
inventions

Article

Carbon Nanotubes Grown Using Solid Polymer
Chemical Vapor Deposition in a Fluidized Bed
Reactor with Iron(III) Nitrate, Iron(III) Chloride
and Nickel(II) Chloride Catalysts

Chuhsuan Wang 1, Jingshiun Chang 1, Teodoro A. Amatosa, Jr. 1,2, Yizhen Guo 1, Fujen Lin 1 and
Yeewen Yen 1,*

1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; alicewang0107@gmail.com (C.W.); been2266@gmail.com (J.C.);
teody.amatosajr@nwssu.edu.ph (T.A.A.J.); a0956306828@gmail.com (Y.G.); joel5k1516@hotmail.com (F.L.)

2 School of Engineering, University of San Carlos, Cebu 6000, Philippines
* Correspondence: ywyen@mail.ntust.edu.tw; Tel.: +886-2-2737-6659

Received: 2 January 2018; Accepted: 24 February 2018; Published: 15 March 2018

Abstract: In this study, multi-walled carbon nanotubes (MW-CNT) were successfully synthesized
using a chemical vapor deposition-fluidized bed (CVD-FB), with 10% hydrogen and 90% argon by
volume, and a reaction temperature between 750 and 850 ◦C in a specially designed three-stage reactor.
A solid state of polyethylene (PE) was used as a carbon source and iron(III) nitrate, iron(III) chloride,
and nickel(II) chloride were used as catalysts. Scanning and transmission electron microscopy and
Raman spectrum analysis were used to analyze and examine the morphology and characteristics of
the CNTs. A thermogravimetric analyzer was used to determine the purification temperature for
the CNTs. Experimental results showed that the synthesis with iron-based catalysts produced more
carbon filaments. Nickel(II) chloride catalysis resulted in the synthesis of symmetrical MW-CNTs
with diameters between 30 and 40 nanometers. This catalyst produced the best graphitization level
(ID/IG) with a value of 0.89. Excessively large particle size catalysts do not cluster carbon effectively
enough to grow CNTs and this is the main reason for the appearance of carbon filaments.
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1. Introduction

Carbon nanotubes (CNT) were discovered accidentally when Iijima (Japan) was using Direct-current
(DC)-arc discharge to study Fullerene C60, and his paper in Nature in 1991 drew world-wide
attention [1]. CNTs are hollow tubes with walls formed of the graphite layers with sp2 bonding.
CNTs have a mesh-like conjugated π bond, π electron cloud, and hollow tube. These characteristics
confer mechanical, electrical, optical, and chemical properties to the nanotubes, which include high
strength, a large surface area, and high heat and electrical conductivity. CNTs have widely been applied
in nano machinery components, storage of hydrogen materials, and field emission display components.
Many industries have taken advantage of these nanotubes as an important material that has overcome
the material size barrier between the micro and nano levels.

CNTs present many promising future applications such as superior emitters for new X-ray
imaging applications [2], electrodes with excellent capacitance [3], improvements in fuel cells to
boost performance and efficiency [4], CNT/MgO layer for the alternate current-plasma display
panel (AC PDP) protection [5], CNT-based composite film with improved film function [6], using its
magnetism for the exploration and induction of cancer cells [7], lithium ion battery applications [8],
and as an adsorbent or disinfectant material for removing microbes from drinking water [9].
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There have been many studies being carried out on CNTs and related problems, especially on the
methods for their production. The examples include using natural cotton fiber to synthesize CNT [10],
traditional arc discharge methods [11], thermal decomposition, and plasma enhanced chemical vapor
deposition (PECVD). Recently, Wei et al. proposed a combination of a fluidized bed with CVD to create
a CVD-fluidized bed (CVD-FB) that can be used for continuous output. In this reaction, the size of the
CNTs can be easily controlled [12–15]. In addition to these methods, our team has also successfully
synthesized CNTs using polycarbosilane (PCS) by the CVD-FB method [16].

However, the most of these methods to produce CNTs were used gaseous hydrocarbons such
as methane or ethane, posing a considerable risk during use, store, and transport. In view of this,
several studies focused on the use of a solid polymer as the carbon source [16–22]. In manufacturing
process, a fluidized bed reactor (FBR) is easy to scale up production. Thus, we use CVD-FBR method
to synthesize CNTs from solid state plastics. We explored how the use of different catalysts affects
carbon nano-tube production and investigated a multi-step purification process for the prepared CNTs
using pre-heating and acid washing. Transmission electron microscopy (TEM) was used to observe the
microstructure of the resulting CNTs and the Raman spectrum analysis was used to determine the
level of graphitization. We also investigated the effects of the purification process. The purpose of this
study is that we hope we can realize eco-efficient economy concept of waste plastics to reuse them and
make high value of them.

2. Materials and Methods

2.1. Materials, Methods and Equipment

For the experiments, we designed a fluidized bed reactor (in Figure 1) to which reactants can easily
be added and was also easy to clean. The reactor is made mainly of stainless steel, with an internal
diameter of 2.1 cm, and a total length of 40 cm. There is a distributor in the center of the reactor made
of a porous stainless steel plate to ensure even gas distribution.
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Figure 1. Schematic diagram of the three-section reactor.

There are two heaters, one above the other. The temperature used at the upper level is 750 ◦C
and at the lower level is 850 ◦C. A higher temperature at the bottom ensures proper pyrolysis of the
polymer and efficient catalytic reduction. The upper-level temperature of 750 ◦C is conducive to the
production of carbon tubes. The fluidized gas is a mixture of 10% hydrogen and 90% argon by volume.
The experimental setup is shown in Figure 2.

Experiments were conducted using three types of catalyst: iron(III) nitrate (Fe(NO3)3·9H2O,
Showa, Tokyo, Japan), iron(III) chloride (FeCl3, Showa, Tokyo, Japan), and nickel(II) chloride
(NiCl2·6H2O, Showa, Tokyo, Japan). In order to ensure that the catalysts were mole number equivalent,
9.19 g of Fe(NO3)3·9H2O, 3.68 g of FeCl3, and 5.40 g of NiCl2·6H2O, were weighed into three flasks to
which 100 mL of alcohol was added. Polyethylene (PE) powder with a particle size of 180 mm (25 g)
was added to each flask and ultrasonic agitation was used to ensure proper suspension of the particles.
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Alcohol was evaporated and the residue was dried in an oven at 60 ◦C for 48 h, after which it was
ground into a powder to prepare for the reaction process.
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Figure 2. Schematic diagram of the chemical vapor deposition-fluidized bed reactor (CVD-FBR) used
in this study.

2.2. Experimental Method

Before the reaction, a small amount of quartz wool was placed on the distributor, and nickel pellets
with the size 0.3175 cm were used as bed filler to a height of about 2 to 3 cm. The prepared catalyst
with polymer powder was added and the carrier gas was introduced at a flow rate of 750.0 cc/min
with heating. After the system had fluidized and was stable the heat was increased to achieve the
reaction temperature of 750 ◦C on the upper level and 850 ◦C below.

2.3. Purification Method

For purification, we used the method developed by Jinyong [23]. The prepared CNT powder was
suspended in a 3% solution of dodecyl sulfonic acid sodium salt (SDS) and ultrasound agitation was
carried out for 2 h. The suspension was passed through a thin nylon membrane filter with a pore size of
0.45 µm. The residue was dried at 60 ◦C and a thermogravimetric analyzer (TGA; Rigaku Thermo Plus
TG8120; Rigaku Corporation, Tokyo, Japan) was used to test the metal catalyst oxidation temperature
of the prepared CNT. Based on the TGA analytical result, CNT obtained from iron(III) nitrate, iron (II)
chloride, and nickel(II) sulfate were all separately processed at 380, 400, and 420 ◦C for 2 h, respectively
and concentrated hydrochloric acid was used for the acid wash. Finally, the product was washed with
distilled water, filtered through a thin film and dried to obtain the purified CNT preparation.

2.4. Analytical Method

The morphology of CNTs obtained through FB-CVD reaction and multiple purification procedures
was examined by scanning electron microscope (SEM; JEOL JSM-6500F; JEOL Ltd., Tokyo, Japan) and
high-resolution transmission electron microscope (HR-TEM; Philips, FEI Tecnai F20 G2; Hillsboro, OR,
USA). The transmission electron microscope (TEM)allowed visualization of the walls of the carbon
nanotubes and a Raman spectrum analyzer was used to determine the level of graphitization.
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3. Results

3.1. Carbon Nanotubes (CNT) Preparation

Figure 3 shows an SEM image of CNTs obtained by using the different catalysts. Figure 3a shows
the initial product obtained with iron(III) nitrate catalyst. Although some CNTs can be seen, most of
the material is amorphous carbon residue. Figure 3b shows the initial product produced with the
iron(III) chloride catalyst. The result reveals the good quantity of CNT clusters, even though most of
the product is still carbon residue. Figure 3c shows the initial product produced with nickel(II) chloride
catalyst. The nickel(II) chloride product also shows CNTs. However, in comparison with the other
two figures, it shows that the products obtained by the nickel(II) chloride catalyst have a structure
similar to products obtained by the iron(III) chloride catalyst. CNTs are concentrated and contain large
quantities of impurities. The results obtained using these three different catalysts showed that the
solid state polymer raw material can be used in a chemical vapor deposition-fluidized bed reactor to
successfully produce CNTs.
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Figure 3. The initial product synthesized by using (a) iron(III) nitrate; (b) iron(III) chloride;
and (c) nickel(II) chloride catalysts; purified product obtained by (d) iron(III) nitrate; (e) iron(III)
chloride; and (f) nickel(II) chloride catalysts.

3.2. CNT Purification

Figure 4 shows the TGA analysis of CNTs obtained by using different catalysts. Ramesh [24]
indicated that the weight loss, below 400 ◦C, is caused by the oxidation of amorphous carbon residue.,
while weight gain around 400 ◦C is caused by the oxidation of metal catalysts. Weight gain from 500
to 700 ◦C is from single wall CNT oxidation. Jinyong [23] prepared CNTs in a 3% sodium dodecyl
sulfate (SDS) solution using ultrasound agitation. The clustered carbon tubes were separated before
heat treatment was used. An amorphous carbon residue was oxidized and removed, and the initially
distributed metal catalyst was also oxidized. A volume expansion allowed the metal catalyst to break
through the carbon tube wall and the acid wash removed the metal catalysts and achieved effective
purification. Based on the TGA results, we processed the nitrate catalyst produced CNTs at 380 ◦C for
2 h. We theorize that the scale-like objects are metal oxidized products since, at present, we have not
analyzed this product in detail. Carbon tubes were taken heat treatment and soaked in concentrated
hydrochloric acid. After several minutes of ultrasound agitation, the tubes were cleaned. Figure 3d
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shows a SEM image of the iron(III) nitrate system after acid washing. The saw tooth objects have
disappeared after heat processing, leaving the CNTs clearly visible. This method was also used to
purify the CNTs produced with iron(III) chloride catalyst and nickel(II) chloride catalyst at 400 and
420 ◦C, respectively. Figure 3e,f show the SEM images of the samples. CNTs can be clearly observed in
these images indicating that this method can effectively purify CNTs.
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4. Discussion

Figure 4d–f show quite different tube diameter distribution after the purification. The TEM images
of the samples obtained with the iron(III) nitrate (Figure 5a) and iron(III) chloride (Figure 5b) catalysts
also show these differences. The image in Figure 6a shows many thick and solid carbon filaments
produced in a process using this catalyst. Figure 6b is a typical multi-walled CNTs (MW-CNTs)
structure with the diameters of about 30 to 40 nm. The iron(III) nitrate catalyst system produced few
CNTs and the iron(III) chloride catalyst system resulted in a mix of large carbon filaments and CNTs.
Table 1 shows a comparison of the carbon tubes produced using these different catalysts. The iron
based catalysts produced large carbon filaments, while the nickel(II) chloride catalyst produced more
complete MW-CNTs.

Table 1. Comparison of carbon tubes prepared with different catalysts. CNTs: carbon nanotubes.

Catalyst Diameter (nm) ID/IG Note

Fe(NO3)3 60~100 0.99 Most of the products are carbon tube with a large diameter.
It is difficult to find CNTs.

FeCl3 40~80 0.95 Most of the products are carbon tube with a large diameter.
Only a few of them are mixed with multi-wall CNTs.

NiCl2 30~40 0.89 CNTs with symmetric tube-walls were obtain.

Figure 5a shows a large carbon filament with the end covered by a large particle of the catalyst.
The reason why iron catalyst systems so easily produce large catalyst granules is not clear. A possibility
is that in a hydrogen atmosphere, the decomposition temperature of PE is not very close to the
temperature of the catalyst reduction to metal particles. This quickly nucleates the catalyst particles
and they grow to form larger particles. Furthermore, when the PE and metal salts break down,
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many different gases are produced, and this makes this a multi-environment experiment. Future work
is needed to resolve this problem.Inventions 2018, 3, x FOR PEER REVIEW  6 of 8 
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In addition, CNTs obtained using CVD with a fluidized bed do not grow in any specific direction
because the particles in the system are disturbed by easily occurring turbulence and bending.

5. Conclusions

We successfully produced CNTs using the CVD-FBR method and used heat treatment and acid
washing to remove most of the impurities. The purified products obtained with the iron salt catalysts
had great quantity of large carbon filaments. The cause of this can be attributed to the presence of large
catalyst particles. The nickel catalyst produced MW-CNTs with symmetrical tube walls. Since the iron
salt system produced large carbon filaments, the ID/IG ratio value was useful only for reference and
the ID/IG ratio value of 0.89 was meaningful only in case of the nickel(II) chloride catalyst.
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