make operation of the machine safer, easier, and faster to use. One aspect that would improve the
design would be to consider machining dynamics [99,100]. The current version of the machine never
had a problem with natural frequencies or performance under harmonic loadings. With particular
selections of materials and geometries, this may not be the case and a detailed mode analysis could
determine the limits of this design. Core design elements of the original design can then be used to
create a computer numerically controlled (CNC) operated version of the machine. This version of the
machine could be automated and thus networked so that it could be operated and supported from
external programmers and users. A CNC version of the machine will allow for handsfree operation
and faster experimentation with different screw parameters and rapid prototyping. In addition to
DRAM, this machine could be used in devolved manufacturing [101,102]. Finally, applying what
has been learned on the micro compression screw manufacturing machine, a dedicated machine for
creating screws for filament extruders and industrial-sized pellet 3D printers will be created.
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This grinding device was able to successfully manufacture custom extrusion screws, which radically
reduce the cost of one of the core components of desktop-sized open-source FPF 3D printers [85].
This ability will provide the maker community with access to low-cost screws, thereby benefiting the
circular economy based on distributed recycling and additive manufacturing [43–46], regardless of
whether it is home-based manufacturing or a more centralized form of distributed manufacturing
(e.g., community based) [103].

5. Conclusions

This study provided the details of an invention for a low-cost, easily replicable open-source grinding
machine for compression screw manufacturing. The designs followed the RepRap methodology,
as many of the components of this grinding machine can be fabricated using FPF/FGF, which would be
enabled by the screws that the system manufactures. This grinding machine for compression screw
manufacturing can be made from <$155 in parts and the cost of a cordless cut-off grinder (~$130).
The new invention is demonstrated to be able to cut custom screws with variable (i) channel depths,
(ii) screw diameters, (iii) screw lengths, (iv) pitches, (v) abrasive disk thicknesses, (vi) the handedness of
the threaded rod, (vii) and three types of steel, 1045 steel, 1144 steel, and 416 stainless steel. The results
show that the device is more than capable of replicating commercial screws as well as providing makers
with a much greater flexibility to make custom screws. This ability added to the DRAM toolchain by
enabling makerspaces, fab labs, companies and universities to fabricate compression screws rapidly
for approximately the cost of the bar stock, which assists the goals of the circular economy based on
distributed recycling and additive manufacturing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2411-5134/5/3/26/s1,
Video S1: How to Use the Open-Source Grinding Machine for Compression Screw Manufacturing.

Author Contributions: Conceptualization, J.F. and J.M.P.; methodology, J.F. and J.M.P.; validation, J.F.; formal analysis,
J.F. and J.M.P.; investigation, J.F.; resources, J.M.P.; data curation, J.F.; writing—original draft preparation, J.F.
and J.M.P.; writing—review and editing, J.F. and J.M.P.; visualization, J.F.; supervision, J.M.P.; funding acquisition,
J.M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Witte Endowment.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A. Manufactured Components

Table A1. Manufactured Components for the Open-Source Grinding Machine for Compression Screw Manufacturing.

Name Quantity Description Mater-ial Manufacturing Methods/Settings

X-Axis Slider
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Table A1. Cont.

Name Quantity Description Mater-ial Manufacturing Methods/Settings

Threaded Rod Tension
Slide
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Tube

Top

Clamp

2 

Threa

ded 

Rod 
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n Slide 

2 

Threa

ded 

Rod 

Coupl

er 

2 

Used to 

connect the 

X-axis sliders

and holds

the two nuts 

and spring 

that are 

installed on 

the threaded 

rod 

PLA 

3D Printed 

 40% gyroid infill

 No supports

 6 perimeters

 0.5 mm nozzle

 5 top, 4 bottom

layers

Probe 

Mount 
1 

Holds 

threaded rod 

with a 

pointed end 

that is used 

to follow the 

profile part 

PLA 

3D Printed 

 30% gyroid infill

 No supports

 4 perimeters

 0.5 mm nozzle

 5 top, 4 bottom

layers

2
Mounting the pillow block flange

bearings that hold the
threaded rod

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Threaded Rod
Coupler
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Threa
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Rod 
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er 

2 

Probe 

Mount 
1 

2

Used to connect the X-axis sliders
and holds the two nuts and

spring that are installed on the
threaded rod

PLA

3D Printed

• 40% gyroid infill
• No supports
• 6 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Probe Mount
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Tube
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Mount
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Y-Axis

Tube

Top

Clamp

2 
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ded 

Rod 
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n Slide 

2 

Threa

ded 

Rod 

Coupl

er 

2 

Probe 

Mount 
1 

1
Holds threaded rod with a

pointed end that is used to follow
the profile part

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Grinder Mount Angle
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r 

Mount 

Angle 

1 
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t 

1 

Quick-

Releas

e 

Bridge 

Clamp 

1 

Quick-

Releas

e 

Lockd

own 

Lever 

1 

Lock-

Side 

Grinde

r 

Mount 

1 

1

Positions the angle grinder to
match the helix angle of the screw

being machined. Attached to
Y-axis slider with the

quick-release lockdown

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers
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Table A1. Cont.

Name Quantity Description Mater-ial Manufacturing Methods/Settings

M18 Bracket
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e 
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Lever 

1 

Lock-

Side 

Grinde

r 

Mount 

1 

1

This bracket is mounted onto the
Milwaukee 2680 angle grinder.
Other models might require a

different bracket to be designed

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Quick-Release Bridge
Clamp

Inventions 2020, 5, x FOR PEER REVIEW 18 of 28 
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Mount 

Angle 
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M18 
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t 
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Quick-

Releas

e 

Bridge 

Clamp 

1 

Quick-

Releas

e 

Lockd

own 

Lever 

1 

Lock-

Side 

Grinde

r 

Mount 

1 

1
Part of the quick-release

lockdown system to secure the
angle grinder mount

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Quick-Release
Lockdown Lever
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Bridge 

Clamp 

1 

Quick-

Releas

e 

Lockd

own 

Lever 

1 

Lock-

Side 

Grinde

r 

Mount 

1 

1 Lever to secure the angle grinder
tool mount PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Lock-Side Grinder
Mount
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Grinde

r 

Mount 
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1 

M18 
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t 

1 
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Releas

e 

Bridge 

Clamp 

1 

Quick-

Releas

e 

Lockd

own 

Lever 

1 

Lock-

Side 

Grinde

r 

Mount 

1 

1 Bracket that holds the
quick-release lockdown lever PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers
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Table A1. Cont.

Name Quantity Description Mater-ial Manufacturing Methods/Settings

Profile Mount
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Rod 
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1 * 

1
Mounts onto cross-brace to secure

two different profiles
for machining

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Profile
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Profile 1 * 
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1 * 

1 *

The probe on the Y-axis slider
moves across the face of the
profile to control the channel

depth of the screw
during grinding

PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers

Belt

Inventions 2020, 5, x FOR PEER REVIEW 19 of 28 

Profile 

Mount 
1 

Profile 1 * 

Belt 1 * 

Chuck 

Pulley 
1 * 

Threa

ded 

Rod 

Pulley 

1 * 

1 * Belt to connect the chuck and
threaded rod pulleys Nijatek Ninjaflex 85 A

3D Printed

• 100% gyroid infill
• No supports
• 8 perimeters
• 0.4 mm nozzle
• 4 top, 4 bottom layers

Chuck Pulley
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Profile 

Mount 
1 

Profile 1 * 

Belt 1 * 

Chuck 

Pulley 
1 * 

Threa

ded 

Rod 

Pulley 

1 * 

1 * Mounted on the chuck shaft that
controls the pitch of the screw PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers
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Table A1. Cont.

Name Quantity Description Mater-ial Manufacturing Methods/Settings

Threaded Rod Pulley
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Profile 

Mount 
1 

Profile 1 * 

Belt 1 * 

Chuck 

Pulley 
1 * 

Threa

ded 

Rod 

Pulley 

1 * 

1 * Mounted on the threaded rod to
control the pitch of the screw PLA

3D Printed

• 30% gyroid infill
• No supports
• 4 perimeters
• 0.5 mm nozzle
• 5 top, 4 bottom layers
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Table A1. Cont.

Name Quantity Description Mater-ial Manufacturing Methods/Settings
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Appendix B. Operation Details of Open-Source Grinder 

When creating screws from drawings or CAD models (as shown in Figure A1), the following are 

several best practices to follow during the machining process. First, take many shallow passes with 

the tool constantly moving while in contact with the stock. Second, keep in mind that the abrasive 

disk controls the profile of the channel. It is important to use a new disk with square, non-rounded 

corners for finishing passes if the desired channel profile is flat. Lastly, continue making passes until 

the grinder is no longer removing material and the sparks generated by the machine slow 

considerably. For a clear and complete understanding of machine operating practices and principles, 

please consider watching the video guide (Video S1) provided in the Supplementary Materials. The 

video guide highlights machine operation from start to finish including tasks such as changing out 

the pulleys, mounting the angle grinder, and switching profiles. Customization of the pulleys and 

grinder mount is easily achievable by changing values within a spreadsheet inside the main design 

FreeCAD file. Updating the desired pitch and stock diameter will adjust the grinder mount and 

output the values to be entered into the OpenSCAD pulley file. The profile is created in FreeCAD and 

must be designed based on the desired compression ratio, channel depth, and overall length of the 

screw. While profiles can be used for various pitch screws, they should not be interchanged with 

different diameter stock materials. As this is a manually controlled machine, creating several test 

pieces and conducting practice runs as needed will likely be helpful to new users to better understand 

how the machine performs throughout the screw manufacturing process. The process is summarized 

in Table B1. 
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plywood

Multiple methods

16. CNC router
17. Jigsaw, router, and a drill

Bandsaw, router, and a drill
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Appendix B. Operation Details of Open-Source Grinder

When creating screws from drawings or CAD models (as shown in Figure A1), the following are
several best practices to follow during the machining process. First, take many shallow passes with
the tool constantly moving while in contact with the stock. Second, keep in mind that the abrasive
disk controls the profile of the channel. It is important to use a new disk with square, non-rounded
corners for finishing passes if the desired channel profile is flat. Lastly, continue making passes until
the grinder is no longer removing material and the sparks generated by the machine slow considerably.
For a clear and complete understanding of machine operating practices and principles, please consider
watching the video guide (Video S1) provided in the Supplementary Materials. The video guide
highlights machine operation from start to finish including tasks such as changing out the pulleys,
mounting the angle grinder, and switching profiles. Customization of the pulleys and grinder mount
is easily achievable by changing values within a spreadsheet inside the main design FreeCAD file.
Updating the desired pitch and stock diameter will adjust the grinder mount and output the values to
be entered into the OpenSCAD pulley file. The profile is created in FreeCAD and must be designed
based on the desired compression ratio, channel depth, and overall length of the screw. While profiles
can be used for various pitch screws, they should not be interchanged with different diameter stock
materials. As this is a manually controlled machine, creating several test pieces and conducting practice
runs as needed will likely be helpful to new users to better understand how the machine performs
throughout the screw manufacturing process. The process is summarized in Table A2.Inventions 2020, 5, x FOR PEER REVIEW 22 of 28 
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Table A2. Process sheet for fabricating a screw with the open-source grinding machine.

Task
Number Name of Operation Description of Task Estimated

Time (minutes) Notes

1 Loading stock Installing stock into chuck
and adjusting supports 5

Ensure the stock is parallel
to the X-axis of
the machine

2 Grinder alignment
Setting the starting depth
of the grinder and
positioning the profile

2
If performing a finishing
pass, have the finishing
pass disk installed

3 Roughing disk installation Install the disk to be used
for roughing passes 1

4 Roughing pass
Start making passes with
the grinder removing the
bulk of the material

2

Make sure not to force the
angle grinder hard into the
stock, as it may bend the
stock material. If the stock
is starting to change color,
the feed rate is too fast

5 Finishing disk installation Install the disk to be used
for finishing passes 1 This disk needs to have

minimum wear

6 Finishing pass
Removing excess stock not
reached by the
roughing disk

1 Machine screw until the
desired geometry is made

7 Stock removal
Removing screw and
excess stock from
the machine

2

8 Cutting screw from stock Cutting off the screw from
the stock material < 1 Angle grinder with a thin

cut-off disk to be used

9 Screw finishing
Removal of burrs left from
the grinding process and
polishing the screw

10+
Methods for this section
will vary based on
tools available
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69. Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and mechanical properties
of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015, 114, 133–145. [CrossRef]

70. Hyung Lee, J.; Sub Lim, K.; Gyu Hahm, W.; Hun Kim, S. Properties of recycled and virgin poly(ethylene
terephthalate) blend fibers. Appl. Polym. Sci. 2012, 128, 2.

71. Ravindran, A.; Scsavnicki, S.; Nelson, W.; Gorecki, P.; Franz, J.; Oberloier, S.; Meyer, T.K.; Barnard, A.R.;
Pearce, J.M. Open Source Waste Plastic Granulator. Technologies 2019, 7, 74. [CrossRef]

72. Dertinger, S.; Pringel, A.; Pearce, J.M. Open source heated syringe-based 3-D printing of post-consumer
polyethylene terephthalate. 2020; to be published.

73. Beaudoin, A. JMS-1704: Multihead 3D Printer. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA,
USA, 2016.

74. Whyman, S.; Arif, K.M.; Potgieter, J. Design and development of an extrusion system for 3D printing
biopolymer pellets. Int. J. Adv. Manuf. Technol. 2018, 96, 3417–3428. [CrossRef]

75. Giberti, H.; Sbaglia, L.; Silvestri, M. Mechatronic Design for an Extrusion-Based Additive Manufacturing
Machine. Machines 2017, 5, 29. [CrossRef]

76. Liu, X.; Chi, B.; Jiao, Z.; Tan, J.; Liu, F.; Yang, W. A large-scale double-stage-screw 3D printer for fused
deposition of plastic pellets. J. Appl. Polym. Sci. 2017, 134, 45147. [CrossRef]

77. Volpato, N.; Kretschek, D.; Foggiatto, J.A.; da Silva Cruz, C.G. Experimental analysis of an extrusion system
for additive manufacturing based on polymer pellets. Int. J. Adv. Manuf. Technol. 2015, 81, 1519–1531.
[CrossRef]

78. Horne, R. Reprap Development and Further Adventures in DIY 3D Printing: No More Filament? Quest for a
Universal Pellet Extruder for 3D Printing. Reprap Development and Further Adventures in DIY 3D Printing
2014. Available online: https://richrap.blogspot.com/2014/12/no-more-filament-quest-for-universal.html
(accessed on 9 August 2018).

79. Universal Pellet Extruder. Available online: http://upe3d.blogspot.com/ (accessed on 19 May 2020).
80. Braanker, G.B.; Duwel, J.E.P.; Flohil, J.J.; Tokaya, G.E. Developing a plastics recycling add-on for the RepRap

3D-printer. Delft Univ. Technol. 2010, 42.

Sffsymposium.engr.utexas.edu/sites/default/files/2018/007%20TheRecyclingofEWasteABSPlasticsbyMeltExtr.pdf
Sffsymposium.engr.utexas.edu/sites/default/files/2018/007%20TheRecyclingofEWasteABSPlasticsbyMeltExtr.pdf
http://dx.doi.org/10.1021/acssuschemeng.9b02368
http://dx.doi.org/10.1007/s10924-016-0793-4
http://dx.doi.org/10.1007/s11837-018-3040-8
http://dx.doi.org/10.1016/j.addma.2018.03.007
http://dx.doi.org/10.1016/j.addma.2018.04.011
http://dx.doi.org/10.1016/j.addma.2018.11.009
http://dx.doi.org/10.1016/j.jclepro.2016.11.139
http://dx.doi.org/10.13073/FPJ-D-17-00042
http://dx.doi.org/10.1007/s10924-016-0760-0
http://dx.doi.org/10.1016/j.polymdegradstab.2015.01.012
http://dx.doi.org/10.3390/technologies7040074
http://dx.doi.org/10.1007/s00170-018-1843-y
http://dx.doi.org/10.3390/machines5040029
http://dx.doi.org/10.1002/app.45147
http://dx.doi.org/10.1007/s00170-015-7300-2
https://richrap.blogspot.com/2014/12/no-more-filament-quest-for-universal.html
http://upe3d.blogspot.com/


Inventions 2020, 5, 26 27 of 28

81. Woern, A.; Byard, D.; Oakley, R.; Fiedler, M.; Snabes, S.; Pearce, J.; Woern, A.L.; Byard, D.J.; Oakley, R.B.;
Fiedler, M.J.; et al. Fused Particle Fabrication 3D Printing: Recycled Materials’ Optimization and Mechanical
Properties. Materials 2018, 11, 1413. [CrossRef] [PubMed]

82. Byard, D.J.; Woern, A.L.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Green Fab Lab Applications of
Large-Area Waste Polymer-based Additive Manufacturing. Addit. Manuf. 2019, 27, 515–525. [CrossRef]

83. Reich, M.J.; Woern, A.L.; Tanikella, N.G.; Pearce, J.M. Mechanical Properties and Applications of Recycled
Polycarbonate Particle Material Extrusion-Based Additive Manufacturing. Materials 2019, 12, 1642. [CrossRef]

84. EX6 Extruder Screws. Available online: https://www.filabot.com/products/ex6-extruder-screws (accessed on
19 May 2020).

85. Alexandre, A.; Cruz Sanchez, F.A.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Mechanical Properties of Direct
Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication
on Open-Source Desktop Three-Dimensional Printers. 3D Print. Addit. Manuf. 2020. [CrossRef]

86. Oberloier, S.; Pearce, J.M. General Design Procedure for Free and Open-Source Hardware for Scientific
Equipment. Designs 2017, 2, 2. [CrossRef]

87. Definition (English)—Open Source Hardware Association. Available online: https://www.oshwa.org/

definition/ (accessed on 13 April 2020).
88. Franz, J.; Pearce, J.M. Open-Source Grinding Machine for Compression Screw Manufacturing. 2020.

Available online: https://osf.io/ev6ta/ (accessed on 2 July 2020).
89. FreeCAD: Your Own 3D Parametric Modeler. Available online: https://www.freecadweb.org/ (accessed on

19 May 2020).
90. Appropedia link to assembly. Available online: https://www.appropedia.org/Open-Source_Grinding_

Machine_for_Compression_Screw_Manufacturing (accessed on 2 July 2020).
91. 8mm 304 Stainless Steel Version Extruder Micro Screw Throat Feeding Rod For 3D Printer Parts. Banggood.

Available online: https://usa.banggood.com/8mm-304-Stainless-Steel-Version-Extruder-Micro-Screw-Throat-
Feeding-Rod-For-3D-Printer-Parts-p-1469413.html (accessed on 21 May 2020).

92. 8mm Hardening Steel Version Extruder Micro Screw Throat Feeding Rod For 3D Print. Ebay. Available online:
https://www.ebay.com/i/113808837112 (accessed on 21 May 2020).

93. 8mm Hardening Steel Version Extruder Micro Screw Throat Feeding Rod For 3D Printer Parts. Banggood.
Available online: https://usa.banggood.com/8mm-Hardening-Steel-Version-Extruder-Micro-Screw-Throat-
Feeding-Rod-For-3D-Printer-Parts-p-1447501.html (accessed on 21 May 2020).

94. Kelly, A.L.; Brown, E.C.; Coates, P.D. The effect of screw geometry on melt temperature profile in single
screw extrusion. Polym. Eng. Sci. 2006, 46, 1706–1714. [CrossRef]

95. Vera-Sorroche, J.; Kelly, A.; Brown, E.; Coates, P.; Karnachi, N.; Harkin-Jones, E.; Li, K.; Deng, J. Thermal
optimisation of polymer extrusion using in-process monitoring techniques. Appl. Therm. Eng. 2013, 53,
405–413. [CrossRef]

96. M18™ Cordless 4-1/2” Cut-off/Grinder (Tool Only). Milwaukiee Tool. Available online: https://www.
milwaukeetool.com/Products/Power-Tools/Metalworking/Grinders/2680-20#sp-keyfeatures (accessed on
21 May 2020).

97. Extrusion Screw. Danobat. Available online: https://www.danobatusa.com/extrusion-screw (accessed on
21 May 2020).

98. 5 Kinds of Cylindrical Grinding Machines. Available online: https://www.maxgrind.com/cylindrical-
grinding-machines/ (accessed on 21 May 2020).

99. Schmitz, T.L.; Donalson, R.R. Predicting high-speed machining dynamics by substructure analysis.
Cirp Annals. 2000, 49, 303–308. [CrossRef]

100. Cheng, K. (Ed.) Machining Dynamics: Fundamentals, Applications and Practices; Springer: London, UK, 2008.
101. Bateman, R.J.; Cheng, K. Extending the product portfolio with ‘devolved manufacturing’: Methodology and

case studies. Int. J. Prod. Res. 2006, 44, 3325–3343. [CrossRef]

http://dx.doi.org/10.3390/ma11081413
http://www.ncbi.nlm.nih.gov/pubmed/30103532
http://dx.doi.org/10.1016/j.addma.2019.03.006
http://dx.doi.org/10.3390/ma12101642
https://www.filabot.com/products/ex6-extruder-screws
http://dx.doi.org/10.1089/3dp.2019.0195
http://dx.doi.org/10.3390/designs2010002
https://www.oshwa.org/definition/
https://www.oshwa.org/definition/
https://osf.io/ev6ta/
https://www.freecadweb.org/
https://www.appropedia.org/Open-Source_Grinding_Machine_for_Compression_Screw_Manufacturing
https://www.appropedia.org/Open-Source_Grinding_Machine_for_Compression_Screw_Manufacturing
https://usa.banggood.com/8mm-304-Stainless-Steel-Version-Extruder-Micro-Screw-Throat-Feeding-Rod-For-3D-Printer-Parts-p-1469413.html
https://usa.banggood.com/8mm-304-Stainless-Steel-Version-Extruder-Micro-Screw-Throat-Feeding-Rod-For-3D-Printer-Parts-p-1469413.html
https://www.ebay.com/i/113808837112
https://usa.banggood.com/8mm-Hardening-Steel-Version-Extruder-Micro-Screw-Throat-Feeding-Rod-For-3D-Printer-Parts-p-1447501.html
https://usa.banggood.com/8mm-Hardening-Steel-Version-Extruder-Micro-Screw-Throat-Feeding-Rod-For-3D-Printer-Parts-p-1447501.html
http://dx.doi.org/10.1002/pen.20657
http://dx.doi.org/10.1016/j.applthermaleng.2012.04.013
https://www.milwaukeetool.com/Products/Power-Tools/Metalworking/Grinders/2680-20#sp-keyfeatures
https://www.milwaukeetool.com/Products/Power-Tools/Metalworking/Grinders/2680-20#sp-keyfeatures
https://www.danobatusa.com/extrusion-screw
https://www.maxgrind.com/cylindrical-grinding-machines/
https://www.maxgrind.com/cylindrical-grinding-machines/
http://dx.doi.org/10.1016/S0007-8506(07)62951-5
http://dx.doi.org/10.1080/00207540500536947


Inventions 2020, 5, 26 28 of 28

102. Bateman, R.J.; Cheng, K. Devolved manufacturing. Concurr. Eng. 2002, 10, 291–298. [CrossRef]
103. Pavlo, S.; Fabio, C.; Hakim, B.; Mauricio, C. 3D-Printing Based Distributed Plastic Recycling: A Conceptual

Model for Closed-Loop Supply Chain Design. In Proceedings of the 2018 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–8.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/a032012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Design 
	Assembly 
	Operation 
	Machine Operation 
	Machine Performance Requirements 

	Validation Tests 

	Results 
	Machine Characterization 
	Machined Compression Screws 

	Discussion 
	Conclusions 
	Manufactured Components 
	Operation Details of Open-Source Grinder 
	References

