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Abstract: In this paper, the problem of joint disparity and motion estimation from stereo image
sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based
approach is proposed. Our rationale behind coupling the two problems is that according to
experimental evidence in the literature, the biological visual mechanisms for depth and motion
are not independent of each other. Furthermore, our motivation to study the problem in the frequency
domain and search for a filter-based solution is based on the fact that, according to early experimental
studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based
considerations, for both the perception of depth and the perception of motion. The proposed
framework constitutes the first attempt to solve the joint estimation problem through a filter-based
solution, based on frequency-domain considerations. Thus, the presented ideas provide a new
direction of work and could be the basis for further developments. From an algorithmic point
of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to
handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated
through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate
the accuracy of the proposed approach.
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1. Introduction

Three-dimensional reconstruction of dynamic scenes [1] and 3D scene-flow [2] estimation
are important tasks in the fields of multimedia and computer vision, with numerous applications.
Although active depth cameras, such as Time-Of-Flight (TOF) cameras and active IR stereo pairs,
introduced new potentials in these fields and hundreds of relevant papers appeared during the last
decade (e.g., [3–5]), the use of passive RGB cameras and passive computer vision is always an active
research topic, since it holds the potential to provide richer geometric representations (due to the
high resolution of passive cameras), at lower cost and without capturing limitations (e.g., only indoor
environments and short capturing distances).

Scene flow was introduced in [2] as a dense 3D motion field, i.e., a field of 3D velocity vectors
associated with each 3D point of a scene. Given a stereo pair with known camera calibration data,
the estimation of the disparity/depth map between the image pairs and the optical flow between
consecutive images is an equivalent representation of partial 3D scene flow. The problem of disparity
estimation has been extensively studied during the last few decades [6,7]. Similarly, 2D motion (optical
flow) estimation from monocular image sequences has been largely studied [6,8–10]. However, most of
the existing approaches treat depth and motion independently of each other. The objective of the
current work is to formulate an efficient algorithm for estimating the depth and motion in stereoscopic
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image sequences, by coupling and solving jointly the two problems, in order to take advantage of the
spatiotemporal redundancies existing in multi-view sequences.

Specifically, in this paper, the joint estimation problem is formulated in the frequency-domain,
and a steerable filter-based [10,11] approach is proposed. The motivation behind this direction of work
was that early experimental studies have shown that the biological visual mechanisms can be modelled
based on the spatiotemporal frequency-domain or filter-based considerations, for both the perception
of depth [12,13] and the perception of motion [14,15]. Additionally, according to strong experimental
evidence [16,17], the biological visual mechanisms for depth and motion are not independent of
each other.

The paper is organized as follows. In Section 1.1, previous relevant works on disparity-motion
estimation are reviewed, while in Section 1.2, our contributions are summarized. Section 2 provides our
theoretical developments on frequency-domain joint depth-motion estimation and the construction
of steerable filters for this task. The proposed algorithmic developments are given in Section 3,
while experimental results are presented in Section 4, before concluding.

1.1. Previous Relevant Work

As stated, disparity estimation is an extensively-studied problem, and the corresponding literature
is long, e.g., [6,7,18–21], just to name a few works. According to [7], many of them can be decomposed
into a set of distinct generic steps: calculation of a pixel-wise matching-cost, cost aggregation and
spatial regularization-optimization. For example, in [18], the pixel-wise matching step is based on
the mutual information [22] measure, while semi-global optimization is proposed as an efficient
approximation to global cost aggregation. This method [18] was selected in our experimental section,
as a state-of-the-art representative of disparity-only estimation methods. Other methods are based on
the extraction of sparse correspondences using local invariant descriptors (e.g., SIFT features) and a
correspondence “growing” process, initialized with an “affine seed” [19,23].

In this paper, a method that estimates both disparity and flow from a stereo image sequence
is proposed. Thus, the current subsection focuses on disparity plus flow estimation approaches.
In general, most relevant works solve the two problems sequentially. Only, a few recent works try to
solve the two problems concurrently, with probably the most notable ones the variational approaches
of Huguet et al. [24] and Valgaerts et al. [25] and the “seed-growing” method of Cech et al. [26].

In [27], the 2D flow problem is first solved, and the motion information is then used during
the disparity estimation step. The flow is extracted in a multi-resolution matching framework,
using Gaussian pyramids. Edge features, based on the Laplacian of Gaussian, are used for this
task. Disparity estimation is then performed using dynamic programming to minimize a specific cost
function. Similarly, in [28], disparity and motion estimation is completed in two sequential stages:
The disparity field is initially estimated by iteratively minimizing a specific cost function. Then, using a
similar iterative algorithm, two dense velocity fields for the left and right stereo images, as well as the
disparity field for the next time instance are estimated.

A recent, sophisticated method, more relevant to our work, due to its steerable filter
implementation (though in the original spatiotemporal domain), can be found from Sizintsev et al. [29].
An accurate 3D motion and disparity model is formulated in the spatiotemporal domain, which is used
to derive “spatiotemporal orientation correspondence constraints”. The disparity is initially estimated
via matching of spatiotemporal quadric elements (“stequels”), calculated using 3D second-Derivatives
Of Gaussian (DOG) filters. Given the disparity estimates, the matched “stequels” support recovery of
scene flow estimates. The methodology is improved by the same authors in [30].

In contrast to the above approaches, which estimate motion and disparity sequentially in two
stages, the authors in [31] introduce a joint estimation framework, based on a probabilistic model.
The model is a Markov Random Field (MRF) whose label space, apart from velocities and disparity,
incorporates also an “occlusion status” for every pixel. The problem is finally cast as an objective
function minimization problem, with a NSSD (Normalized Sum of Squares Difference) data-term and
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a smoothness-term (“continuity” cost), which is minimized using the min-sum formulation of loopy
belief propagation.

Similarly, the method in [24] estimates disparity and motion in a single optimization procedure.
The use of a variational framework allows one to properly handle discontinuities in disparity and
motion, as well as occlusions. The method introduces also a global energy function, which consists of
data terms based on the images’ intensities and gradients’ differences, as well as regularization terms
for the left/right flows and the disparities in two consecutive frames. In order to solve the non-linear
differential equations that arise by the consideration of the specific energy function, an incremental
multi-resolution algorithm is proposed. The method in [32] is based on similar ideas. The disparity for
the first frame is initially estimated by a state-of-the-art hybrid stereo approach, more specifically using
an over-segmentation-based method [33], and then refined by a hierarchical (coarse-to-fine) loopy
belief propagation. Using the initial estimate of disparity, the flow and disparity for the next frame
are estimated using a variational method, similar to that of [24]. The authors in [32] calculate also an
associated confidence map, which is incorporated into the stereo model for the next time instance as a
soft constraint.

Similarly to most approaches in the literature [7], all the previous reported methods assume a
stereo pair in parallel configuration or equivalently a rectification preprocessing step. In contrast,
the method in [25] assumes a general stereo geometry, i.e., the stereo fundamental matrix [34] is
unknown. Since the stereo geometry is unknown, apart from the pixel-wise left/right flows and
disparity, there are seven additional unknowns to be found. The method introduces a global energy
function, which combines the spatial and temporal information of the different views, while imposing
geometric consistency. The specific energy, in its initial formulation, is difficult to minimize, because
it includes a quadratic expression with respect to the optical flow. However, the authors obtain an
approximate linear expression and use a coarse-to-fine approach.

The described methods more-or-less are based on the iterative minimization of a certain cost
function, which incorporates global smoothness constraints. These methods are far from real time
(e.g., the reported runtime in [25] is of the order of hundreds of seconds). A recent work that
addresses computational efficiency is presented in [35], where a variational framework is also used.
However, to achieve computational efficiency, the authors propose to treat separately the disparity
and optical flow problems.

To obtain much faster performance, a completely different approach is followed in [26], where a
“Growing Correspondence Seeds for scene Flow” (GCSF) algorithm is proposed to jointly estimate
disparity and flow. The idea of “seed growing”, which as stated was initially adopted in stereo [19],
is based on the basic principle that a set of sparse correspondences is established between images (stereo
pairs and/or consecutive frames), and these “seeds” are then propagated to their neighbourhood.
The advantage of such approaches is a faster performance compared to global variational and
MRF methods and a good accuracy compared to purely local methods. Additionally, the GCSF
approach [26] naturally preserves the boundaries between objects, without introducing smoothing
artefacts. The algorithm produces semi-dense results, which are however dense enough for several
potential applications. According to the experimental results in [26], the method produces more
accurate results compared to the variational algorithm of Huguet et al. [24] and the spatiotemporal
stereo algorithm by Sizintsev et al. [30]. The GCSF method [18] was selected in our experimental
section, as a state-of-the-art representative of joint disparity-flow methods.

Other recent methods [36,37], targeting more specific applications, propose novel multi-frame
methods for computing the 3D structure and motion of a scene, as observed from a stereo camera rig on
a moving vehicle. The work in [36] is based on the assumption that the captured scene is static; only the
stereo rig moves. A semi-global matching [18] approach is exploited to independently compute a
disparity and a flow field from the stereo and the motion pairs, respectively. These are then used to
estimate a scaling relationship between stereo and flow, assuming that the scene is static and thus the
relationship between the two fields is constant (across pixels). In the next phase, given this constant
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relation, the two fields are jointly optimized. The estimated maps then feed a proposed slanted-plane
method, which infers image segmentation, a slanted plane for each segment and an outlier flag for
each pixel. The method is based on the minimization of an objective function with: (i) an energy term
that prefers well-shaped, compact segments; (ii) an “appearance” term that encourages pixels of with
a similar colour to belong to the same segment; (iii) a “disparity” term that forces the plane estimates
to explain the estimated depth well; (iv) a term that encourages the planes of adjacent segments to
be similar; and (v) a term that encourages straight/smooth segments’ boundaries. The specific cost
function is complex, and its minimization is an NP-hard problem; however, the authors derive a
simple, yet effective descent optimization algorithm, much faster than other methods. The work in [37]
goes one step further and targets additionally the estimation of the non-rigid motion of foreground
moving object regions. It similarly begins with the assumption that the dominant scene motion is
rigid (i.e., due to only the six-degree-of-freedom stereo-rig motion), and thus, the optical flow for the
stationary 3D points is constrained by their depths. Therefore, initially, the disparity and the camera
motion are estimated using stereo matching and visual odometry techniques. Foreground moving
object regions (“flow outlier”) are then detected, and optical flow is performed only for these regions.
The resulting non-rigid flow is fused with the rigid one to obtain the final flow and segmentation map.

Finally, although not completely relevant, another set of methods [38,39] should also be mentioned
here, which make use of disparity cues (apart from appearance cues) to obtain pixel-wise segmentation
and pose estimation of multiple specific-class deforming objects, such as humans, in stereoscopic
videos. For example, the work in [39] estimates an approximate disparity map on a per-frame basis,
which along with colour (appearance) cues is incorporated in a novel segmentation model that make
use of person detections and learnt articulated pose segmentation masks. The method’s output is a
layered representation of humans in a scene, where each person is assigned a different depth layer.
It manages to handle challenging scenarios in complex indoor and outdoor dynamic scenes.

1.2. Summary of Contributions

In this paper, we aim at formulating a steerable filter-based approach that is based on a
frequency-domain considerations and tries to solve simultaneously the two tasks by minimizing
a single energy function. According to the best of the authors knowledge, this is the first effort to
formulate the joint estimation problem in the frequency domain and to provide an efficient filter-based
solution. Thus, the presented ideas provide a novel direction of work and could constitute the
basis for further developments. The experimental results given in this paper and comparisons with
state-of-the-art-methods [18,26] demonstrate the accuracy of the proposed approach.

The main contributions of this paper can be summarized as follows:

• Theoretical foundations for frequency-domain joint depth and motion estimation are given.
Additionally, the construction of spatiotemporal steerable filters in the frequency domain,
appropriate for the joint estimation task, is presented.

• Based on the above theoretical developments, a novel algorithm for joint disparity and motion
estimation is formulated. Due to the computational efficiency of the steerable filters, the proposed
method presents relatively low computational effort given the high complexity of the problem,
while it is appropriate for parallel GPU implementation.

• To the best of the authors knowledge, the proposed approach constitutes the first attempt
towards simultaneous depth and motion estimation using frequency-domain considerations.
The presented ideas provide a novel paradigm for frequency-domain, filter-based coupled
disparity-motion estimation and could constitute the basis for new developments.

• Finally, in the proposed algorithm, the semi-global scan-line optimization approach for
stereo matching [18] is extended and successfully applied in the joint motion-disparity
estimation problem.
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2. Theoretical Developments

2.1. Motion and Disparity Model in the Frequency Domain

We consider the typical pinhole-camera perspective projection model [6,34] and assume that the
input stereo image data are rectified [7].

Consider a 3D point/small 3D neighbourhood that moves with 3D velocity U(t). Studying the
motion locally in time around t, according to fundamental physics laws, the velocity can be considered
as almost constant, i.e., U = [Ux, Uy, Uz]. Spatiotemporally-piecewise smooth flow is a common
assumption in most relevant flow estimation algorithms. The 3D point projects on the 2D points xl
and xr on the left and right 2D imaging planes, respectively, with:

xr = xl −D, where D = [b fx/Z, 0]T (1)

is the disparity vector and fx, b stand for the cameras’ focal length and the stereo baseline, respectively.
Based on the assumption that ∂D/∂t is relatively small, the projected point on the left and right images
is given by: ul = ∂xl/∂t '

[
fxUx/Z, fyUy/Z

]T and ur = ∂xr/∂t = ∂(xl −D)/∂t ' ul = u.
Making use of the previous facts, the projected images are locally described by:

f L(xs; t) = f0(xs − ut),

f R(xs; t) = f L(xs −D; t) = f0(xs −D− ut), (2)

where f L and f R stand for the left and right images and f0(xs) := f L(xs; t = 0) is the first frame of the
left sequence.

2.1.1. Model in the Frequency Domain

Taking the 3D spatiotemporal Fourier Transform (FT) of (2), one concludes that:

FL(ωs; ωt) = F0(ωs)δ(ωt −ωT
s u),

FR(ωs; ωt) = F0(ωs)δ(ωt −ωT
s u)ejψ(ωs), (3)

where ωs is the 2D spatial frequency, ωt the temporal frequency and δ() denotes the delta
function, while:

ψ(ωs) = ωxD. (4)

The energy in the spatiotemporal frequency domain is concentrated along a “motion plane”
ωt = ωT

s u, for both the left and right sequences. The spatiotemporal FTs have only a phase difference
equal to ψ(ωs). The “motion plane” is perpendicular to the unit vector:

s(u) =
[uT, 1]T√
||u||2 + 1

. (5)

2.1.2. Definitions of Energy Functions for Joint Motion-Disparity Estimation

The detection of the “motion plane” along with the phase ψ(ωs) can give an estimate of both flow
and disparity. Making use of (3), we have:

|FL(ωs; ωt)± FR(ωs; ωt)|2 = |F0(ωs)|2 · |1± ejψ(ωs)|2 · δ(ωt −ωT
s u). (6)

Based on this, the following energy functions can be introduced:

R±(u, D) := ∑
ω=(ωs ;ωt)

δ(ωt −ωT
s u)|FL(ωs; ωt)± FR(ωs; ωt; D)|2, (7)
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where:
FR(ωs; ωt; D) := FR(ωs; ωt)e−jωx D (8)

denotes the FT of f R(xs + D; t). Observing that 0 ≤ |1± ejψ(ωs)|2 ≤ 4, one deduces that R+(u, D)

is maximized for u equal to the actual 2D velocity and D equal to the actual disparity. Intuitively,
for D equal to the actual disparity, FR(ωs; ωt; D) and FL(ωs; ωt) are in phase for each spatiotemporal
frequency ω = (ωs; ωt), and therefore, their sum is maximized. Similarly, the energy functional
R−(u, D) is minimized at D equal to the actual disparity.

2.2. Steerable 3D Filters for Joint Motion-Disparity Estimation

In [10], a complete framework for the construction of 3D steerable filters and their application
to flow estimation can be found. In this work, we adapt and extend the relevant theory, towards the
construction and use of filters for joint motion-disparity estimation.

2.2.1. Directional Filters and Filter “Replicas”

A directional filter of order N, oriented along the unit vector d = [dx, dy, dt]T in the spatiotemporal
frequency domain, is given from BN

d (ω) := (ω̂T · d)N , where ω = [ωx, ωy, ωt]T the spatiotemporal
frequency and ω̂ = ω/||ω||. The filter in the original domain is notated as bN

d (x). For simplicity,
from now on, N is dropped from the notation.

For the theoretical developments of this work, we also define the filters’ “replicas”, shifted along
the horizontal direction x:

Bd|D(ω) := Bd(ω) e−ωx D, bd|D(x) = bd(x−D), (9)

where D = [D, 0, 0]T.
With f (x) := f (xs; t) denoting an image sequence and F(ω) its representation in the 3D frequency

domain, the response of a directional filter is notated as yd(x) := bd ∗ f (x) and Yd(ω) := Bd(ω)F(ω)

in the original and the frequency domain, respectively.
It is straightforward to show that the response of a shifted filter equals the shifted response of the

original filter, i.e., yd|D(x) := bd|D(x) ∗ f (x) = yd(x−D) and Yd|D(ω) = Yd(ω)e−ωx D.

2.2.2. “Steerability” Property

A directional filter Bd(ω) can be “interpolated” from I0(N) = (N + 1)(N + 2)/2 basic directional
filters Bdi (ω), i = 1, 2, . . . , I0, namely:

Bd(ω) =
I0

∑
i=1

ti(d)Bdi (ω), (10)

where {ti(d)}i=1...I0 denote the interpolation coefficients [10].
Based on the definition (9), it can be shown that the same interpolation formula holds for the

filter replicas, namely Bd|D(ω) = ∑I0
i=1 ti(d)Bdi |D(ω). It is obvious also that due to the linearity of FT,

the interpolation formula holds in the original space-time domain. Additionally, the formula holds for
the filter responses and the responses of their replicas, i.e., Yd|D(ω) = ∑I0

i=1 ti(d)Ydi |D(ω).

2.3. Definition of Appropriate Energy Functions

The “donut mechanism” [10,40] has been effectively applied in the 2D optical flow problem.
It enables the fast calculation of an energy functional, known as the “max-steering” distribution,
which describes the spectral energy distribution along (near) the motion planes. The “donut
mechanism” can be summarized in the following bullets:
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• Find N + 1 direction vectors, notated as sl(u), l = 0, 1, . . . , N, that are equally distributed and lie
on the candidate motion plane.

• The “max-steering” distribution is defined from:

P(u) := ∑
ω

N

∑
n=0

∣∣∣Bsl(u)(ω) F(ω)
∣∣∣2 = ∑

ω

N

∑
n=0

∣∣∣Ysl(u)(ω)
∣∣∣2 = ∑

x

N

∑
n=0

∣∣∣ysl(u)(x)
∣∣∣2. (11)

• Steerability property [10,40]: The distribution P(u) can be interpolated from a fixed set of
quadratic measurements qi,j(x) = ydi (x) ydj(x), i, j ∈ {1, . . . , I0}, with the interpolation
coefficients given from:

Ti,j(d) = ti(d) tj(d). (12)

2.3.1. Functions for Joint Motion-Disparity Estimation

Recall that the functionals R+(u, D) and R−(u, D) in (7) are maximized and minimized,
respectively, when u equals the actual 2D velocity and D is equal to the actual disparity. Inspired by
these functionals, the aim here is to define appropriate extensions of the “max-steering” distribution,
with a similar steerability property. Towards this end, the following combined energy functions are
defined:

P±(u, D) := ∑
ω

N

∑
n=0

∣∣∣Bsl(u)(ω) FL(ω)± Bsl(u)|D(ω) FR(ω)
∣∣∣2, (13)

where Bsl(u)|D(ω) denotes the shifted replica of Bsl(u)(ω) and FL(ω), FR(ω) denote the input stereo
sequence in the frequency domain. By making use of Parseval’s property, (13) is rewritten as:

P±(u, D) = ∑
ω

N

∑
n=0

∣∣∣YL
sl(u)

(ω)±YR
sl(u)|D(ω)

∣∣∣2 = ∑
x

N

∑
n=0

∣∣∣yLsl(u)
(x)± yRsl(u)|D(x)

∣∣∣2. (14)

Taking into account that the responses in the original domain are either pure real or pure imaginary,
after a set of manipulations, one can split the expression of (14) into:

P±(u, D) =
∣∣∣PL(u) + PR(u, D)± 2HL−R(u, D)

∣∣∣, (15)

where:

PL(u) = ∑
x

N

∑
n=0

(
yLsl(u)

(x)
)2

, PR(u, D) = ∑
x

N

∑
n=0

(
yRsl(u)|D(x)

)2
,

HL−R(u, D) = ∑
x

N

∑
n=0

yLsl(u)
(x) yRsl(u)|D(x). (16)

Steerability property: The definition of PL(u) is exactly the same as P(u) in (11); therefore, its
steerability property holds. The property holds also for PR(u, D) and HL−R(u), since the complex
multiplication factor e−ωx D does not affect the summations. Specifically, it can be shown that PL(u),
PR(u, D) and HL−R(u) can be interpolated from a set of fixed quadratic terms:

qLi,j(x) := yLdi
(x) yLdj

(x), qRi,j(x; D) := yRdi |D(x) yRdj |D(x),

qL,R
i,j (x; D) := yLdi

(x) yRdj |D(x), (17)

namely:
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HL−R(u, D) =
N

∑
n=0

I0

∑
i,j=1

Ti,j
(
sl(u)

)
∑
x

qL,R
i,j (x; D), (18)

where Ti,j(d) is given from (12) and similar equations hold for PL(u) and PR(u, D).

2.3.2. Functions for Pixel-Wise (Local) Estimation

Since we are interested in dense motion and disparity estimation, the functions have to be modified
and defined for each spatiotemporal position x. The “pixel-wise” functions PL(x; u), PR(x; u, D) and
HL−R(x; u, D) are defined by dropping the summation along x in Equation (16). This modification
does not affect the “steerability” property of the functions.

2.3.3. Combined Cost Function for Motion-Disparity Estimation

On the one hand, P+(x; u, D) is theoretically maximized for (u, D) equal to the actual
velocity-disparity, and practically, it is more efficient in the motion estimation task. On the other
hand, P−(x; u, D) is minimized for disparity D equal to the actual disparity, regardless of the velocity;
therefore, if used alone, it is useful only for disparity estimation. According to the above, and given
that a cost function should be minimized at the actual velocity-disparity pair, we introduce a combined
cost function, appropriate for joint motion-disparity estimation, as follows:

C(x; u, D) = C+(x; u, D) + w C−(x; u, D), (19)

where C±(x; u, D) = ∓
√

P±(x; u, D). The weight w is selected equal to w = std{C+(x;u,D)}
std{C−(x;u,D)} ,

where std{·} denotes the sample standard deviation.

2.3.4. Handling Responses of Shifted Filter Replicas: Sub-Pixel Accuracy

The calculation of the terms in (17) involves the responses yRdi |D
(x), i.e., the responses of the shifted

filters’ replicas. However, the response of a shifted filter equals the shifted response of the original
filter. This practical property means that only the application of the original filters is needed. On the
other hand, although shifting a 2D function in the original domain is straightforward for an integer
D, shifting by an arbitrary D requires sub-pixel interpolation. One way to do that is trigonometric
interpolation, i.e., multiplying in the FT domain by e−ωx D. Based on this discussion, we split the
real-valued D into its integer part and the remaining decimal part: D = bDc+ D f , where D f ∈ [0, 1).
With this definition, we have:

Yd|D(ω) = Yd(ω) e−ωx D = Yd(ω) e−ωxbDce−ωx D f = Yd|D f
(ω)e−ωxbDc,

yd|D(x) = yd|D f
(x− bDc), (20)

where Yd|D f
(ω) := Yd(ω) e−ωx D f and yd|D f

(x) = IFT
{

Yd|D f
(ω)

}
. This means that if disparity

estimation with sub-pixel accuracy equal to D0 ≤ 1/2 is needed, one has to calculate yd|D f
(x) for all

D f = k · D0, k = 1, 2, . . . , 1−D0
D0

. For example, for quarter-pixel accuracy, D f ∈ {1/4, 1/2, 3/4}.

3. Algorithmic Developments

3.1. Outline of the Main Algorithm

The proposed algorithm receives as input a rectified stereo image sequence of T frames (T = 6 in
our experiments) and outputs a motion field u(xs) and a disparity map D(xs) for the middle frame
(t = T/2). The overall structure of the algorithm, summarized in the block diagram of Figure 1,
is described by four basic “building blocks”:
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• (Matching) Cost volume computation: Based on our theoretical steerable filters-based
developments, this step calculates a cost hyper-volume C(xs; u, D).

• Cost (support) aggregation: The cost hyper-volume is spatially aggregated in a local region around
each pixel, using a window, to produce the hyper-volume Ca(xs; u, D). A Gaussian window of
size W = 3× 3 or W = 5× 5 and standard deviation equal to W is used.

• (Semi-)global optimization: In our case, where the cost hyper-volume is defined over the 5D (2D
space + 2D velocity + disparity) space, global optimization [41] would be very slow, even with
modern efficient methods, such as graph-cuts [42] or belief propagation [31]. We extend and use a
semi-global optimization [18].

• Disparity-velocity refinement: This step performs refinement of the estimates, by detecting and
correcting outlier estimates.

Figure 1. Block diagram, summarizing the main steps of the algorithm.
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3.2. Cost Volume Calculation and Local Aggregation

3.2.1. Cost Volume Calculation

The steps for the calculation of the cost hyper-volume can be summarized as follows:

1. Construct a 3D steerable filter basis in the frequency domain, Bdi (ω) at the basic orientations
di, i = 1, . . . , I0. This step is independent of the input sequence, and therefore, the filter basis can
be constructed off-line.

2. Compute the spatiotemporal FT of the input sequences to obtain FL(ω) and FR(ω).
3. Pre-processing: Since most natural images have strong low spatial-frequency characteristics,

we amplify the medium-frequency components via band-pass pre-filtering, as in [10].
4. Multiply FL(ω) and FR(ω) with each basic filter Bdi (ω), to obtain the basic responses YL

di
(ω)

and YR
di
(ω), respectively. If sub-pixel accuracy is wanted (see Section 2.3.4), calculate also the

sub-pixel shifted responses YR
di |D f

(ω) = YR
di
(ω) e−jωx D f .

5. Apply 3D IFT to each YL
di
(ω) and YR

di |D f
(ω) to get the basic responses in the original space-time

domain yLdi
(x) and yRdi |D f

(x). From Equation (20), the responses yRdi |D
(x) are available for all

candidate shifts D, with the wanted sub-pixel accuracy.
6. Calculate the quadratic terms qLi,j(x), qRi,j(x; D) and qL,R

i,j (x; D), defined in Section 2.3.1
(Equation (17)), for each candidate disparity D.

7. The quadratic terms are aggregated along the T input frames using a 1D Gaussian window

g(t), i.e., qLi,j(xs) ←
∑t g(t) qLi,j(xs ;t)

∑t g(t) . Similar equations are used for qRi,j(x; D) and qL,R
i,j (x; D).

Experimentally, it was found that a good choice for the extent (standard deviation) of this
window is 0.2T.

8. Calculate the distributions P±(xs; u, D), as described in Sections 2.3.1 and 2.3.2. Then, calculate
the combined cost function C(xs; u, D) from (19).

3.3. Adapted Scan-Line Optimization

The proposed method, taking as input a cost volume Ca(xs; u, D), outputs a “regularized” cost
volume La(xs; u, D), which implicitly includes smoothness constraints. We adapt a semi-global
optimization method to our multi-parametric motion-disparity estimation problem, specifically the
Scan-line Optimization (SO) approach [18].

The SO procedure implements cost accumulation along linear paths (scan-lines), identified by a
direction r. Consider the scan-line xs[0], xs[1], . . . , xs[n], with xs[0] being at the image border and xs[n]
at the opposite image border. To simplify notation, we let pi denote the i-th pixel along the path, i.e.,
xs[i] → pi. Initially, we ignore the unknown velocity u, and the problem reduces to disparity-only
estimation. For a disparity level D ∈ Dspace and a scan-line direction r, the cost Lr(pi; D) at the i-th
pixel is recursively calculated from [18]:

Disparity SO: Lr(pi; D) = Ca(pi; D) + Mi − min
η∈Dspace

{
Lr(pi−1; η)

}
, (21)

where:
Mi = min

{
Lr(pi−1; D), Lr(pi−1; D± 1) + π1, min

η∈Dspace

{
Lr(pi−1; η)

}
+ π2

}
. (22)

The regularization constraints are encoded in the penalties π1 and π2.
In order to proceed, we quote our observation. Equation (22) can be written in a compact form

as follows:
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Mi = min
{

min
η∈Dspace

{
Lr(pi−1; η)

}
+ π(D, η)

}
, where: π(D1, D2) =


0 if D1 = D2

π1 if |D1 − D2| = 1

π2 if |D1 − D2| ≥ 2,

(23)

where the matrix π(D1, D2) defines the penalty for transition from disparity D1 to D2.
To handle the joint motion-disparity problem, we use a one-to-one discrete mapping from the 3D

velocity-disparity (u, D) search space to the 1D space of natural numbers. Specifically, we introduce
a parameter m ∈ N and the discrete mapping m ↔ (u[m], D[m]), 0 ≤ m < M, where (u[m], D[m])

represents the m-th candidate velocity-disparity pair. Additionally, a symmetric penalty matrix
Π(m1, m2) defines the penalties for the transition from (u[m1], D[m1]) to (u[m2], D[m2]). Using this
notation, we reformulate Equations (21) and (23) as follows:

Lr(pi; m) = Ca(pi; m) + Mi − min
0≤η<N

{
Lr(pi−1; η)

}
,

Mi = min
{

min
0≤η<M

{
Lr(pi−1; η)

}
+ σ Π(m, η)

}
, (24)

where the additional parameter σ controls the global smoothness constraints. The penalty in our case
is split into two terms, one for disparity transition and one for velocity transition:

Π(m1, m2) = ΠD(m1, m2) + σu Πu(m1, m2), (25)

with ΠD(m1, m2) = π
(

D[m1], D[m2]
)

and π(·, ·) given in (23). The parameter σu controls the relative
smoothness constraints for velocity. In order to construct the penalty matrix Πu(m1, m2), one has to
take into account that the optical flow vectors are not always piecewise constant, but may vary slowly
in small regions. It is constructed as follows:

Πu(m1, m2) = min
{
Pu
(
u[m1], u[m2]

)
, TAE

}
, (26)

where TAE is a truncation threshold, used to avoid over-smoothing of the flow-field along object
boundaries and Pu(u1, u2) is a function that is zero for u1 = u2 and increases with the “difference” of
the velocity vectors u1 and u2. We propose the use of the “angular difference” (angular error in [8]),
i.e., Pu(u1, u2) = AE(u1, u2) := cos−1 (s(u1)

T · s(u2)
)
, where s(u) is given from (5). According to [8],

this metric, which is expressed in radians, is fairer compared to other ones, such as the vector’s
Euclidean distance.

PSO parameters: The selection of the SO parameters in our presented experiments was roughly
guided by the range and the histograms (probability density functions) of the initial cost-volume
values, calculated for the experimental image sequences. The SO parameters were selected as follows:
the penalties for disparity are π1 = 0.03 and π2 = 0.1; the truncation threshold in Equation (26) is
TAE = 0.5 rads; the relative smoothness parameter for velocity (Equation (25)) is σu = 0.3; and the
global smoothness parameter (Equation (24)) is σ = 0.4.

3.4. WTA, Outliers’ Detection and Refinement

Given a cost volume, La(xs; m), the Winner Take-All (WTA) approach searches for each pixel xs

the parameter m that minimizes the cost, i.e., m̂(xs) = arg minm{La(xs; m)}. Then, the disparity and
velocity estimates for pixel xs are: D(xs)← D

[
m̂(xs)

]
and u(xs)← u

[
m̂(xs)

]
.

3.4.1. Outliers’ Detection, Refinement and Confidence Map

Considering as a reference the Left image of the stereo pair, the estimated flow uL(xs) and
disparity maps DL(xs) are obtained. However, applying the algorithm with the right view as the
reference, one computes the flow and disparity estimates uR(xs), DR(xs), which may not be consistent
with uL(xs), DL(xs).
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Detection of disparity outliers: A prevalent strategy for detecting outliers is the left-right
consistency check [43], according to:

∣∣DL(xs)− DR(xs − DL(xs)
)∣∣ ≤ TLR, where TLR is a threshold,

set equal to 2 pixels in our experiments. Using this consistency check, the binary outliers map OLR(xs)

is obtained. Similarly, performing the right-left check, we obtain the outliers map ORL(xs). The final
disparity outliers map, letting OD(xs), is given by the union (OR operation) of OLR(xs) and ORL(xs).

Refinement of disparity map: The refinement strategy is applied on DL(xs), to fill each outlier
pixel with a “confident” disparity value from the neighbourhood. The employed scheme is simple;
for each outlier pixel: (i) the nearest “inliers”, which lie on the same line (pixel row) or the lines above
and below, are detected; and then, (ii) for all the closest inliers, the 3× 3 regions around them are
scanned and the minimum disparity value selected. The idea of selecting the minimum disparity
in the neighbourhood of the outlier is based on the fact that most outliers normally correspond to
background occluded regions. The output of this refinement step, applied to the left disparity map,
is denoted as Ḋ(xs).

Detection of flow outliers: The proposed left-right consistency check for the flow estimates is based
on similar ideas, but the Angular Error (AE) [8] is used to measure the “difference” between two flow
vectors. To measure the consistency uL(xs) and uR(xs), we consider the 3D vectors sL(xs) = s

(
uL(xs)

)
and sR(xs) = s

(
uR(xs − Ḋ(xs)

))
, where s(u) is given in (5). The consistency is checked using the

AE metric, i.e., from cos−1 ((sL(xs))T · sR(xs)
)
≤ TAE, where the threshold was set TAE = 45◦ in our

experiments. Let the final flow outliers map be denoted as OF(xs).
Refinement of flow field: Filling outlier pixels with respect to flow should not be based on

simply assigning the smallest (in magnitude) inlier flow vector in the neighbourhood of the outlier.
This is because slowly moving objects can occlude faster moving objects. Therefore, here, a simple
alternative is used for filling the outlier pixels: we detect the inlier flow vectors inside a square
neighbourhood (7× 7 in our experiments) of each outlier and find their median. This is then assigned
to the outlier pixel.

3.5. Estimation Confidence Map

Similarly to all disparity and flow estimation techniques, the proposed algorithm produces
estimates whose accuracy varies with the local characteristics of the underlying images. As practice
shows, wrong estimates are mainly obtained at and near the outlier regions OD(xs) and OF(xs),
as previously defined. Thus, the following simple, but effective “confidence” measure is proposed:

Conf(xs) =
max{Dist{xs, O}, TD}

TD
∈ [0, 1], (27)

where O(xs) is a binary image obtained from the union of the outlier maps OD(xs) and OF(xs),
Dist{xs, O} stands for the Euclidean distance of pixel xs to the nearest non-zero pixel in O(xs) and TD

is a distance threshold, set equal to four pixels in our experiments. This means that the confidence
map Conf(xs) is zero for the outlier pixels (non-zero pixels in O(xs)) and increases with the Euclidean
distance to such pixels. For distances larger than TD = 4 pixels, the confidence is equal to unity.
An example of such a confidence map is given in the experimental results of Section 4.2.2.

The algorithm proposed so far produces disparity and flow estimates at 100% Full Density (FD).
In practical scenarios, however, “non-confident” estimates could be rejected, based on thresholding the
proposed confidence map. In the experimental section, to compare with state-of-the-art approaches
that do not produce estimates at 100% density, the confidence map is thresholded at various levels in
the interval [0, 1].

4. Experimental Results

In this section, detailed experimental on both synthetic and natural stereo image sequences
are presented. Comparative results are also given, with respect to two state-of-the art methods.
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Specifically, the method in [26] was selected, which jointly computes disparity and flow in consecutive
stereo images, based on the notion of “Growing Correspondence Seeds (GCS)” [19]. The code, freely
available from the authors, was exploited using the default parameters. Additionally, the disparity-only
estimation method of [18] is used, as implemented in MATLAB’s 2017a Computer Vision toolbox
(denoted as MatCVTolbx-SemiG in the rest of the paper) using the OpenCV library. The method
uses mutual information for the cost measure, while it applies semi-global optimization for spatial
regularization. For details, please refer to the referenced works.

4.1. Prerequisites

Implementation details, CUDA parallelization: Steps 6–8 of the initial cost calculation algorithm
(Section 3.2.1) were implemented using NVidia’s CUDA. These steps are fully parallelizable on
a GPU, since calculations for each x (space-time location) or each xs are independent of each
other. Additionally, the SO algorithm, which is by far the slowest part of the whole algorithm,
was implemented using CUDA. Due to the recursive scanning of the pixels along each scan-line,
computations can be parallelized only with respect to different candidate disparity-velocity pairs
(index m; see Equation (24)).

The computational times reported in this section were obtained using a PC with an Intel i7 CPU
at 2.00 GHz, 16 GB RAM and a GeForce GT750M with 384 CUDA Cores.

Evaluation metrics: The (Mean) Angular Error (M)AE [8] is used as an evaluation metric for dense
flow estimation. For evaluating disparity estimation, we use the mean absolute disparity error, as
well as the percentage of bad pixels [7], i.e., the percentage of pixels with absolute error greater than
T = 1 pixel.

4.2. Experimental Results: Artificial Sequences

4.2.1. “Car-Tree” Sequence

With the help of this simple stereo sequence, shown in Figure 2a,b, the performance is studied
with respect to the filters’ order N. Specifically, the performance is studied in the case that Winner
Take-All (WTA) is applied directly to the initial cost volume Ca(xs; u, D), i.e., all subsequent steps after
Step B are omitted. In the diagrams of Figure 2c–e, the estimation error metrics with respect to N
are reported. As can be verified, both the disparity and motion estimates improve as the filter order
increases. This comes at the cost of increased computational effort, according to Figure 2e, where the
computational cost seems to quadratically increase. However, this computational cost (Steps A, B)
is an order of magnitude lower than that of SO optimization (Step C), as already stated and will be
revealed by the computational-time results, provided in next sections. Thus, when high accuracy is
the major objective and therefore the time-consuming SO optimization step is also applied, the use of
higher order filters is suggested, since the additional computational overhead will be small. On the
other hand, when mainly speed matters, the application of only Steps A and B with a low filter order
is proposed. As a good trade-off between accuracy and speed, omitting SO optimization (application
of Steps A, B and D) and using filters of order N = 3 is suggested. In the experiments of Sections 4.2.2,
4.3.1 and 4.3.2 N = 3 is used, whereas in the experiment of Section 4.2.3, where only Steps A and B are
applied, N = 2 is used.

4.2.2. “Futuristic White-Tower” Sequence

In this sequence, shown in Figure 3, apart from the very distant static background, we have three
objects at different depths, with severe occlusions; from far to near: The “White-Tower” layer that
moves slowly (−1 pixel/frame), simulating the motion of the virtual stereo rig, a small sailing boat
(+1 pixel/frame) and a larger boat (−3 pixels/frame).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Simple artificial “Car-Tree” sequence: results with respect to the filters’ order N. The results
were obtained by applying WTA directly to the initial cost volume C(xs; u, D): (a) first and last (sixth)
frame of the left view and (b) ground-truth disparity map; (c) mean absolute disparity error and
(d) percentage of bad pixels; (e) flow mean angular error; (f) computational time.

(a)

Figure 3. Cont.



Inventions 2018, 3, 12 15 of 29

(b)

Figure 3. Artificial “Futuristic White-Tower” sequence: (a) first and last (sixth) frame of the Left view;
(b) ground-truth horizontal speed and disparity.

The estimation error results, at 100% FD, obtained after the application of each algorithmic step,
are given in Figure 4. As can be observed, the errors occur mainly at untextured regions (e.g., the
sky) and object boundaries, due to the “blank wall” and “aperture” problems [8,9]. However, after the
application of the scan-line regularization step, the estimated maps become smoother, and the error
at homogeneous regions is eliminated, but the error at object boundaries remains. The last step of
the algorithm (outliers’ refinement) introduces improvement at the object boundaries. As can also be
verified from the diagrams of Figure 5, each algorithmic step introduces an improvement.

Table 1 reports the processing time of the computationally-demanding parts, i.e., with the
initial cost volume calculation and the scan-line optimization, considering both a CPU and a GPU
implementation. Although the calculation of the initial cost volume is quite fast (Steps A and B),
scan-line optimization (Step C) is slower by approximately an order of magnitude, due to the last
parametric search space (disparity and 2D motion). A GPU implementation of these steps can speed-up
execution by a factor of approximately four.

Table 1. Parameters and computational time (CPU vs. GPU) for the “Futuristic White-Tower” sequence.

Sequence: “Futur.WT” Resolution: 400 × 262 No. of Frames: 6

Parameters

Filters Candidate Candidate
Order N = 3 Velocities Nu = 65 Disparities ND = 12

Algorithmic Part
Computational Time (ms) GPU

CPU Impl. GPU Impl. Speed-Up

Init. cost volume calculation 27,156 7423 3.65:1
Scan-line optimization 433,794 103,899 4.18:1

The confidence map, calculated as described in Section 3.4.1, is given in Figure 6. The proposed
method’s density is varied by thresholding this confidence map in the interval [0, 1]. Comparative
results against the GCSF ([19,26]) and the MatCVTolbx ([18]) methods are given in Figures 7 and 8,
as well as in Table 2. According to Table 2 and Figure 8a,b, the proposed method outperforms
the other methods with respect to disparity estimation, producing estimates at similar or higher
densities with lower Mean Absolute Error (MAbsE) and Perc.of bad pixels. According to Figure 7c, the
MatCVTolbx method oversmooths the results, producing erroneous estimates at object boundaries
(“edge-fattening” effect). According to Figure 7a,b, the behaviours of the proposed method and GCSF
are similar, regarding the “rejected” estimates, which are concentrated near object boundaries and
at the textureless sky region. Similar conclusions are drawn from Figure 7d,e, which depicts the
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corresponding estimated flow maps (horizontal component). The methods produce flow estimation
results with similar Mean Angular Error (MAngError), at similar densities, as can be verified from
Table 2 and Figure 8c.

(a)

(b)

(c)

Figure 4. Artificial “Futuristic White-Tower” sequence: estimation error results: (a) after only spatial
aggregation (5 × 5); (b) after spatial aggregation (3 × 3) and scan-line optimization; (c) after the
application of all steps.

Table 2. Comparative results for the “Futuristic White-Tower” sequence. GCSF, Growing
Correspondence Seeds for scene Flow; FD, Full Density.

Method Dispar.Density Mean AbsError Perc.Bad Pixels Flow Density Mean Angul.Error

Proposed (FD) 100% 0.31 4.78% 100% 5.83
Proposed 86.5% 0.10 1.65% 86.5% 2.71
GCSF [26] 84.4% 0.17 3.28% 83.9% 1.93

MatCVTlbx-SemiG [18] 94.7% 0.33 4.50% - -
MatCVTlbx-Block 85.7% 0.27 3.96% - -
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(a)

(b)

(c)

Figure 5. Artificial “Futuristic White-Tower” sequence: estimation errors with respect to the step of the
algorithm: (a) mean absolute disparity error; (b) percentage of bad pixels; (c) flow mean angular error,
after the application of each algorithmic step.

Figure 6. Artificial “Futuristic White-Tower” sequence: estimation confidence map.
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(a) (b)

(c)

(d) (e)

Figure 7. Artificial “Futuristic White-Tower” sequence: comparative results: estimated disparity map of
(a) the proposed method at density 86.5%, (b) GCSF [26] with density 84.4% and (c) MatCVTlbx-SemiG [26]
with density 94.7%; estimated flow-field of (d) the proposed method and (e) GCSF [26]. For the
corresponding estimation error, please refer to Table 2 and the diagrams of Figure 8.

(a)

Figure 8. Cont.



Inventions 2018, 3, 12 19 of 29

(b)

(c)

Figure 8. Artificial “Futuristic White-Tower” sequence: comparative results (a,b) with respect to
disparity estimation and (c) with respect to flow estimation.

4.2.3. “Rotating Lenna Plane” Sequence

In this sequence, shown in Figure 9a, a textured 3D plane rotates constantly about the Y axis,
introducing significant motion along the Z (depth) direction. The angle of the slanted plane is initially
15◦ and becomes equal to 25◦ in the last (sixth) frame. The GT motion field and disparity map are
given in Figure 9b.

The proposed method was applied with filters of order N = 2 and without employing the
regularization and refinement steps. The results are given in Figure 9c,d. The MAE and disparity error
remain at levels similar to the two previous sequences.

Comparative results are given in Table 3. Although the method is evaluated at 100% density,
it produces disparity estimation results of errors similarly low as that of other methods. Compared to
GCSF ([19,26]), it produces better results at higher densities.

Table 3. Comparative results for the “Rotating Lenna plane” sequence.

Method Dispar.Density Mean Abs Error Perc. Bad Pixels Flow Density Mean Angul. Error

Proposed-Step 2 (FD) 100% 0.42 4.54% 100% 8.70
GCSF [26] 89.1% 0.31 3.71% 87.5% 10.18

MatCVTlbx-SemiG [18] 93.9% 0.38 5.38% - -
MatCVTlbx-Block 87.5% 0.47 6.69% - -
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Figure 9. Artificial “Rotating Lenna plane” sequence: (a) the first and last (sixth) frame of the left
and right views; (b) the ground-truth flow and disparity; (c) the corresponding estimated flow and
disparity map; (d) the flow angular error and disparity error.

4.3. Experimental Results: Natural Sequences with Known Disparity GT

In this section, experimental results on natural stereo sequences are presented, for which however
the disparity is known. The sequences were created using a custom-made tool, which lets one use 3D
textured surface data (captured by Kinect sensors) to create multi-view image sequences: the 3D data
are projected onto virtual OpenGL cameras (OpenGL FrameBuffers), the characteristics of which are
known. Thus, disparity is also known.
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The first sequence was generated from Kinect version2 RGB-Depth streams, whereas the second
one was obtained from http://vcl.iti.gr/reconstructions. The background of the sequences is unknown.
This “null” background is replaced by a smooth random pattern with zero disparity (see Figure 10).
We note that (a) the sequences are noisy, in the sense that the 3D reconstructions contain geometrical
and texture artefacts, especially at the object boundaries. Therefore, each view’s sequence is noisy,
making the flow estimation task difficult. (b) On the other hand, the disparity estimation task is easier,
since the stereo views of the same time-instance are “acquired” by virtual cameras and therefore are
perfectly rectified.

(a) (b)

(c) (d)

Figure 10. “Dimitris-Chessboard” sequence: (a,b) first and last (sixth) frame of the left view; (c) first
frame of the right view; (d) ground-truth of disparity.

4.3.1. “Dimitris-Chessboard” Sequence

This sequence, shown in Figure 10, includes a person that holds a chessboard pattern and moves
towards right-backwards. parameters and the

Results with respect to disparity estimation, without and with the application of Scan-Line
Optimization (SO), are given in Figure 11a–d. The method manages to efficiently estimate disparity,
even without SO optimization, despite the noisy input and the repeating “chessboard” pattern.
The estimated map is less noisy, and the estimation error is slightly smaller when SO regularization
is applied. The used parameters, as well as the computational time of the algorithmic parts, are given
in Table 4.
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Table 4. Parameters and computational time (CPU vs. GPU) for the “Dimitris-Chessboard” sequence.

Sequence: “Dimitris” Resolution: 400 × 300 No. of Frames: 6

Parameters

Filters Candidate Candidate
Order N = 3 Velocities Nu = 65 Disparities ND = 11

Algorithmic Part
Computational Time (ms) GPU

CPU Impl. GPU Impl. Speed-Up

Init. cost volume calculation 30,283 7564 4.00:1
Scan-line optimization 405,071 86,295 4.69:1

(a) (b)

(c) (d)

(e)

Figure 11. “Dimitris-Chessboard” sequence: experimental results: estimated disparity map (a) before
and (b) after the application of SO; (c,d) the corresponding estimation error results; (e) estimated flow
field after the application of SO.
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Table 5 and Figures 12 and 13 provide comparative disparity estimation results. According to
the table and Figure 13, the proposed method produces more accurate results at similar densities and
similarly accurate results at 100% density.

Finally, the motion flow estimated by the proposed method (with SO) is given in Figure 11e.
Although quantitative evaluation is not possible, one can say that the overall motion is adequately
well estimated, even at the textureless lower-body part of the human. However, some very wrong
estimates can be found, corresponding to static textureless and noisy captured regions, e.g., the white
desk region at the bottom-left.

(a) (b)

Figure 12. Natural “Dimitris-Chessboard” sequence: comparative results: Estimated disparity map of
(a) the proposed method at density 79.6% and (b) GCSF [18] with density 81.7%. For the corresponding
estimation error, please refer to Table 5 and the diagrams of Figure 13.

Figure 13. Natural “Dimitris-Chessboard” sequence: comparative results with respect to disparity estimation.
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Table 5. Comparative results for the “Dimitris-Chessboard” sequence.

Method Dispar. Density Mean Abs Error Perc. Bad Pixels

Proposed (FD) 100% 0.79 7.97%
Proposed 79.6% 0.42 3.78%
GCSF [26] 81.7% 0.66 8.14%

MatCVTlbx-SemiG [18] 88.6% 0.88 8.78%
MatCVTlbx-Block 85.0% 1.22 28.11%

4.3.2. “Xenia” Sequence

In the “Xenia” sequence, depicted in Figure 14, Xenia bends her knees and moves downwards.
Exactly the same kind of results, as in the previous experiment, are given in Figure 15. The

method efficiently estimates disparity, although the black clothes have poor texture and the sequence
is noisy. In this experiment, however, the disparity estimates that Xenia’s silhouette boundaries are
noisy, and the “edge-fattening” effect is more visible. This can be partially justified by the fact that the
sequence was captured using Kinect1 devices, which provide more noisy measurements, and therefore,
the 3D data were noisy at boundaries. Additionally, in this experiment, SO optimization seems to
over-smooth the results, and thus, the corresponding errors are higher than those without SO.

With respect to the flow, Figure 15e shows that the flow estimation results are sensible and reflect
the actual motion.

Finally, in the spirit of the previous experiments, comparative results are given in Table 6 and
Figure 16, where the effectiveness of the proposed method is demonstrated, as it outperforms the
selected state-of-the-art approaches.

(a) (b)

(c) (d)

Figure 14. “Xenia” sequence: (a,b) first and last (sixth) frame of the left view; (c) first frame of the right
view; (d) ground-truth of disparity.
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(a) (b)

(c) (d)

(e)

Figure 15. “Xenia” sequence: experimental results: estimated disparity map (a) before and (b) after the
application of SO; (c,d) the corresponding estimation error results; (e) estimated flow field after the
application of SO.

Table 6. Comparative results for the “Xenia” sequence.

Method Dispar. Density Mean Abs Error Perc. Bad Pixels

Proposed (FD) 100% 0.46 3.99%
Proposed 80.6% 0.11 1.08%
GCSF [26] 90.4% 0.31 3.26%

MatCVTlbx-SemiG [18] 89.9% 0.47 4.24%
MatCVTlbx-Block 88.2% 0.79 22.42%
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Figure 16. Natural “Xenia” sequence: Comparative results with respect to disparity estimation.

5. Discussion

In this work, a novel paradigm for frequency-domain or filter-based joint disparity and motion
estimation was given. More specifically, from a theoretical point-of-view, the problem of joint disparity
and motion estimation from stereo image sequences was initially studied in the spatiotemporal
frequency domain. Guided by this study, a solution using steerable filters was then investigated.
We extended the theory behind 3D steerable filters, and a novel steerable filter-based solution was
developed. According to the authors’ knowledge, this work constitutes the first attempt towards joint
depth and motion estimation based on frequency-domain and filter considerations. The ideas of this
paper may constitute the basis for further theoretical and algorithmic developments.

We additionally extended the semi-global scan-line optimization (SO) method, originally
developed for disparity estimation, in order to be used in our underlying problem. Combining
the adapted SO method, as well as other relevant ideas from the disparity estimation literature,
with the developed filter-based solution, an overall algorithm was formulated and successfully applied
in the joint motion-disparity estimation problem. The algorithm was evaluated through a number of
experimental results.
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Abbreviations

The following abbreviations are used in this manuscript:

DOG Derivatives of Gaussian
MRF Markov Random Field
NSSD Normalized Sum of Squares Difference
GPU Graphics Processing Unit
(F)FT (Fast) Fourier Transform
SO Scan-line Optimization
(M)AE (Mean) Angular Error
WTA Winner Take-it-All
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