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Abstract: This investigation introduces a mathematical model of entropy generation for
Magnetohydrodynamic (MHD) peristaltic wave of nanofluid. The governing equations have been
created by the supposition of low Reynolds number and long wavelength estimation. The scientific
arrangement has been procured with the help of perturbation technique. The concentration profile,
temperature profile, pressure distribution and friction forces are shown graphically for some important
parameters. Further, the eventual outcomes of connection between the entropy generation and some
various parameters have been plotted by means of correlation and regression. It is fundamental to
find the affectability of each parameter on entropy generation.
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1. Introduction

In fluid mechanics, we think about the conduct of particles at each point inside a space under
different physical conditions. Numerical models have been utilized for various sorts of fluids, such as
Newtonian fluid [1,2] and non-Newtonian fluid [3,4] to depict the physical marvels in fluid mechanics.
There are numerous special instances of non-Newtonian fluid (e.g., nanofluids, micropolar fluids)
and numerous studies [5–12] have utilized a certain logical technique to illuminate distinctive kinds
of fluids by creating models. Nanotechnology is considered to be an ideal innovative answer for
tackling the worldwide energy crisis. Indeed, nanofluid is the fluid suspension of nanostructures,
which predominates and guarantees the fundamental amplification of heat transfer properties of the
fluid. This helps us to encounter the prospective complexities of fluids in various fluid configuration.

The use of heat transfer fluids is one of the technological applications of nanoparticles, and it
possesses an enormous capacity to suspend nanoparticles and confront cooling problems in thermal
systems. Due to the great demands placed upon heat transfer fluids in terms of decreasing or increasing
energy release to systems, a significant research work was undertaken by Choi and Eastman [13,14] in
which a mixture of nanoparticles and base fluid were designated as “nanofluid”. They defined a liquid
of ultra-fine particles with sizes less than 100 nm. In the field of thermal engineering and heat transfer,
nanofluid has always been an engrossing term. Peristalsis has various applications in connection with
nanofluid, such as in engineering, bio-sciences and industries. Several theoretical and experimental
attempts in this area have been conducted in the past. Specifically, the works of Latham [15] play a very
important role in this connection. Similarly, because of its multiple advantages, research findings on
peristaltic flow have received wider applications in industries, and numerous attempts have been made
in literature to explore this direction of research. Abbas et al. [16] discussed the application of drug
delivery systems under the influence of MHD with peristaltic motion. Bhatti et al. [17] examined the
combined effects of MHD and partial slip on the peristaltic flow of nanofluid. Similarly, Salleh et al [18]
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studied nanofluid under the influence of magnetic fields in a moving vertical thin needle. A few more
magnificent researches can be viewed in the available reference [19–42].

Use of second law investigation in heat design provides a likelihood of advancing a given
framework or procedure on the premise of vitality quality, which is altogether different from first
law examination. Sustainable power source is the type of vitality determined/gathered from different
regular procedures and, as the name proposes, renewable energy sources always recharge inside
nature. Specifically, entropy generation investigation amid natural convection heat movement in
encased cavities (inside characteristic convection) with different setups has been an area of concentrated
examination throughout the previous two decades. Entropy generation determines the dimension of
irreversible heat in a procedure. Thus, entropy creation can be utilized as a standard for the evaluating
the exhibition of building gadgets. Lately, a huge mass of research has been conducted to check the
rate of the entropy generation amid normal convection in different design and ecological applications,
for the productive utilization of the accessible vitality. At present, entropy generation advancement is
the subject of interests in multiple areas, including heat exchange devices, combustion, electric cooling
and permeable media. Rashidi et al. [43] explored the entropy of peristaltic flow in nanofluids with
magnetic effects. Mohesen Turabi et al. [44] reviewed entropy generation in a thermal engineering
system with solid structures. A comparison table between entropy generation and energy efficiency
in natural convection has been analyzed by Pratibha and Tanway [45]. Some later works on entropy
generation are [46–50].

Keeping in mind the aforementioned discussion, correlation and regression have not been
investigated in any of the aforementioned studies. Therefore, the aim of the present study is to
investigate the correlation and regression of entropy generation of MHD peristaltic flow of nanofluid
with a porous medium. For this purpose, the study applies the situation of a low Reynolds number
and a long wavelength using an analytical technique named the homotopy perturbation method
(HPM), which is used to solve the simplified partial differential equations. Expression of temperature,
concentration pressure and entropy generation have been obtained graphically. Based on the results
of the entropy generation, correlation and regression were derived and explained the role of some
pertinent parameters on entropy generation. Due to the vast importance of entropy generation in
engineering, exchanging heat devices and electric cooling, this kind of investigation can be much
beneficial to finding the sensitivity of each parameter on objective function that is considered to be
entropy generation in this model.

2. Mathematical Formulation

We present a demonstration of the peristaltic movement with thick, electrically leading and
incompressible nanofluid properties through a two-dimensional, non-uniform channel with sinusoidal
wave engendering towards down its wall. As shown in Figure 1, a Cartesian coordinate framework is
used so that the x axis is considered alongside the middle line, toward the wave propagation, with y
axis traversing to it. The B0, a uniform, outer attractive field, is forced along the y pivot and the initiated
attractive field is thought to be irrelevant. The geometry of the divider surface is characterized as

H
(
x̃, t̃

)
= ǎ sin

2π
λ

(
x̃− C̃t

)
+ b(x̌) (1)

where b(x̃) = b0 + Kx̃.
The governing equation of motion, continuity, thermal energy and nanoparticle fraction for

peristaltic nanofluid can be written as [16]

∂ũ
∂x̃

+
∂ṽ
∂ỹ

= 0, (2)
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ρ f
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∂ũ
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∂ỹ
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∂x̃ + ∂
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 (3)

ρ f

(
∂ṽ
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+ ṽ∂ũ
∂x̃ + ṽ ∂ṽ

∂ỹ

)
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∂p̃
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∂ỹ
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∂ỹ

)2
)
−
∂qr
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= DB
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∂2F
∂x̃2 + ∂2F
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(
∂2T
∂x̃2 + ∂2T

∂ỹ2

)
− k1(F− F0), (6)
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Now let us consider the assumptions of a long wavelength number and low Reynolds
approximations in the sense of creeping flow. By using the dimensionless quantities in Equations
(2)–(6), we get the resulting equations in a simplified form as

∂2u
∂y2 + We

∂
∂y

(
∂u
∂y

)2

−
1
k

u−M2u−GrFΦ+ GrTθ−
∂p
∂x

= 0, (7)

(1 + Rn

Pr

)
∂2θ

∂y2 + Nt

(
∂θ
∂y

)2

+ β+ Nb
∂θ
∂y
∂Φ
∂y

= 0, (8)

∂2Φ

∂y2 − γΦ+
Nt

Nb

(
∂2θ

∂y2

)
= 0. (9)

subject to the respective boundary conditions:

Φ(0) = 0,
∂u(0)
∂y

= 0, θ(0) = 0, (10)

Φ(h) = 1, θ(h) = 1, u(h) = 0 (11)

In the presence of a magnetic field, the entropy generation can be derived from energy and entropy
balance for the case of heat and mass transfer as [43]

Sgen =
Kn f

T2
0
(∇T)2 +

µn f

k̃T0

[
2
(
∂ũ
∂x̃

)2
+ 2

(
∂ṽ
∂ỹ

)2
+

(
∂ũ
∂ỹ + ∂ṽ

∂x̃

)2
]
+

σB2
0

T0

(
∂ũ
∂ỹ

)2
+RDB

F0
(∇F)2 + RDB

T0
(∇F·∇T) (12)

The dimensionless form of the entropy generation number can be expressed as follows:

Ns =
Sgen

Sg
=

(
Kn f

K f

)(∂θ∂y

)2+ (
1 + M2

)
Br

1
Ω

(
µn f

µ f

)(
∂u
∂y

)2

+ Γ
(Λ

Ω

)2(∂Φ
∂y

)2

+ ζ

(
∂θ
∂y

)(
∂Φ
∂y

)
, (13)
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where Ω, Br, Λ , Γ, ζ are the dimensionless temperature difference, Brinkman number, concentration
difference, diffusive coefficient and constant parameter, represented as

Ω =
(T1 − T0)

T0
, Br =

c̃2µ f

k̃K f (T1 − T0)
, ζ =

RDBT0

K f

(
F1 − F0

T1 − T0

)
, Γ =

RDBF0

K f
, Λ =

F1 − F0

F0
. (14)

For nanofluid, the viscosity model and thermal conductivity can be defined as [50]

µn f =
µ f(

1−Φ
)2.5 ,Knf =

κp + 2κf + 2φ
(
κp − κf

)
κp + 2κf −φ

(
κp − κf

) κf (15)

where µ f κ f and κp, are the viscosity f base fluid, thermal conductivities of the nanofluid and
nanoparticle, respectively.

3. Solution of Problem

With the help of HPM [16], Equations (7)–(9) can be written as:

H(w, q̃) = (1− q́)(L1(w) − L1(w0)) + q́

L1(w) + We
∂
∂y

(
∂w
∂y

)2

+ GrTΘ −GrFϑ−
∂p
∂x

, (16)

H(Θ, q̃) = (1− q́)(L2(Θ) − L2( Θ 0)) + q́
(
L2(Θ) + Pr

1+RnPr

(
Nb

∂ϑ
∂y

∂Θ
∂y + Nt

(
∂ϑ
∂y

)2
)
+

Prβ
1+RnPr

)
(17)

H(ϑ, q̃) = (1− q́)
(
L2(ϑ) − L2

(
ϑ0

))
+ q́

(
L2(ϑ) +

Nt

Nb

(
∂2Θ
∂y2

)
− γϑ

)
, (18)

and the initial guess and linear operators for Equations (16)–(18) are defined as

w0 =
cosh N2y− cosh N2h

cosh N2h
, (19)

ϑ0 = Θ0 =
y
h

. (20)

L1 =
∂2

∂y2 −M2
−

1
k

(21)

L2 =
∂2

∂y2 , (22)

which defines the following expansion:

ϑ(x, y) = ϑ0(x, y) + q́ϑ1(x, y) + q́2ϑ2(x, y) + . . . , (23)

Θ(x, y) = Ψ0(x, y) + q́Ψ1(x, y) + q́2Ψ2(x, y) + . . . , (24)

w(x, y) = w0(x, y) + q́w1(x, y) + q́2w2(x, y) + . . . , (25)

Using the expansion series defined in the terms mentioned in Equations (23)–(25) and incorporating
them into the Equations (16)–(18) we get a system of linear differential equations and their relevant
boundary conditions. Applying the scheme of HPM and comparing the powers of q́, we obtain the
solution as q́ → 1 . We obtained the temperature distribution, velocity profile, and concentration profile.

Utilizing the expensing arrangement characterized in terms of (ϑ(x, y),(Θ(x, y) and (w(x, y)) as
referenced in Equations (23)–(25) and using into the Equations (16)–(18), we get an arrangement
of direct differential equations with their significant limit conditions. By contrasting the forces of
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q́ → 1 , we apply the scheme of HPM to determine the arrangement as q′→ 1, and obtain the required
arrangements of temperature circulation, speed profile, and fixation profile.

4. Results and Discussion

In this section the obtained results are discussed. As shown in Figure 2, for higher values of Nb
and Nt the temperature profile increases. This is because the Brownian motion creates micro- mixing,
which increases thermal conductivity. Figure 3 shows that concentration force has the opposite behavior
for various values of Nb and Nt. It is observed from Figure 4 that pressure distribution has opposite
effect for the various values of thermal Grashof parameter GrT. and basic density Grashof number GrF.
The thermal Grashof parameter proclaims the general impact of thick hydrodynamic power and thermal
buoyancy forces. For GrT < 1, the peristaltic routine is ruled by viscous powers, which is the other way
around for GrT > 1. The GrF parameter is basically the proportion of species buoyancy forces to the
thick hydrodynamic forces. For a situation where the two forces are equivalent (e.g., GrF = 1), velocity
will be minimized. We can conclude from Figure 5a that pressure rise reduces for the larger values
of magnetic parameter M, which shows the fact that pressure can be controlled by using the suitable
magnetic field. Also, it is concluded from this figure that flow can pass easily without imposing higher
pressure inside the channel. From Figures 5b and 6, it is observed that friction force has completely the
opposite behavior for the different values of the same physical parameters as compared with pressure
rise distribution. Figure 7 shows a comparison of the graphical results of pressure rise and velocity
profile. In Equation (7), by taking We = 0, M = 0, κ→∞, GrF = 0, GrT = 0, the current results can
be reduced to the results obtained by Shapiro et al. [39] for the Newtonian case. Further results can
also be reduced to the similar results obtained by Gupta and Seshadri [41] and Mekheimer [42] by
taking We = 0, κ→∞, GrF = 0, GrT = 0 .
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From Table 1, the R-square entropy generation for various values of magnetic parameter M is
determined to be 0.809, meaning that approximately 81% of the variability of entropy generation is
explained by parameter M in the model. On the other hand, the adjusted R-square 0.799 indicates
that about 80% of the variability of entropy generation is accounted for Magnetic parameter M by the
model. The entropy generation value for Brownian motion parameter Nb is 0.998, which indicates
that approximately 99% of the variability of entropy is due to parameter Nb in the model, while the
adjusted R-square 0.999 indicates that about 99% of the variability of entropy is accounted for Nb by
the model. In the R-square, the value of entropy generation for thermophoresis parameter Nt is 0.403,
which reveals that approximately 40% of the variability of entropy is explained by parameter Nt in
the model, while the adjusted R-square 0.370 indicates that about 37% of the variability of entropy
is accounted for Nt by the model. The entropy value for different values of Br is 1.00 with 100% of
the variability of entropy accounted for parameter Br in the model, while the adjusted R-square 1.00
indicates that about 100% of the variability of entropy is accounted for Br by the Model.

Table 1. Model summary.

Model R R Square Adjusted R Square Standard Error of the Estimate

1 0.900 a 0.809 0.799 0.7558884
2 0.999 a 0.998 0.998 0.0550427
3 0.635 a 0.403 0.370 4.6675041
4 1.000 a 1.000 1.000 0.19437519

a Predictors: (Constant), M.

From Table 2, a decrease of −2.562 in entropy for independent variable M and an increase of
2.029 in Entropy for Nb can be concluded. Similarly, an increase of 6.307 in entropy for parameter
Nt and an increase of 68.492 in entropy for Br scores can be concluded for every single-unit increase
in Iv, assuming all other variables in the model are constant. Table 3 is plotted to break down the
relationship of entropy generation for some delicate parameters. It is determined from these outcomes
that a huge impeccable significant positive connection exists between Brinkman number Br and its
entropy generation at 0.01 level. A solid positive relationship has been seen from the connection results
between entropy and the parameters Nt and Nb. An extremely negative relationship was seen between
M and its entropy.

Table 2. Coefficients.

Model

Unstandardized
Coefficients

Standardized
Coefficients T Significant

B Standard Error Beta

1
(Constant) 74.223 0.351 211.381 0.000

M −2.562 0.293 −0.900 −8.739 0.000

2
(Constant) 29.097 0.026 1137.975 0.000

M 2.049 0.021 0.999 95.977 0.000

3
(Constant) 65.565 2.168 30.239 0.000

M 6.307 1.810 0.635 3.485 0.003

4
(Constant) 1.359 0.090 15.056 0.000

M 68.492 0.075 1.000 908.676 0.000



Inventions 2019, 4, 32 8 of 11

Table 3. Correlation table between entropy generation and parameters. **.

Entropy and Parameters NS VS Br NS VS Nt NS VS Nb NS VS M

Values range 0.1 to 2.0 0.1 to 2.0 0.1 to 2.0 0.1 to 2.0
N 20 20 20 20

Pearson Correlation
Siganificant (2-tailed)

1.000 **
0.000

0.635 **
0.003

0.999 **
0.000

0.900 **
0.000

Remarks Perfect Relation Strong Positive
Relation

Strong Positive
Relation

Very Strong
Negative Relations

** Correlation is significant at the 0.01 level (2-tailed).

5. Conclusions

The following outcomes demonstrated through this study are:

• Temperature profile increases with higher values of Nb and Nt.
• Pressure distribution and friction have an inverse conduct for bigger estimations of the magnetic

parameter, Brownian movement parameter and thermophoresis parameter.
• The variability of entropy generation is 81% for the values of M, while 99% variability for the

parameter Nb.
• The variability of entropy generation is 40% for the values of Nt, while 100% variability for the

parameter Br.

Author Contributions: M.A.A. conceived, mathematical formulation and applied the method. M.I. did literature
survey, data collection and analysis.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

ũ, ṽ velocity components (m/s)
x̃, ỹ Cartesian coordinate (m)

p̃ pressure in fixed frame
(
N/m2

)
ã wave amplitude (m)

b(x̃) width of the channel (m)

c̃ wave velocity (m/s)
Pr Prandtl number
Re Reynolds number
Rn Radiation parameter
t̃ time (s)
GrF basic density Grashof number
GrT thermal Grashof number
Nb Brownian motion parameter
Nt thermophoresis parameter
K(� 1) constant
B0 magnetic field (T)
We Weissenberg number
Q volume flow rate

(
m3/s

)
T, F temperature (K) and concentration
g acceleration due to gravity

(
m/s2

)
DB Brownian diffusion coefficient

(
m2/s

)
DT thermophoretic diffusion coefficient

(
m2/s

)
K mean absorption constant
M Hartman number
S stress tensor
k̃ porosity parameter
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Greek Symbols

κ nanofluid thermal conductivity (W/m K)

µ viscosity of the fluid
(
N s/m2

)
Φ nanoparticle volume fraction
σ electrical conductivity (S/m)

δ wave number
(
m−1

)
cp effective heat capacity of nanoparticle (J/K)

ν nanofluid kinematic viscosity
(
m2/s

)
(ρ)p nanoparticle mass density

(
kg/m3

)
ρ f fluid density

(
kg/m3

)
ρ f0 fluid density at the reference temperature (T0)

(
kg/m3

)
ζ volumetric expansion coefficient of the fluid
(ρc) f heat capacity of fluid (J/K)

λ wavelength (m)

Φ amplitude ratio
µn f viscosity of nanofluid
θ Temperature
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