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Abstract: The Mu2e experiment at Fermilab will search for the standard model-forbidden, charged
lepton flavour-violating conversion of a negative muon into an electron in the field of an aluminium
nucleus. The distinctive signal signature is represented by a mono-energetic electron with an energy
near the muon’s rest mass. The experiment aims to improve the current single-event sensitivity by
four orders of magnitude by means of a high-intensity pulsed muon beam and a high-precision
tracking system. The electromagnetic calorimeter complements the tracker by providing high rejection
power in muon to electron identification and a seed for track reconstruction while working in vacuum
in presence of a 1 T axial magnetic field and in a harsh radiation environment. For 100 MeV electrons,
the calorimeter should achieve: (a) a time resolution better than 0.5 ns, (b) an energy resolution
<10%, and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each
loaded with 674 undoped CsI crystals read out by two large-area arrays of UV-extended SiPMs
and custom analogue and digital electronics. We describe here the status of construction for all
calorimeter components and the performance measurements conducted on the large-sized prototype
with electron beams and minimum ionizing particles at a cosmic ray test stand. A discussion of the
calorimeter’s engineering aspects and the on-going assembly is also reported.

Keywords: scintillation; crystals; SiPM; calorimetry

1. Introduction

The Mu2e experiment [1] at Fermilab aims to improve, by four orders of magnitude,
the current single-event sensitivity in searching for the yet unobserved charged lepton
flavour violating (CLFV) neutrino-less conversion of a negative muon into an electron in
the field of an aluminium nucleus. Such a process, forbidden in the standard model, has
a clear signature provided by the identification of a mono-energetic conversion electron
(CE) with an energy slightly below the muon’s rest mass (104.97 MeV). Even assuming
neutrino oscillations, CLFV processes in the muon system remain completely negligible,
BR(µ → e γ) = 10−52 [2]. Observing CLFV candidates will indicate physics beyond the
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standard model. If conversions are not observed, Mu2e will set a 90% upper limit on the
ratio between the conversion and capture rates (Rµe) at < 8 × 10−17.

The Mu2e layout, based on an original concept by V. Lobashev and R. Djilibaev [3],
is shown in Figure 1. The large solenoidal system is designed to largely increase the
number of µ− arriving at the stopping target (ST). A 8 GeV pulsed proton beam sent at the
tungsten target inside the production solenoid (PS) produces low-momentum pions that
are funnelled, by the graded field, inside the S-shaped transport solenoid (TS). Here, the
pions decay to muons and are charge selected by a middle section collimator. At the end of
the transport chain, a very intense negative muon beam (∼1010 µ/s) enters the detector
solenoid (DS) and is stopped at an aluminium target. In its lifetime, the experiment plans
to collect 6 × 1017 muon stops to reach its sensitivity goal. Decay products are analysed
by the tracker [4] and calorimeter [5] systems. Cosmic ray muons can produce fake CE
candidates when interacting in the DS. To reduce their contribution, the external area of the
DS and part of the TS are covered by a cosmic ray veto (CRV) [6] system.

Figure 1. Layout of the Mu2e experiment: PS, DS, and TS solenoids are indicated in the picture. The
cosmic ray veto, surrounding the DS and part of the TS solenoids, is not shown.

Muons stopped in the aluminium target form a muonic atom and cascade to the
1S ground state, with 39% decaying in orbit (DIO) and 61% captured by the nucleus.
Low energy protons, neutrons, and photons are emitted in the nuclear capture process,
thus originating both a large neutron fluence and, together with the flash of particles
accompanying the beam, the bulk of the ionizing dose observed in the detectors. The
tracker, composed of ∼20,000 low-mass straw drift tubes, measures the charged particles’
momenta by reconstructing their trajectories in the magnetic field with the detected hits.
Full simulation shows that a momentum resolution of O(160 keV) can be reached, thus
separating the CE line from the fast-falling spectrum of the DIO electrons.

2. Materials and Methods

In this section, we describe the calorimeter system in more detail, starting from
requirements and technical choices down to its engineering design.

2.1. Calorimeter Requirements

The calorimeter complements the CE identification tracker by providing a high µ/e
rejection better than 200, a fast online trigger filter and a seed for track reconstruction [7].
To fulfil these tasks, simulation guided us to define the reconstruction requirements for
105 MeV electrons, which are summarized by this short list: (a) a large acceptance, (b) a time
resolution better than 0.5 ns, (d) an energy resolution <10%, and (d) a position resolution of
1 cm. Moreover, the calorimeter should maintain its functionality when operating inside the
DS without interruption for one year in a harsh radiation environment in the presence of 1 T
axial magnetic field and in a region evacuated to 10−4 Torr. This asked for a high reliability,
redundancy, and a high level of radiation hardness on all calorimeter components.
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2.2. Technical Choices for Crystals and Photo-Sensors

Our solution was to design a high-quality crystal calorimeter with silicon photomul-
tiplier (SiPMs) readout and a geometry organized into two annular disks (Figure 2) to
maximize acceptance for spiralling electrons. The crystals had to provide a high light
yield of at least 20 photoelectrons (p.e.)/MeV per single SiPM readout. To handle the
pileup of particles, fast signals were needed, thus asking for crystals with a decay time
(τ) better than 40 ns and front end electronics (FEE) providing fast amplified signals to
be sampled at 200 Msps (5 ns binning) by the digitization system. The selected crystals,
SiPMs had to sustain a total ionization dose up to 1000 Gy (900 Gy) and a neutron fluence
of up to 3, 1.2× 1012 n/cm2 respectively. All of this without deteriorating the calorimeter
performance. The high redundancy and reliability required translated into having two
independent SiPMs, FEE boards/crystal, and an independent digitization system for the
two readout lines. A detailed simulation quantified that the typical mean time to failure
(MTTF) needed to be ∼106 h/component.

Figure 2. (Left), CAD of the two calorimeter disks. (Top right), few unwrapped calorimeter crystals
with their own parallelepiped shape, and (bottom right), two SiPM arrays glued onto copper holder
on the left and one readout unit formed by two SiPM arrays and two FEE boards mounted on its
copper holder and on the right.

At the end of the R&D program [8–10], undoped CsI crystals were chosen as the
best compromise between cost, performance, and reliability, being sufficiently radiation
hard for our task and having a fast emission time and an acceptable light yield. Since
the main scintillation component has a wavelength of 310 nm to well match the SiPM
photon detection efficiency (PDE) as a function of wavelength, we selected Hamamatsu
UV extended SiPMs, where the front window epoxy was replaced by a silicon resin to
achieve >20% PDE down to 280 nm. To operate in a vacuum and minimize outgassing
contributions, the crystal SiPM coupling was performed without any optical grease. This
choice reduced the light collected by the SiPM, so we opted to build a very large area
(12 × 16 mm2) SiPM array. In Figure 2 (bottom right), a picture of two Mu2e SiPMs glued
to a copper holder is shown, each one consisting of the parallel of two series of three
6 × 6 mm2 monolithic Hamamatsu surface mount SiPMs, model S13360-6050PE, with
50 µm pixel size. This configuration reduced the array capacitance and quenching time
while simplifying the FEE design.

2.3. Electronics Scheme

The electronics is based on analogue FEE cards directly connected to the SiPM pins
and a digital readout part distributed on the crates surrounding the disk.
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The FEE shapes and amplifies the signal while locally regulating the supplied voltage.
The two SiPMs glued to a copper holder, assembled together with two FEE boards and a
copper Faraday cage, constitute a readout unit (ROU).

The digital boards are subdivided in a mezzanine (MB) for controlling the HV and
monitor the current and temperature of SiPMs and a readout and digitization board
(DIRAC) that performs the zero suppression and samples the signals with 5 ns binning.
Each digital board is able to handle 20 channels. Much effort was dedicated to design
and produce boards that work well in a magnetic field and in the radiation-harsh Mu2e
environment. A description of all the details of the electronics scheme, the radiation
hardness program, and the quality tests performed can be found elsewhere [11,12].

2.4. Breakdown of Mechanical Layout

Figure 3 shows a breakdown of the calorimeter structure.

Figure 3. (Left) breakout of calorimeter mechanical components; (top right), breakdown of front
panel plate embedding source tubing; and (bottom right), the mezzanine and DIRAC boards.

Each disk is filled with a matrix of 674 parallelepiped undoped CsI crystals (34× 34×
200 mm3) for an inner/outer diameter of 650 mm/1314 mm. The crystals are wrapped
in 150 µm thick Tyvek foils and separated from each other with 50 µm thick Tedlar foil
to make the optical cross talk negligible. The crystal matrix is supported externally by
an aluminium shaped outer ring, with an outer diameter of 1460 mm and a thickness of
146 mm to provide the required stiffness. The disk is milled to shape to form the lateral
steps where crystal rows are positioned and aligned. The outer ring also provides support
and the place where all other components are fastened. It hosts the custom DAQ crates in
its external surface and their cooling manifold.

In order to minimize the energy loss of particles arriving to the crystals, the inner
ring and the front plate, which are traversed by particles, are made in carbon fibre with
embedded light aluminium honeycomb structures, thus achieving the right stiffness while
avoiding vacuum virtual leaks. The inner ring occupies the inner bore surface, sustains
the crystal vertical load, and grants a reference for the positioning of the crystal matrix.
The front plate is the frontal protection cover of the crystal matrix and hosts 10 thin-wall
aluminium tubes, symmetrically arranged on each disk, to flow the calibration source fluid
(FC-770).

Finally, in the back of the crystals, the back plate constitutes the rear mechanical
enclosure of the calorimeter disk. The back plate is created from a 20 mm thick PEEK plate
milled to shape to host and support the 674 ROUs. PEEK has been chosen for its good
outgassing characteristics and to optimize the thermal isolation of the electronics. The
FEE plate embeds a network of 38 parallel vacuum brazed copper lines, where a cooling
liquid (3M NOVEC HFE 1700) will be circulated at −15 ◦C to cool down the SiPMs in



Instruments 2022, 6, 60 5 of 12

the ROUs. The latter ones will be fastened on the cooling lines to optimize the thermal
conductivity. The stainless steel manifolds, placed on the outer plate border, distribute the
cooling fluid to the copper lines. More details on the mechanical components can be found
elsewhere [13].

2.5. Calibration Systems

The crystal-by-crystal energy equalization is obtained by means of a calibration system,
formerly devised for the BaBar calorimeter [14], where a 6.13 MeV photon line is obtained
from a short-lived 16O transition. The decay chain comes from a FluorinertTM coolant liquid
(FC-770) that is activated by fast neutrons produced by a DT generator. The activated liquid
circulates in the aluminium tubes positioned in the front plate to uniformly illuminate
each crystal face. The source system is accompanied by a laser monitoring system that
provides a continuous monitoring of the sensor gains and of each channel timing offsets.
Each crystal is illuminated by the laser light coming from the laser head via primary and
secondary distribution systems, through an optical fibre whose needle is inserted in the
ROU structure. The laser offers also a simple method to monitor variations in the energy
and timing resolutions. Usage of cosmic ray and DIO events is foreseen for a continuous in
situ energy and timing calibration during operation.

3. Results
3.1. Calorimeter Qualification with Module-0

Before starting production, a large size prototype, dubbed Module-0, was assembled
to mimic the calorimeter disk and confirm technical choices, drive the readout electronics
development, and test its performance. The prototype, assembled in May 2017 with 51 crys-
tals and 102 SiPMs, was equipped with the first FEE version and tested with an electron
beam at BTF (Frascati) soon after its assembly. The digital readout was based on commercial
CAEN digitizers. A detailed description of the test beam can be found elsewhere [15].
The main results are summarized by an energy and timing resolution parametrized as the
quadrature of stochastic a/

√
(E/GeV), noise, b/(E/GeV), and constant, c, terms, as in

Table 1. The main conclusion for the energy was that the stochastic term was consistent
with a light yield of O(20 pe/MeV/SiPM), the noise term was attributed to an electronic
noise of O(400) keV/channel, and a coherent noise related to the used digitizers, while
the c term, the dominant one, was due to shower leakage effects, as demonstrated by
a Geant4 simulation. The runs at 0◦ had energy loss due to longitudinal leakage. The
runs at 50◦ exacerbated the b and c terms due to longer clusters and higher transversal
leakage. Overall, a resolution better than 5 (7.5)% was achieved at 100 MeV for runs at
normal (50◦) incidence. The timing resolution, determined by time difference between the
two SiPMs/crystals, showed a constant term of 91 (118) ps and a noise term of 6.8 (8.9)
ps/E/GeV at normal (at 50◦) incidence, granting a timing resolution better than 200 ps at
100 MeV. These results fully satisfied the calorimeter requirements and provided a green
light for the production of components. In the last five years, we have used Module-0
also to study the behaviour in a vacuum, at low temperature, and for carrying out vertical
slice tests of increasing complexity at a cosmic ray test stand. In Figure 4 (left), a picture
of Module-0 inside the vacuum vessel can be seen. In Figure 4 (right), the distribution of
the time difference between all pairs of crystals, with energy deposition consistent with
an MIP, is shown before and after the T0 calibration procedure. A clear gaussian peak is
observed, consistent with a mean time resolution of 300 ps for a 20 MeV energy deposition.
Time improvements depend on the fit procedure of the pulse shape and are presented
elsewhere [12].
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Figure 4. Operations with Module-0: (left), picture of Module-0 inside the vacuum vessel readout
with MB and DIRAC boards; (right), distribution of time differences between all crystal pairs, before
(blue) and after (red) T0’s calibration.

Table 1. Parametrization of energy and time resolution for Module-0 electron test beam. The numbers
in parentheses represent one sigma uncertainties.

Params σE
E (%) at 0◦ σE

E (%) at 50◦ σt (ps) at 0◦ σt (ps) at 50◦

a 0.6 0.6 - -
b 0.27 (0.03) 0.37 (0.04) 6.8 (0.1) 8.9 (0.2)
c 4.05 (0.27) 5.86 (0.39) 91 (4) 118 (7)

3.2. Production of Crystals, SiPMs and FEE

The production of basic components started in 2018. We successfully completed
procurement and quality testing of 4000 SiPMs in 2019, 1500 crystals in 2020, and 3300 FEE
boards in 2021. The electronics production was delayed by the pandemic and by the
need to make new electronics releases for improving its radiation hardness, as reported
elsewhere [12].

The crystals were produced by SICCAS (China) and St.Gobain (France), while the
SiPMs were produced by Hamamatsu (Japan). The quality of crystal and SiPM production
was excellent, as shown by the reference pictures in Figure 5 (left,center). The optical
parameters of the production crystals from both producers were acceptable [16], while
St.Gobain’s crystals evidenced some difficulties in matching the 100 µm precision of the
mechanical realization of the parts. In the end, 8% of the crystals were replaced by relying
only on SICCAS for a new production of the final batches. The SiPM performed as expected
with a very high quality [17,18] on gain, PDE, and dark current values and a rejection factor
smaller than 2%.

The FEE was produced by ARTEL (Italy) with a negligible rejection factor, albeit
all boards underwent a burn-in test at 65 ◦C in a climatic chamber in JINR (Dubna, Ru),
followed by a calibration phase for both HV, gain, and differential linearity parameters (see
Figure 5 (right)). At the moment of writing, we have reacquired 2500 FEE units from JINR
after burn-in and calibration.
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Figure 5. Crystals, SIPMs, and FEE production: (left), light yield of crystals (Npe/MeV) as obtained
with a large-area PMT fully covering the crystal readout face, the red (yellow) distribution is for
the SICCAS (St.Gobain) production crystals; (center), RMS of Idark (%) of each SiPM array; (right),
precision of HV settings for the FEE boards.

3.3. Preparation and Test of the Readout Units

The preparation and test of the readout units (ROUs) is advanced. Two Mu2e SiPMs
were glued to each copper holder, as shown in Figure 2 (bottom right), by relying on
the EP30AN MasterBond thermal glue with a good performance in vacuum. In total,
3000 production SiPMs were glued to 1500 SiPM holders with a precise glue distribution
machine developed at INFN Frascati (LNF). After this operation, we started assembling
the calibrated FEE. So far, we have assembled 70% of the entire production lot.

In the last year, we have also dedicated a lot of effort to design, realize, and put into
operation a semi-automated quality station to calibrate the ROUs. In a 10 min run, the gain,
PDE, and charge response in a (−4:+2) V region around the operational voltage, Vop, were
evaluated. Currently, we have performed a quality test for 600 ROUs, achieving a gain
reproducibility better than 2%, with a channel-by-channel gain spread at a level of 3–4%
along production. A much more detailed explanation of the station functionality and its
results can be found elsewhere [12,19].

3.4. Production and Assembly of the Calorimeter Mechanical Structure

In the last two years, all large mechanical parts were produced by Italian firms, as
shown in Figure 6. The first pieces realized were the two outer rings, produced by Cerasa
Mechanics (Assisi). They were milled by a single aluminium block providing the right
stiffness and excellent precision on the final step edges. The back plate was built in PEEK
by CINEL (Vigonza). Its picture, shown in Figure 6 (top right), was taken during the
leak test of the cooling lines with a helium sniffer. The measured leak rate was below
10−10 atm×cc/s. A test of temperature uniformity of the same lines was carried out in
INFN Pisa laboratories by flowing HFE at 50 ◦C and controlling with a thermal camera. The
parts with composed materials were built by CETMA (Brindisi). On Figure 6 (bottom-left),
a picture of the inner ring can be seen, soon after being completed. Once at LNF, a series
of stiffness tests were performed loading this structure vertically with more than 100 kg.
Deformations observed were below 400 µm as expected. In Figure 6 (bottom-right), the
front plate is shown. This plate was completed integrating the source aluminium tubing in
grooves on the internal aluminium honeycomb. The source tubing was realized by Caltech
and Fermilab.
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Figure 6. Calorimeter mechanical parts: (top left), outer ring; (top right), FEE plate; (bottom left),
inner ring; (bottom right), front plate with source tubing embedded in the aluminium honeycomb.

Before shipping all mechanical parts to Fermilab, a dry fit was carried out in a clean
room at LNF to check that all pieces were well fitting. In this occasion, we also assembled,
on the external outer ring surface, the ten crates produced by TecnoAlarm (Rome) and their
cooling manifolds (Figure 7 (left)). A careful vacuum leak test was performed on both the
crate manifolds and the elbow joints between the crates and manifolds. Only two small
leaks were detected in two of the lowest elbows and fixed locally by Tig welding. At the
end of this operation, a maximum leak rate of 10−10 atm × cc/s was achieved, satisfying
the experiment’s requirements. Other components, such as the feet, the disk support stands,
and other smaller mechanical parts, have been built by Italian firms and completed with
the support of the LNF mechanical shops.

In June 2022, we started the final assembly of the downstream disk in a ISO-7-class
clean room located at SIDET, Fermilab. The operation sequence started with mounting and
aligning the outer ring over its stand, and progressed with alignment of the inner ring. As
soon as this was completed and the survey indicated a reproducible and stable detector
assembly, we started stacking crystals.

The stacking proceeded from the bottom to top for increasing rows, following an opti-
mized crystal placement obtained by examining the whole crystal production parameters
and positioning: (i) the ones with higher (lower) light yield, faster (slower) signals, and
reduced (increased) radiation-induced currents in the innermost (outermost) rings where
more (less) radiation dose is expected and (ii) the remaining ones in the central regions.
While selecting the crystals/rows we also minimized the flatness of the row thickness.
Before stacking the crystals on the outer disk, a set of two-day-long outgassing runs were
performed in a dedicated vacuum vessel to reduce the single-crystal outgassing level to
below 10−7 Torr × l/s. Between each stacked row, an additional 50 µm Tedlar layer was
placed. To keep the crystal matrix solidly connected, each row was compressed using
screws pushing on plastic shims at both row ends. The accuracy of crystal stacking was
checked while operating using a high-precision bubble level and then confirmed offline
with a laser tracker. The crystal stacking proceeded steadily, having previously completed
the outgassing operation, so that in less than a month (see Figure 7 (right)), the downstream
disk had all of the crystal matrix inserted.
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Figure 7. Current status of calorimeter assembly: (left), a dry fit of the upstream disk mechanical
structure in the LNF clean room; (right), the downstream disk with all 674 crystals inserted at
Fermilab SIDET clean room.

4. Discussion

The Mu2e calorimeter demonstrated that its requirements are satisfied through the
tests carried out with Module-0 (see Section 3.1). However, it could face some difficulties in
maintaining the required resolutions, while operating in a vacuum, and in a radiation-harsh
environment. We solved these problems by combining a mix of technical choices to a high
level of engineering. The crystals, SiPMs, and FEE have proven to be radiation hard up to
the maximum level of TID and neutron fluence expected at the end of the experimental
lifetime [12]. The most relevant effect we will observe while running will be the rapid
increase in SiPM leakage current (Idark) under neutron irradiation, requiring us to cool
down the SiPMs to −10 ◦C to maintain operation. To control the correctness of our choices,
we carried out two dedicated measurements:

(1) Measurement of the Idark increase as a function of the neutron fluence. For each
SiPM production batch, we randomly chose five units for irradiation purposes. While
the TID test indicated no relevant increase in Idark, irradiation with neutrons showed
otherwise. Two neutron irradiation facilities, one at EPOS (HZDR, Dresden) and one at
Enea-FNG (Frascati), were used. The two measurements indicated, for the same irradiation
level, a O(1.5) difference in the increase in Idark. While data are still being analysed, we
conservatively used the case with the largest Idark increase, looking at several SiPMs
exposed at different fluences at FNG. A first summary result is reported in Figure 8 (left),
where the average Idark is shown as a function of temperature at different overvoltages
(∆V = V−Vbrk) for two different fluences. Please note that the supplied bias is three times
larger than the one of a monolithic Hamamatsu SiPMs due to the series configuration.
These data confirm that decreasing the temperature by 10 ◦C corresponds to a decrease
in Idark by a factor of two, and that this current is linearly proportional to the fluence.
The bottom plot guides the running condition in the experiment. We expect to operate
the SiPMs at −10 ◦C to keep the leakage current inside our maximum operation limit of
2 mA/SiPM, with a minor bias adjustment.

(2) Measurement of the time resolution achieved with irradiated sensors. The second
measurement tested the effect of neutron irradiated sensors on the resolution. For our
benchmark, we used sensors exposed to a fluence of 5× 1011 n/cm2 and kept at 0 °C,
that are equivalent to the sensors exposed to the fluence expected at experiment lifetime
1.2× 1012 n/cm2, if kept at −10 °C. While for the energy, we estimated that 2 mA current
corresponds to a noise level of O(1.5 MeV) to be added independently to each fired channel,
it was more difficult to evaluate the effect on time resolution, since a fit to the waveform
signals was needed. A systematic test was carried out with a 50 picosecond Hamamatsu
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laser illuminating crystals readout with one irradiated and one non-irradiated SiPM. The
resolution obtained as a function of the reconstructed charge is shown in Figure 8 (right). To
provide an indication of the energy scale, 2500 pC corresponded to 1 MiP energy deposition,
i.e., 20 MeV. The result of 700 ps timing resolution achieved with one SiPM at a fluence of
5 × 1011 n1MeVeq/cm2, and the nice trend with energy, demonstrated that even with only
one irradiated sensor, we can reach a resolution better than 500 ps for a 100 MeV energy
deposition.

Figure 8. (Left) Idark dependence on SiPM temperature for different levels of neutron fluence (top,
1011, bottom 5× 1011 n1MeVeq/cm2) and overvoltages. (Right), time resolution dependence on charge
for SiPM irradiated at different neutron fluences and running at 0 ◦C.

5. Conclusions

In this paper, we summarized the construction status of the Mu2e calorimeter that will
complement the tracking and CRV systems in identifying conversion electrons.

The chosen undoped CsI crystals proved to have fast signals and a large light yield
when readout with our custom design UV-extended SiPMs. The production of 1500 crystals
and 4000 Mu2e SiPM was successfully completed before the pandemic started, satisfying
all required production parameters. In the last two years, we have also completed the
development and production of 3300 radiation-hard FEE boards as well as the production
of all mechanical components. A lot of effort has been dedicated to the assembly and test
of the ROUs, which is more than halfway completed. All the mechanical components have
been successfully first assembled in a dry fit at LNF and then at Fermilab for the crystal
stacking operation. The crystal stacking of the first disk has been completed at the moment
of writing. We are now waiting the shipment from INFN to Fermilab of the front plate
in composite material, where the source aluminium tubes have also been integrated. The
front plate will conclude the assembly of the mechanical parts.

Meanwhile, the production of the digital electronics is under way. Due to the pandemic,
there are a lot of delays to the FPGA delivery time, so we will start cabling the detector
from the FEE to the mezzanine boards in the fall of this year and postpone the integration
of the digital readout boards (DIRAC) to the spring of 2023. In parallel, we plan to start
the construction of the second disk this fall. Finally, we foresee the performance of an
integrated test of calorimeter readout in summer 2023, before preparing for installation on
the detector rails. In parallel, we will complete the infrastructure for the calibration systems
and for the cooling station, needed for operation in Mu2e, looking forward to a successful
experiment in the following years.
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