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Abstract: Microgrids (MGs) are composed of multiple distributed generators (DGs) interfaced to
micronetwork through paralleled connected power inverters (PIs). Load sharing among multiple
DG units is an important task for autonomous operation of microgrids. In order to realize
satisfactory power sharing and voltage regulation between DG units, different voltage droop
control strategies have been reported in the literature. In the medium voltage (MV) microgrids,
power sharing, and voltage regulation often deteriorate due to dependence on nontrivial feeder
impedances. The conventional control strategies are subject to steady-state active and reactive
power-sharing errors along with system voltage and frequency deviations. Furthermore, complex
microgrid configurations either in looped or meshed networks often make power balancing and
voltage regulations more challenging. This paper presents an improved control strategy that can
be extended for radial networks in order to enhance the accuracy of power sharing and voltage
regulation. The proposed control strategy considers load voltage magnitude regulation as opposed
the voltage regulation at inverters terminals. At the same time, a supervisory control loop is added
to observe and correct system frequency deviations. This proposed method is aimed at replacing
paralleled inverter control methods hitherto used. Simulation studies of the proposed scheme in
comparison with the conventional control strategy in MATLAB/Simulink validate the effectiveness
of the proposed strategy.

Keywords: AC microgrids; power-sharing; distributed generation (DG); smart grid; voltage
regulation; frequency regulation; voltage source inverters

1. Introduction

Microgrids are small-scale power systems that make possible the effective integration of
distributed generators (DGs) [1]. A DG has advantages of high-energy utilization rate, pollution
reduction, low power transmission losses, and flexible installation locations [2]. DG units present a
higher degree of control and operation as compared to the conventional generators, which allows
the microgrids to play a significant role in order to maintain the stability of electrical networks [3,4].
Furthermore, DG units provides the clean and renewable power to close consumer’s end. Therefore,
it reduces the strain on conventional transmission and distribution infrastructures [5,6].

Power-electronics-based MGs are convenient when integrating renewable energy resources,
active loads and DG units [1,7]. The DG units of a microgrid can be classified into grid-following
and grid-forming DG units [6,8]. The DG units are controlled as grid following in grid-connected
mode. Grid-following inverter’s control strategies are described in [9,10]. However, in islanding
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mode, the distributed power inverters interfaces (DPIs) between load and microsource are governed
by the droop control algorithm, which are responsible for the voltage regulation and power sharing in
accordance with their ratings and corresponding energy source power. Hence, the control of paralleled
connected power inverters has been investigated in recent years [11–13].

Conventionally, the frequency and voltage magnitude droop are used as decentralized control
schemes among DG units [11,12]. It can be seen as primary control of a synchronous machine. With the
help of droop control active power sharing can be achieved among these DGs units. However, reactive
power sharing is highly dependent on a DG unit’s output filter and feeder impedances [11,14–16].
The identical feeder impedance could be unequal as various DG units and load are located at different
distances to each other. The unequal LCL-filter’s impedance among various DGs units are due to
different design considerations and system conditions [15]. In addition, configuration of microgrid
network and existence of local loads often aggravate the power balancing problem. Therefore, power
sharing of conventional droop control can be affected by mismatch of feeder impedances and make
islanded microgrids less flexible and reliable [11,15].

To solve the power control issue, a considerable number of control schemes based on droop
concept have been proposed, which are classified into four main categories: (1) virtual framework
structure-based method [17,18]; (2) conventional and variants of the droop control [18,19]; (3) the hybrid
droop/signal injection method [18,20]; and (4) “construct and compensate” based methods [20,21].
Furthermore, in [14] reactive power and the harmonic power, sharing errors were decreased by
injecting noncharacteristic harmonic current. Although the power balancing issue was addressed,
the power quality of the microgrid was degraded by steady state voltage distortions. The author
proposed an Q-V dot droop in [14]. It can be observed that when local loads are added, then reactive
power sharing improvement is not obvious. The virtual output impudence control in [11] is proposed
to match the identical power line impedances. To decrease the droop control’s dependence on the DG’s
output filter, Sao and Lehn [20] presented compensation of the voltage magnitude drop. Nevertheless,
this scheme may still be affected by mismatched feeder impedances.

Usually, in a grid-forming inverter’s control strategies [6], the loads are directly connected with DG
units however, these loads can be connected with looped or mesh network type configuration [22,23].
These complex microgrid configurations either in looped or mesh networks often make power
balancing and voltage regulations more challenging [7,23]. In response to a complex AC microgrid
configuration, this paper presents an improved control strategy which is extended for multiple feeders
with limited number of grid forming nodes in radial networks. This strategy considers the load voltage
magnitude regulation rather than voltage regulation at inverter terminals. Furthermore, a supervisory
loop also been added to restore the frequency deviations.

The remainder of this paper is organized as follows. In Section 2 the network model is presented.
In Section 3 proposed control strategy is discussed and then in Section 4 results and discussion has
been demonstrated. Finally, Section 5 concludes this paper.

2. Network Model

Figure 1 illustrates the configuration of a microgrid. As shown, microgrids are composed of
multiple DG units and loads. Every DG unit is interfaced to the microgrid with distributed power
inverters where these power inverters are connected to AC bus via their respective feeder. Secondary
central controller controlled the status of main grid and microgrid [24]. MGs can be connected
(grid-following mode) or disconnected (islanded mode) from the main grid by using static transfer
switch (STS) at the point of common coupling (PCC). Active and reactive power references are usually
assigned by the central controller in grid-following mode. In this mode of operation, power balancing
is not the real concern. However, by switching the microgrid into islanded mode, the load demand
must be properly shared by DG units.
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Figure 1. Illustration of the microgrid configuration. Red arrow used as communication link. 

In islanded operation of a microgrid, DG units as shown in Figure 1 can operate using the 
conventional active power-frequency (P-f) and reactive power-voltage magnitude (Q-V) droop as: 
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where, ω *, V *, DP and DQ are the nominal frequency, nominal voltage magnitude, active and reactive 
power slopes, respectively of DG unit. The active power p and reactive power Q are measured after 
the low-pass filtration. Instantaneous voltage reference can be acquired with derived angular 
frequency and voltage magnitude in Equations (1) and (2). 
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A simplified microgrid circuit is shown in Figure 2b with two DG units that are parallel 
connected, R1 and X1, R2 and X2 are the feeder impedances of DG1 and DG2, respectively. As shown 
in Figure 2a, the complex power drawn to the kth ac bus can be written as: 
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Figure 1. Illustration of the microgrid configuration. Red arrow used as communication link.

In islanded operation of a microgrid, DG units as shown in Figure 1 can operate using the
conventional active power-frequency (P-f ) and reactive power-voltage magnitude (Q-V) droop as:

ω = ω∗ − DP·P (1)

V = V∗ − DQ·Q (2)

where, ω *, V *, DP and DQ are the nominal frequency, nominal voltage magnitude, active and reactive
power slopes, respectively of DG unit. The active power p and reactive power Q are measured after the
low-pass filtration. Instantaneous voltage reference can be acquired with derived angular frequency
and voltage magnitude in Equations (1) and (2).

Mathematical Model

A simplified microgrid circuit is shown in Figure 2b with two DG units that are parallel connected,
R1 and X1, R2 and X2 are the feeder impedances of DG1 and DG2, respectively. As shown in Figure 2a,
the complex power drawn to the kth ac bus can be written as:

Si = Pi + jQi (3)

where, Pi and Qi are the active and reactive power injected at each node by DG inverters. Power flow
through feeder line impedances can be expressed as:

Pi =
Vi

R2
i + x2

i
·[RiVi − RiVk cos ∂ik + XiVk sin ∂ik] (4)

Qi =
Vi

R2
i + x2

i
·[−RiVk sin ∂ik + XiVi − XiVk cos ∂ik] (5)

where, Vi and Vk are the magnitude of inverter output voltage and common bus voltage, respectively,
while Pi and Qi are the active and reactive powers flowing from ith inverter terminal to kth common
bus voltage. ∂ik represents the difference between the phase of the output impedance and power angle.
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The inductive components of higher voltage (HV) and medium (MV) network are typically 
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where, according to Equations (8) and (9), the active power depends on power angle ik  while 
reactive power injected by each inverter depends on voltage difference Vi − Vk. From Equation (6), if
ik  is supposed to be zero, then Pi will be proportional to angle ik  and it can be expressed as: 

0 1 1 1 1( ) ( ,..., , ,..., )ik i k i i k i i i idt V V R jX R jX             (10) 

∂k affects the ∂ik which is calculated by output voltage of DG units and line impedances. By 
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Figure 2. (a) An ith inverter connected with kth common ac bus; (b) configuration of the microgrid
with two DG units.

The inductive components of higher voltage (HV) and medium (MV) network are typically higher
then resistive as shown in Table 1 [6], however, MV networks have inductive behaviour, therefore,
it can be assumed that: cos ∂ ≈ 1 and sin ∂ ≈ ∂, resulting power flow can be expressed as:

Pi,Rx=0 ≈ ViVk
xi

[sin ∂ik] (6)

Qi,Rx=0 ≈
V2

i Vk − ViVk cos ∂ik

xi
(7)

∂i − ∂k ∝ Pi (8)

Vi − Vk ∝ Qi (9)

where, according to Equations (8) and (9), the active power depends on power angle ∂ik while reactive
power injected by each inverter depends on voltage difference Vi − Vk. From Equation (6), if ∂ik is
supposed to be zero, then Pi will be proportional to angle ∂ik and it can be expressed as:

∂ik = ∂i − ∂k = (∂i0 +
∫

ωidt)− ∂k(V1∠∂1, . . . , Vi∠∂i, R1 + jX1, . . . , Ri + jXi) (10)

∂k affects the ∂ik which is calculated by output voltage of DG units and line impedances.
By integrating ωi, the variations in ∂ik can be regulated.

3. Proposed Control Strategy

Aforementioned, in a grid-forming inverter’s control strategies the loads are usually directly
connected with DG units. However, these loads can be connected with a radial-type configuration.
In this section, a proposed control strategy is discussed for such type of microgrid configurations that
can be extended for multiple feeders with limited number of grid-forming nodes. To connect the
secondary central controller with a DG unit’s local controllers, this strategy adopts a communication
link. The proposed strategy considers the load voltage magnitude regulations rather than voltage
regulation at inverter terminals. Furthermore, the load voltage magnitude is measured and converted
into dq-axis components using reference frame transformation. The inverter’s output active and reactive
powers are calculated based on these measurements and sent to droop controllers via low-pass filters.
Droop controllers send voltages and frequency references to inner loops. The error signal is obtained
after comparing the measured voltage and frequency values with reference values. These voltage and
frequency deviations are periodically corrected by the secondary control loop.

3.1. Power Flow Control

The configuration of the microgrid with two DG units is shown in Figure 2b and its proposed
control strategy block is illustrated in Figure 3. An inverter bridge is connected to dc power source and
its output frequency and output voltages are adjusted by power, voltage and current controllers [12].
All DG units are individually formulated in its d-q frame which depends on their angular frequency
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ωi and angle ∂i. Each DG unit’s interfaced inverters are transferred to the d-q frame by using
transformation equation [25] as:[

fD
fQ

]
=

[
cos(∂i)
sin(∂i)

− sin(∂i)
cos(∂i)

][
fd
fq

]
, (11)

The angle of ith DG units’ d-q fame can be written as:

∂i =
∫

(ωi + δωi)dt (12)
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Figure 3. Block diagram of proposed control strategy. Two up right diagonal lines “//” shows the
two references for their respective controllers. Voi (Va, Vb, Vc) and ioi (ia, ib, ic) are the three phase
voltage and current signals, so these three up right diagonal lines “///” shows these three phase
signals references to transformation block (abc/dq).

Figure 4 shows the power controller block which follow the droop control strategy and it send
voltage reference V*odi, and V*oqi, to inner loop. Average output active and reactive powers are
obtained from instantaneous power passing low pass filters, can be denoted as:

Pi =
ωci

s + ωci
pi (13)

Qi =
ωci

s + ωci
qi (14)

where, ωci the cutoff frequency of low pass filter. Instantaneous active and reactive power in d-q
rotating frame can be written as:

pi = Vodi·iodi + Voqi·ioqi (15)

qi = Vodi·ioqi − Voqi·iodi (16)

On individual frame d-q, vodi, voqi, iodi and ioqi are the load voltage and line current of an ith
inverter. Droop technique shows the relationship between the frequency and active power p-ω,
and between the voltage amplitude and reactive power Q-V can be represented as:

ωi = ωi
∗ − mPiPi (17)

V∗
odi = Vi

∗ − nQiQi (18)
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where ωi*, Vi*, mPi and nQi are nominal frequency, nominal voltage and droop coefficients, respectively,
of ith DG unit. V*odi is the reference voltage for inner voltage loop. Q-V droop control strategy with
consideration of voltage control can presented as Equation (19) by Equation (18), illustrated in Figure 3.

V∗
odi = Vi

∗ − nQiQi + δVi (19)

δVi can written as, shown in Figure 5b:

δVi = Vi
∗ − Vavg (20)

where Vi* and Vavg are the nominal voltage and average voltage (21) of all inverters. While δVi
is responsible to regulate the load voltage which compensates the voltage deviation caused by
droop controller.
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Table 1. Typical line impedance values.

Types of Line R (Ω/km) X (Ω/km) R/X

Low voltage line 0.642 0.083 7.7
Medium voltage line 0.161 0.190 0.85

High voltage line 0.06 0.191 0.31

3.2. Frequency & Voltage Regulation

The frequency regulation strategy restores the frequency deviation of the DGs to the nominal
value. Frequency restoration method is given in (23) and elaborated in Figure 5a.

ωavg =

N
∑

k=1
ωk

N
(21)

ωi = (ωi ∗ −ωavg) (22)

δωi = kp f ωi + ki f

∫
ωidt (23)

ωi* is the nominal reference frequency, ωk is the measured system frequency that is being sensed
at all nodes of inverters in the neighborhood of the node i being considered. δωi is the frequency
correction which is sent to frequency reference of the ith inverter node as shown in Figure 5a. Kp1 and
Ki1 are proportional and integral gains for controllers.

Load node voltage regulation method is shown in Figure 5b and can be expressed as:

Vavg =

N
∑

k=1
Vk

N
(24)
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Vi = (Vi ∗ −Vavg) (25)

δVi = kp f Vi + ki f

∫
Vidt (26)

where, Vi* is the nominal reference voltage in d-axis, Vk is the measured system voltage in d-axis that is
sensed at each DG’s interface inverters nodes in communication neighborhood of the node i. Kp1 and
Ki1 are proportional and integral gains for controllers as shown in Figure 5b. Here, δVi is the voltage
correction command applied to voltage reference of the ith inverter node.
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4. Results and Discussion

In this section, the results obtained from conventional and proposed control strategies for power
sharing, inverter terminal, load voltage, and frequency regulation are compared and discussed.
The simulations on MATLAB/Simulink are conducted on circuit configuration given in Figure 2a
for three phase 50 Hz islanded microgrid wherein the two paralleled connected DG1 and DG2 are
connected to the shared load via feeder impedance X1–R1 and X2–R2. Same system and controller
parameters have been used as shown in Table 2 [26] for both conventional and proposed control
schemes but in conventional strategy the inverter terminal voltage are measured for regulation while
in proposed control strategy the load voltage magnitude is measured for load voltage regulation.
For sake of comparison, active power p and reactive power Q are measured on inverter terminals and
at Vload for equal and unequal line impedances. However, system parameters are given follows:

• The system voltage is 230 V, 50 Hz.
• Two 60-KVA DG units are applied with output filter inductor Lf = 250 µF is to reduce ripples.

• A three-phase RL & C load is applied of value 0.8 Ω, 0.15 mH and 120 µF, respectively.

The droop controller and other parameters are given in Table 2.

Table 2. System and controller parameters.

Parameter Symbol Value

Nominal frequency f * 50 Hz
Nominal voltage V* 230 V

Switching frequency fs 16 KHz
Ratings of each DG unit VA 60 KVA

dc voltage Vdc 700 V
Voltage loop Kpv, Kiv 20, 50
Current loop KpI, KiI 40, 100

Frequency droop mP1, mP2 0.0034 rad/w
Voltage droop nQ1, nQ2 0.001 rad/w

Equal line impedances Line 1, Line 2 0.05 + j1.099 Ω
Unequal line impedance Line 1, Line 2 0.05 + j1.099 Ω, 0.05 + j1.3 Ω
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4.1. Case 1: P, Q Measured at Inverters Terminals

In this case, both conventional and proposed control strategies are applied for equal and unequal
line impedances. The active and reactive powers are measured at inverter terminals Vt1 and Vt2

for both schemes, as shown in Figure 2b. Conventional strategy considers the voltage regulations
at inverter terminal while in proposed scheme load voltage is measured and restored at load node.
Results obtained for this case are discussed below.

4.1.1. Equal Line Impedance

In this case, the system is considered symmetrical as the distance is the same from each DG to
load. To verify the effectiveness of the proposed strategy, the power-sharing and voltages results are
obtained from simulations as shown in Figures 6–8.

Verror(%) =
Vdesired − Vmeasured

Vdesired
× 100 (27)
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Figure 6 shows the results obtained for load and inverter terminal voltages from both the
conventional and proposed control scheme. In the conventional scheme, the inverter terminal voltages
after regulation are stabled at 230 (phase to ground) volts as illustrated in Figure 6a while the load
voltage is held stable at 215 volts with an error of 6.52% Equation (27), which shows the drawback of
the conventional control scheme. This error has been compensated in a proposed scheme that stabilizes
load voltage at its nominal value of 230 volts as shown in Figure 6b, which shows the effectiveness
of the proposed strategy. In addition, for the powering sharing case, since the distance is equal from
distribution generation DG to load. As such, identical transient trends are observed for P1, P2 and Q1,
Q2 for both conventional and proposed control scheme as well as comparing results of both schemes
to each other they share divergent power sharing. In the conventional scheme, power-sharing for
each inverter is investigated with load Pload = P1 + P2 = 94.6 kw, Qload = Q1 + Q2 = 4.2 kvar while in
proposed scheme each inverter share power with load Pload = 106.2 kw, Qload = 4760 var as illustrated
in Figures 7 and 8.

4.1.2. Unequal Line Impedance

The results acquired for unequal line impedances are shown in Figures 9–11. It is assumed
that load is located on distances with respect to DG units. The conventional and proposed control
strategy has been applied on unequal line impedances set as R1 + jX1 = 0.05 + j1.099 Ω and
R2 + jX2 = 0.05 + j1.3 Ω. In the conventional strategy, the load voltage error with a value of 7.82% is
spotted as shown in Figure 9a this error can be compensated by the proposed scheme. As proposed
strategy regulate this load voltage error and restore it by nominal load voltage value of 230 volts as
shown in Figure 9b.

Qerror(%) =
Qdesired − Qmeasured

Qdesired
× 100 (28)

Because of unequal line impedances, the total reactive power is not evenly shared to load. Start-up
reactive power transient error has been noticed in Figure 10a. It is observed that system stabilizes to
active and reactive power within 1 s as shown in Figures 10a and 11a. The slight reactive power sharing
error is noticed in Figure 10b and it can be calculated with Equation (28) as the ratio of the differential
of desired and measured reactive power to desired reactive power. In addition, each inverter shares
Pload = 92.2 kw and Qload = 7150 var for the conventional scheme while Pload = 105 kw, and Qload = 8175
var in the proposed scheme as shown in Figures 10 and 11.Inventions 2018, 3, x FOR PEER REVIEW  10 of 14 
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Figure 11. (a) Reactive power for the conventional control strategy; (b) reactive power for proposed 
control strategy. 

4.2. Case 2: P, Q Measured at Terminal Vload 

In this case, p, Q is measured at node Vload as shown in Figure 2a. Results are obtained and 
discussed below for equal and unequal line impedances for both conventional and proposed control 
strategies. 

4.2.1. Equal Line Impedance 

Figure 12 shows the results obtained for voltages from conventional and proposed control 
schemes. The load voltage error caused by droop in islanded microgrid is compensated in the 
proposed strategy, which stabled the load voltage at its nominal value of 230 volts as shown in Figure 
12b. In the conventional scheme, power sharing Pload = 89.2 kw, Qload = 2550 var injected towards Vload 
node by each inverters is slightly lesser as proposed scheme shared Pload = 101 kw, Qload = 2900 var as 
illustrated in Figures 13 and 14. 
  

Figure 9. (a) Inverter terminal and load voltages for the conventional control strategy; (b) inverter
terminal and load voltages for proposed control strategy.
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Figure 11. (a) Reactive power for the conventional control strategy; (b) reactive power for proposed 
control strategy. 
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4.2. Case 2: P, Q Measured at Terminal Vload

In this case, p, Q is measured at node Vload as shown in Figure 2a. Results are obtained
and discussed below for equal and unequal line impedances for both conventional and proposed
control strategies.

4.2.1. Equal Line Impedance

Figure 12 shows the results obtained for voltages from conventional and proposed control schemes.
The load voltage error caused by droop in islanded microgrid is compensated in the proposed strategy,
which stabled the load voltage at its nominal value of 230 volts as shown in Figure 12b. In the
conventional scheme, power sharing Pload = 89.2 kw, Qload = 2550 var injected towards Vload node by
each inverters is slightly lesser as proposed scheme shared Pload = 101 kw, Qload = 2900 var as illustrated
in Figures 13 and 14.Inventions 2018, 3, x FOR PEER REVIEW  11 of 14 
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Figure 14. (a) Reactive power for the conventional control strategy; (b) reactive power for proposed 
control strategy. 

4.2.2. Unequal Line Impedance 

In this case, line impedances set as R1 + jX1 = 0.05 + j1.099 Ω and R2 + jX2 = 0.05 + j1.3 Ω. In 
conventional control scheme, the slightly higher load voltage error is noticed with value of 7.82% as 
shown in Figure 15a this error is eliminated by proposed scheme and restored the load voltage at 
nominal value as depicted in Figure 15b. 

In conventional control scheme, the startup divergent trend has been spotted for active power 
and it stabilizes within 0.5 s as shown in Figure 16a while in proposed scheme the active power is 
proportionally shared with a value of 99.7 kw. Slightly higher reactive power sharing error is 
observed for the conventional control scheme as shown in Figure 17a. Reactive power of inverter1 is 
gradually increased and stabilizes within 0.7 s to values of +3400 var while inverter2 shares −850 var. 
However, in proposed control scheme reactive power is proportionally shared after a small start-up 
transient trend as depicted in Figure 17b. 
  

Figure 12. (a) Inverter terminal and load voltages for the conventional control strategy; (b) inverter
terminal and load voltages for the proposed control strategy.
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Figure 13. (a) Active power for the conventional control strategy; (b) active power for proposed 
control strategy. 
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4.2.2. Unequal Line Impedance

In this case, line impedances set as R1 + jX1 = 0.05 + j1.099 Ω and R2 + jX2 = 0.05 + j1.3 Ω.
In conventional control scheme, the slightly higher load voltage error is noticed with value of 7.82%
as shown in Figure 15a this error is eliminated by proposed scheme and restored the load voltage at
nominal value as depicted in Figure 15b.

In conventional control scheme, the startup divergent trend has been spotted for active power
and it stabilizes within 0.5 s as shown in Figure 16a while in proposed scheme the active power is
proportionally shared with a value of 99.7 kw. Slightly higher reactive power sharing error is observed
for the conventional control scheme as shown in Figure 17a. Reactive power of inverter1 is gradually
increased and stabilizes within 0.7 s to values of +3400 var while inverter2 shares −850 var. However,
in proposed control scheme reactive power is proportionally shared after a small start-up transient
trend as depicted in Figure 17b.Inventions 2018, 3, x FOR PEER REVIEW  12 of 14 
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Figure 17. (a) Reactive power for the conventional control scheme; (b) reactive power for proposed 
control. 
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5. Conclusions 

In order to improve the overall performance of a droop controlled microgrid, an improved 
control strategy is proposed and analyzed. It is demonstrated that the proposed strategy can be 
extended for radial configurations. Load voltage deviations have been eliminated and load power 

Figure 15. (a) Inverter terminal and load voltages for the conventional control scheme; (b) inverter
terminal and load voltages for proposed control scheme.
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5. Conclusions

In order to improve the overall performance of a droop controlled microgrid, an improved control
strategy is proposed and analyzed. It is demonstrated that the proposed strategy can be extended
for radial configurations. Load voltage deviations have been eliminated and load power sharing
accuracy has been enhanced along with frequency restoration. The proposed control strategy consists
of two decoupled methods. The Q-V loops control the sharing of reactive power and load voltage
restoration while P-f control loops address active power sharing and frequency restoration. Both sets
of control loops have been implemented in a centralized manner. The validity of the proposed scheme
has been tested through simulation studies on an islanded ring-feeder network. The results of the
simulation study in MATLAB’s Simpower systems in comparison to the conventional strategy verify
the effectiveness of the proposed methodology.
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