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Abstract: We describe a framework to assemble permanent-magnet cubes in 3D-printed frames to
construct dipole, quadrupole, and solenoid magnets, whose field, in the absence of iron, can be
calculated analytically in three spatial dimensions. Rotating closely spaced dipoles and quadrupoles
in opposite directions allows us to adjust the integrated strength of a multipole. The contributions
of unwanted harmonics were calculated and found to be moderate. We then combined multiple
magnets to construct beam-line modules: a chicane, a triplet cell, and a solenoid focusing system.

Keywords: permanent magnet; magnet prototyping; dipole magnet; quadrupole magnet; solenoid
magnet

1. Introduction

Various types of magnets play important roles in many physics laboratories. Unfortu-
nately, they are often expensive and require long lead times to order. Here we propose a
complementary method: we constructed multipole magnets from standard-size permanent-
magnet cubes, which are reasonably inexpensive and easy to obtain. Moreover, we suggest
to hold them in 3D-printed frames or CNC-machined aluminum frames that can be pro-
duced in most small workshops. By constructing the frames in two halves, they can be
wrapped-around or strapped-on to circular pipes and easily fixed with non-magnetic
screws, which makes retrofitting them to existing beam lines very simple. Figure 1 illus-
trates the frames for a dipole and a quadrupole constructed from eight cubes, each.

The orientation of the cubes in the frames follows the Halbach method [1], adapted to
square [2] instead of trapezoidal magnet segments. In an M-magnet dipole, subsequent
magnets along the azimuth are rotated by 2× 360◦/M. The left-hand image in Figure 1 il-
lustrates this for a dipole made of eight cubes. In the frame for an eight-magnet quadrupole,
shown on the right-hand image in Figure 1, subsequent magnets rotate by 3× 360◦/8 as
illustrated by the little notch in each of the eight holes for the cubes.

In order to calculate the magnetic fields from the cubes in three dimensions, we used
the closed-form expressions from [3], which allowed us to prepare MATLAB [4] scripts
to determine the relevant field quantities and the multipole contents of the magnets in
parameterized form. This proves very convenient to adapt the design to different sized
cubes, different geometries, and other multipolarities.

The organization of this report is as follows: after we discuss the design of the frames
with the OpenSCAD [5] software, we characterize eight-magnet dipoles, quadrupoles,
and solenoids made of 10 mm cubes. Then, we combine two dipoles or quadrupoles to
produce dipoles and quadrupoles whose field strength can be varied, where we follow
an approach that is complementary to those discussed in [1,6,7]. In order to illustrate the
use of the variable multipoles, we combined several such magnets to beam-line modules,
which was inspired by the early permanent-magnet based anti-proton recycler ring at
Fermilab [8] and, more recently, by CBETA [9].
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Figure 1. The frames for dipoles (left) and quadrupoles (right).

2. Frames

We used OpenSCAD to prepare solid models of the frames to hold the permanent-
magnet cubes, because this CAD software is easily scriptable, such that parameters for
different-sized magnets of multipoles only require changing a few parameters. The frame
can then be exported in a format that is compatible with 3D printers or CNC milling
machines, which allows for short prototyping cycles.

The frame consists of a cylinder with an outer radius of ro = 28 mm, a 1 mm notch
and a groove on its outer periphery to tell up from down, and 5 mm square holes to later
attach handling rods. Furthermore, there are rectangular solids to later hold screws—the
horizontal circular holes shown in Figure 1. Moreover, a circular hole with a radius of
ri = 10 mm was removed from the center. The holes for the 10 mm cubes were then
“stamped out” from this base frame. Each of the holes is born at the center, receives the
little notch, and is rotated by an angle mφ, where m is the multipolarity of the magnets
and φ is the azimuthal position of the cube in the frame. Then, it is moved outwards by
o = 18 mm along the x-axis before being rotated once again by φ, which puts the hole in
place. We point out that the notches on the holes are only for orientation; in the magnets, we
used that direction to indicate the “feather” (and not the “tip”) of the arrows that indicate
the easy axis of the magnets. Typically, the square holes for the cubes are 0.1 mm larger
than the magnet cubes themselves, which makes inserting the cubes easier. Inside the holes,
they are then easily fixated with super-glue.

Note that these frames have semi-circular holes with a diameter of 2ri = 20 mm in
their center. Again, in order to account for finite tolerances of the frame and the pipe,
normally the diameter needs to be increased a little, say, by 0.1 mm. This makes it easy
to wrap the frames around a circular pipe, align the holes for the screws, and insert the
screws and tighten them. This fixes the frame in place. Moving it along the pipe or rotating
it only involves loosening the screws, moving the frame with the magnets, and tightening
the screws again.

Let us now investigate the properties of the magnetic field generated by cubes in such
a frame—first out are dipoles.

3. Dipole

In [3], we calculated the field generated by a rectangular current sheet, which proved
useful to describe permanent-magnet cubes that can be modeled by four rectangular sheets.
In the top-left image in Figure 2, we see that each of the eight magnets consists of four
blue sheets with the green line indicating the direction of the current, such that we can
visualize the cube as a square solenoid that generates a magnetic field in its inside that
is represented by the yellow arrow, which coincides with the direction of the easy axis
of the magnet. In all our simulations, we assumed the remanent field of all cubes to be
Br = 1.47 T. Inside the ring-shaped assembly with the eight cubes, we see red arrows
indicating the direction of the field in the mid-plane. The vertical field By along the dotted
black line is shown on the top-right plot, which shows a magnitude of about 0.24 T with
a curved dependence in the x-direction, indicating some higher multipole components.
The plot on the bottom-right shows By along a line in the z-direction. We observed that
the fringe fields roll off slowly and extend far beyond the ±5 mm physical size of the
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magnets. Finally, we determined the multipoles of the assembly by integrating the field in
the range |z| < 40 mm along lines perpendicular to the cyan circle, which had a radius of
5 mm. We then Fourier-transformed the component of the field that is tangential to this
circle and showed it on the upper panel on the bottom-left in Figure 2. This algorithm,
which is explained in [3], gives us the magnitude and angle of the multipole coefficients
of the assembly shown on the middle panel. We see that the integrated field strength was
5.72 Tmm, and the lower panel indicates that the relative magnitude of the other multipoles
was around 6× 10−3 with the decapole contribution (m = 5) being the largest.

Figure 2. Top left: the eight cubes for a dipole are shown as hollow blue cubes and the magnetic
field by red arrows. Top right: the vertical field By along the black dotted line shown on the top-left
image. Bottom right: By along the axis perpendicular through the center of the ring. Bottom left:
the tangential field on the cyan circle (upper panel); the dominant field harmonic, here for a dipole
(middle); and the relative strength for the unwanted multipoles (bottom).

We conclude that the eight-cube dipole magnet reached a peak field of 0.24 T and
had an integrated field strength of 5.72 Tmm, while the relative magnitude of unwanted
multipoles on a circle with a 5 mm radius was below 6× 10−3.

4. Quadrupole

The field of the quadrupole assembly corresponding to the frame from the right in
Figure 1 is shown in Figure 3. The top-left image shows the eight cubes with the red arrows
indicating the field in the mid-plane, the black dotted line, and the cyan circle on which
the multipoles were calculated. The top-right plot shows By along the black dotted line
and indicates a linearly rising field along the x-axis that is characteristic for a quadrupole.
From the slope, we determined a gradient in the mid-plane of 32.7 T/m. The gradient
along the z-axis in the middle of the assembly is visible on the bottom-right plot. We
observed that even the fringe fields of the quadrupole extended beyond its physical size
of ±5 mm but decayed faster than those of a dipole. The image with the three panels on
the bottom-left shows the tangential field component around the azimuth, which clearly
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displays two oscillations, indicating a quadrupolar field. This was also verified on the
middle panel, which showed an integrated field 3.13 Tmm, which, when dividing by the
5 mm radius of the circle, resulted in an integrated gradient of 0.63 T. The lower panel
shows that all other multipoles contributed less than 4× 10−3 in magnitude.

Figure 3. Top left: the eight cubes for a quadrupole are shown as hollow blue cubes and the magnetic
field by red arrows. Top right: the vertical field By along the black dotted line shown on the top-left
image. Bottom right: the gradient dBy/dx along the axis perpendicular through the center of the ring.
Bottom left: the tangential field on the cyan circle (upper panel), the dominant field harmonic, here
for a quadrupole (middle); and the relative strength for the unwanted multipoles (bottom).

5. Solenoids

It turns out that the frame for the quadrupoles can also be used to construct both axial
and radial solenoids; for an axial solenoid, we only have to insert all cubes with their easy
axis pointing along the z-axis. The top-left image in Figure 4 illustrates this. Note also the
black dotted line and the cyan circle in the midplane as well as the solid magenta line to
illustrate the z-axis. The top-right plot shows the z-component Bz of the magnetic field in
the midplane along the black dotted line visible on the top-left image. We see that it has a
parabolic shape—the magnitude of the field closer to the permanent magnets is higher. We
see that Bz points opposite the direction of the easy axis of the cubes and reached about
−0.16 T in the center of the assembly. On the lower-right plot, we also observed that Bz,
after being negative in the center of the assembly, became positive with a magnitude of
0.03 T around z = ±20 mm. On the three-panel image on the bottom-left, we explored
the impact of approximating the solenoid by eight cubes. The upper panel shows Bz in
the midplane of the assembly around the cyan circle, which had a radius of 5 mm. We
observed eight oscillations as we moved around the azimuth φ, whose amplitude, however,
was rather small—less than 10−4 times the magnitude of the average Bz, which was 0.185 T
at r = 5 mm. We conclude that, even though the field quality is limited, constructing
solenoids is feasible within our framework.
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Figure 4. Top left: the eight cubes for an axial solenoid are shown as hollow blue cubes and the
magnetic field by red arrows. Top right: the axial field Bz along the black dotted line shown on the
top-left image. Bottom right: Bz along the axis perpendicular through the center of the ring. Bottom
left: the axial field Bz on the cyan circle (upper panel), the dominant field harmonic, here constant
(middle); and the relative strength for the unwanted harmonics.

Likewise we can construct a radial solenoid by rotating the cubes such that their easy
axis either points inwards or outwards, and we can construct one solenoid from two rings,
separated by 20 mm, as shown in Figure 5. The easy axes of the left eight-cube rings point
inward, and those of the right ring point outward. The magnetic field is illustrated by the
red arrows and points from the right towards the left assembly along the negative z-axis in
the intermediate region. The plot on the right-hand side in Figure 5 shows Bz along the
z-axis, where z = 0 corresponds halfway between the two assemblies whose position is
indicated by the blue dashed boxes. We see that the maximum value exceeded 0.2 T in the
center and and reached about 0.12 T just outside the two assemblies. The homogeneity of
the field was comparable to that of the axial solenoid close to the cubes and was better in
the intermediate region.

Figure 5. Left: a radial solenoid made of two rings and the field illustrated by the red arrows. Right:
the axial field Bz along a line through the center of the two rings.
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6. Adjustable Dipole

Inspired by the observation that the fields of two very short magnets with opposite
polarity almost cancel and the fact that the fringe fields of the dipole from Section 3 extend
far beyond the physical length of the magnet, we placed two dipole rings very close to each
other (2 mm between the rings) and then rotated one with respect to the other. The images
on the left-hand side in the top and middle row of Figure 6 illustrate the geometry of these
assemblies. On the top left, the two eight-cube rings were aligned, and the one below the
upper ring was rotated by ψ = 30◦ counter-clockwise, while the lower ring was rotated by
30◦ clockwise.

Figure 6. Top left: two rings for a variable dipole aligned on top of each other. Top right: the
tangential field on the cyan circle (upper), the dominant field harmonic (middle), and the relative
strength of the unwanted harmonics (bottom). Middle row: the corresponding images for rings
rotated with ψ = 30◦. The integrated strength was reduced, but the unwanted harmonics were
similar to the plot above. Bottom left: the fields along the black dotted line for different rotation
angles ψ (upper) and By along a line through the center of the two rings. Bottom right: the integrated
field plotted versus ψ (upper) and cos ψ (lower).

The three-panel images towards the right of the respective geometries illustrate the
integrated multipole content of the assemblies. In the upper panel on the top-right im-
age, we see that the tangential field component of the field integral showed a sinusoidal
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pattern that was responsible for the dominant dipole component visible on the middle
panel. The integrated strength of 11.4 Tmm of this assembly was twice that of the single
magnet from Figure 2, because the fields superimpose linearly in ideal permanent-magnet
assemblies. Furthermore, the lower panel shows that the dominant higher multipole was
the decapole (m = 5) component whose contribution was 6× 10−3 smaller than the main
component. The right-hand image in the middle row shows the integrated field of the
assembly with the two rotated magnets. The tangential field shown on the upper panel
was also sinusoidal, albeit with a reduced amplitude of 9.88 Tmm, which is also given in
the legend of the middle panel with the Fourier-harmonics. Even in the rotated geometry,
the dipole contribution was dominant, and the relative contributions of the unwanted
harmonics, shown on the lower panel, were below 6× 10−3.

That the dominant effect of rotating two eight-cube magnets with opposite angles ψ
only changed the integrated field from 11.4 to 9.88 Tmm but did not adversely affect the
unwanted multipoles encouraged us to explore the dependence of the field integral for
different rotation angles ψ. The image on the left-hand side in the bottom row shows the
vertical field By along the z-axis on the lower panel for ψ = 0◦, 30◦, 60◦, and 90◦. We see
that rotating the two eight-cube rings reduces the peak field in the center of the magnet
from 0.37 T down to zero. The upper panel shows By on the x-axis along the black dotted
line, and we see that the field was rather constant—only the amplitude was different for
different values of ψ. The lower panel shows the fringe fields of By along z for the four
values of ψ.

Finally, we systematically varied ψ in steps of 10◦ and showed the integrated field
component (or the amplitude of the Fourier harmonic for m = 1) as a function of ψ on
the upper panel in the image on the right-hand side in the bottom row of Figure 6. We
observed that the integrated field decrease in a smooth curve from 11.4 Tmm down to zero
at ψ = 90◦, where the easy axes of cubes on top of each other have opposite polarities
and cancel one another. On the lower panel, we show the same data but plot versus cos ψ
instead. We found that now the integrated field strength shows a linear dependence on
cos ψ, which indicates that the integrated field is given by twice the integrated field of one
eight-cube ring times cos ψ. However, this is just the projection of the maximum field of
the rings onto the vertical axis. The field components along the vertical axis add, but along
the horizontal axis they cancel. This will make tuning and setting up of such double-dipole
assemblies rather straightforward.

7. Adjustable Quadrupole

It is certainly no surprise that the same idea also works with quadrupoles. On the
top-left image is Figure 7, in which we show the geometry of two aligned (ψ = 0) eight-
cube quadrupoles on top of each other with a 2 mm space between the rings. On the image
on the middle row below, we show the same assembly, but the upper ring is rotated by
ψ = 20◦ and the lower ring by −20◦. The images towards the right of the geometries show
the tangential field on the upper panel, the Fourier harmonics on the middle panel, and the
relative magnitude of the unwanted harmonics on the bottom panel. We observed that the
dominant harmonic was the quadrupolar m = 2 with integrated strength, evaluated at a
radius of 5 mm, going from 6.26 Tmm for ψ = 0◦ to 4.79 Tmm for ψ = 20◦. The harmonics
in all cases were smaller by a few times 10−3.

Next, we systematically changed ψ in steps of 5◦ from 0◦ to 45◦ and showed the gradient
on the mid-plane (indicate by the black dotted line) on the lower-left image in Figure 7.
We see that the gradient changed from 45.8 T/m for ψ = 0◦ to zero at ψ = 45◦. On the
right-hand image on the bottom row, we plotted the integrated gradient

∫
(dBy/dx)dz

as a function of ψ in the upper panel. We see that it moves smoothly from 6.26 Tmm/
5 mm= 1.25 T for ψ = 0◦ to zero at ψ = 45◦. On the bottom panel, we plotted the same data
versus cos 2ψ and found a linear dependence of the integrated gradient on cos 2ψ, which
will make tuning and setting up double-quadrupole assemblies straightforward.



Instruments 2021, 5, 36 8 of 13

Figure 7. Top left: two rings for a variable quadrupole aligned on top of each other. Top right: the
tangential field on the cyan circle (upper), the dominant field harmonic (middle), and the relative
strength of the unwanted harmonics (bottom). Middle row: the corresponding images for rings
rotated with ψ = 20◦. The amplitude was reduced, but the unwanted harmonics were similar to
the plot above. Bottom left: the gradient along the black dotted line for different rotation angles ψ.
Bottom right: the integrated gradient as a function of the rotation angle ψ (upper) and as a function
of cos 2ψ.

8. Some Applications

Here we discuss three examples where the strap-on magnets might prove useful: a
small chicane, a triplet cell, and a solenoid lens. Let us start with the chicane.

8.1. Chicane

Four-dipole chicanes are frequently used in accelerators to provide an energy-dependent
path length for a beam, which helps to compress beams longitudinally [2,10]. The figure of
merit for a bunch compressor is the R56 ≈ −2Lφ2, where L is the distance between the outer
and the inner two dipoles, and φ is the deflection angle of one dipole. This angle is given by
the ratio of the integrated field

∫
Bydz of the dipole and the momentum of the beam, often

expressed through its rigidity Bρ. For a beam with momentum 300 MeV/c, the rigidity is
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about 1 Tm, such that the variable two-magnet dipole from Section 6 with an integrated field
of 11.4 Tmm deflects a 300 MeV beam by 11.4 mrad. With L = 0.4 m between the dipoles,
we therefore deflected the beam by about 5 mm and stayed within the region shown on
the bottom left in Figure 6. Furthermore, we found R56 = −0.10 mm. Since we can adjust
the magnetic field by rotating the two adjacent dipoles, we can adjust the R56 between the
maximum value and zero.

Figure 8 illustrates such a chicane with four variable dipoles wrapped around the
grey beam pipe. One of the magnets was colored light blue and had a handle attached
sticking out to the top right, while the other magnet was colored yellow and had a handle
sticking out towards the top left. The handles were attached to the 5 mm square holes on
the periphery of the frames, which is also visible on Figure 1. Moreover, careful inspection
shows that the two middle assemblies have opposite polarity (the central ones have a
notch sticking out at the top, while the outer ones have a groove), such that they deflect a
beam in opposite directions. Connecting all yellow handles with a rod allows to change
the rotation angle of all yellow magnets by the same amount, while a rod connecting the
light blue handles rotates all light blue magnets by the same amount, which permits to
change the excitation of all dipoles synchronously. Small variations in the excitation of
different magnets can be compensated by placing small plates between the handles and
the connecting rod. Note that for the illustration in Figure 8 the distance L was reduced to
0.2 m.

Figure 8. Sketch of the four-dipole chicane made of four double-ring variable dipole magnets
strapped on a cylindrical pipe.

8.2. Triplet Cell

In beam lines where long stretches of free space between magnets as well as round
beams are required, often triplets are used. They are combinations of three closely spaced
quadrupoles where the first and third quadrupole are excited equally, and the center
quadrupole has opposite polarity and twice the excitation. Figure 9 shows the magnet
lattice with the three thin-lens quadrupoles and the horizontal beta function βx in the upper
panel and the vertical beta function βy in the lower panel. The black lines show the beta
functions for the thin lens model with a betatron phase advance per cell of 60◦ in both
planes. Note that the magnets are only located over a distance of 0.6 m such that there is
almost 4 m free space available between magnets of adjacent cells.

Our quadrupole rings are particularly attractive to realize such triplets; we used a
single ring for the two outer quadrupoles and two rings, rotated by 90◦, for the double-
strength center quadrupole with opposite polarity. The lower image in Figure 10 shows
the two outer rings located near z = ±300 mm and the inner double-ring near z = 0 mm.
The magenta line denotes the axis on which beam travels. We point out that adjusting
the relative rotation angle ψ between the two center quadrupoles gives us some tunability.
The upper image in Figure 10 shows the gradient along the beam axis. Note the opposite
polarity of the outer and inner quadrupoles. Moreover, the black line shows the field for
ψ = 0◦ and the red line for ψ = 20◦.
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Figure 9. The horizontal (top) and vertical (bottom) beta functions of a cell made of thin-lens
quadrupoles (black lines) with 60◦ phase advance in both planes. The red lines are the corresponding
beta functions where the fields of quadrupole rings from Figure 10 were used, and the central
double-ring quadrupole was rotated by ψ = 7◦.

Figure 10. Bottom: four quadrupole rings assembled to form a triplet. The strength of the double-
ring is adjustable as described in Section 7. Top: the gradient along the beam line for rotation angles
of the central quadrupoles of ψ = 0◦ (black) and ψ = 20◦ (red).

We then empirically adjusted ψ; calculated the gradient along the beam axis; auto-
matically wrote a beam-line description, consisting of many 1 mm long quadrupoles; and
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calculated the beta function with software from [2]. With ψ = 7◦, we found that the phase
advances were close to the 60◦ for the thin-lens lattice. The red lines in Figure 9 showed βx
and βy for the gradients produced by our quadrupole rings, which agreed very well with
those of the thin-lens model, shown in black.

8.3. Solenoid Focusing

The radial solenoid from Section 5, whose geometry and field are shown in Figure 5,
is suitable to focus round low-energy beams. In the upper panel of Figure 11, we show the
beam envelope of a 5 MeV electron beam with a normalized emittance of n = 10−6 m rad
passing through two such radial solenoids spaced 1.75 m apart. On the lower panel, we
recognize Bz from the right-hand image in Figure 5—once near z = 0 and once near
z = 1.75 m. The envelope was calculated from Bz by numerically integrating the paraxial-
ray equation [11]. The initial beam was parallel and had a radius of 1 mm but then
developed a focus near z = 0.87 m, which is consistent with the focal length f calculated
from 1/ f =

∫
B2

z dz/(2Bρ)2 ≈ 0.87 m, where we had
∫

B2
z dz = 1.3 × 10−3 T2m and

Bρ = 0.0169 Tm for the 5 MeV beam.

Figure 11. The longitudinal field Bz created by two radial solenoids located at z = 0 and z = 1.75 m
(bottom) and the beam envelope of a 5 MeV electron beam with a parallel beam with radius 1 mm
entering from the left (top). We see that the first solenoid focused the beam to a waist near z = 0.87 m,
and the second one makes the beam parallel again.

Making the solenoid stronger is a simple matter of repeating multiple copies of the
radial solenoids, as shown in Figure 12, where six copies of the solenoid from Figure 5
follow with equal distance between consecutive rings. Note that the polarity alternates
from one ring to the next. The upper panel shows the beam axis in magenta together
with the twelve radial solenoids with alternating polarity, whereas the lower panel shows
the longitudinal component Bz on the beam axis. Note that the rings are placed every
30 mm, and the amplitude of Bz reaches ±0.2 T. The integrated focusing strength

∫
B2

z dz
was 8.8× 10−3 T2m for this configuration. This configuration would work for a 13 MeV
electron beam (Bρ ≈ 0.044 Tm) where it leads to a comparable focal length close to 0.9 m.



Instruments 2021, 5, 36 12 of 13

Figure 12. Assembling the six two-ring radial solenoids with alternating polarity, shown in the upper
panel, created the longitudinal field Bz shown in the lower panel. It has a larger focusing strength
than the two-ring solenoid used in Figure 11 and can be used for higher-energy beams.

9. Scaling

We point out that changing the value of the remanent magnetic field Br will just scale
the field values reported in the remainder of this report accordingly.

Moreover, changing the linear dimensions, the size of cubes w, their radial position o,
and the size of the frame, will keep all quantities, whose dimension is Tesla, unchanged. For
example, the field in a dipole made of 5 mm cubes equals that of a dipole made of 10 mm
cubes, but its fringe field does not extend as far as that of the bigger dipole. Therefore the
integrated field of the smaller magnet is a factor of two smaller. Likewise, the integrated
gradient of a quadrupole made of 5 mm cubes is the same as that made of 10 mm cubes.
In the smaller magnet, the gradient is doubled, but the total length is halved.

10. Conclusions

Based on the analytic results for the magnetic fields from permanent magnets from [3],
we explored the use of permanent-magnet cubes to create dipoles, quadrupoles, and
solenoids. All examples were based on the frames for 10 mm cubes, shown in Figure 1,
but are easily scalable to use cubes of a different size, to include more cubes or to produce
other multipoles. We found that the magnets have reasonably good field qualities; the
amplitudes of the harmonics at a radius of 5 mm in all cases were less than a fraction of a
percent and often better.

An attractive feature is the possibility to retrofit these magnets to existing beam lines
without having to open the vacuum system; the two magnet halves are simply strapped-on
to the beam pipe. A second attractive feature is the possibility to combine two closely
spaced rings to obtain dipoles and quadrupoles whose strength is continuously adjustable,
while their field quality is comparable to that of a single ring.

Finally, we found these magnet rings suitable to construct beam-line modules for
chicanes, a triplet cell, and solenoids focusing a low-energy beam.
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