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Abstract: Over the years, the generation and acceleration of ultra-short, high quality electron beams
has attracted more and more interest in accelerator science. Electron bunches with these properties
are necessary to operate and test novel diagnostics and advanced high-gradient accelerating schemes,
such as plasma accelerators and dielectric laser accelerators. Furthermore, several medical and
industrial applications require high-brightness electron beams. The dedicated R&D facility ARES at
DESY (Deutsches Elektronen-Synchrotron) will provide such probe beams in the upcoming years.
After the setup of the normal-conducting, radio-frequency (RF) photoinjector and linear accelerating
structures, ARES successfully started the beam commissioning of the RF gun. This paper gives an
overview of the ARES photoinjector setup and summarizes the results of the gun commissioning
process. The quality of the first electron beams is characterized in terms of charge, momentum,
momentum spread and beam size. Additionally, the dependencies of the beam parameters on RF
settings are described. All measurement results of the characterized beams fulfill the requirements
for operating the ARES linac with this RF photoinjector.

Keywords: ARES; S-band photoinjector; beam commissioning; SINBAD; DESY

1. Introduction

SINBAD (Short INnovative Bunches and Accelerators at DESY) [1] is an accelerator
R&D platform in the former DORIS accelerator tunnel at DESY, Hamburg. Its goals are
to demonstrate the generation and acceleration of ultrashort electron bunches, and to
test advanced acceleration techniques such as laser driven plasma wake-field accelera-
tion (LWFA), dielectric laser acceleration (DLA) and THz-driven acceleration, in multiple
independent experiments.

ARES (Accelerator Research Experiment at SINBAD) [2,3] at SINBAD represents one
of these experiments. The linear RF accelerator with a target energy of 100–155 MeV is
currently in the construction and commissioning phase. The facility will provide low-
charge, remarkably short electron probe bunches with excellent arrival-time stability [4].
The design parameters of the electron beam are summarized in Table 1.

The SINBAD-ARES setup hosts a normal conducting RF photoinjector generating
a low charge electron beam, which is afterwards accelerated by an S-band linac section.
The linac, together with a magnetic chicane including a slit collimator, will allow the
generation of ultra-short bunches in the fs to the sub-fs regime based on the techniques
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of velocity bunching and magnetic bunch compression [5]. The high brightness beam
will then serve as a test bench for novel diagnostic devices such as the PolariX TDS,
an advanced modular X-band transverse deflecting structure (TDS) system having the
new feature of providing variable polarization of the deflecting force [6–8]. Furthermore,
the ARES accelerator has the potential to provide a test beam for next-generation compact
acceleration schemes in the future [9–11]. ARES will also contribute as a test facility
for machine learning for autonomous accelerators, a project of the Helmholtz Artificial
Intelligence Cooperation Unit (Helmholtz AI) [12].

Table 1. Final electron beam parameters planned for ARES.

Repetition Rate [Hz] 1–50
Bunch Charge [pC] 0.5–30
Beam Energy [MeV] 54–155
Norm. Emittance (rms) [µm rad] 0.1–1
Bunch Length (rms) [fs] 0.2–10
Arrival time jitter (rms) [fs] <10

While SINBAD-ARES is a DESY project, access will be possible to external researchers
via the ARIES (Accelerator Research and Innovation for European Science and Society)
transnational access program free of charge [13]. This EU-funded Integrating Activity
project aims to develop European particle accelerator infrastructures and includes the task
of opening research facilities to external users.

It is noteworthy that the ARES linac shares several diagnostic components, the control
architecture and beam physics challenges of ultra-short, high density electron beams,
with AXSIS (Attosecond X-ray Science, Imaging and Spectroscopy), an ERC (European
Research Council) Synergy Grant project at DESY [14]. The AXSIS construction is nearing
completion in a neighboring space in the same SINBAD facility where ARES is located.
Part of the work reported here will be therefore used for training beam instrumentation
and procedures that will also be relied on in the upcoming AXSIS beam commissioning,
thereby minimizing the time required for development.

Figure 1 illustrates the planned layout of the ARES linac at SINBAD.

Figure 1. Future layout of the ARES linac at SINBAD.

The setup of the SINBAD-ARES facility is proceeding in stages. In a first step, the RF
photoinjector, including a diagnostic line, was completely installed in the ARES tunnel
area. The photocathode drive laser system was prepared as well. After RF conditioning of
the gun cavity, a first electron beam was generated and detected at the end of October 2019.
This important milestone in the ARES project marked the beginning of the RF photoinjector
commissioning and the first electron beam’s characterization.

This publication gives a detailed overview of the accelerator setup in the ARES gun
area followed by the results of the RF gun conditioning (Sections 2 and 3). Afterwards,
the systematic characterization of the electron beam is presented in Section 4. The following
section introduces a beam-based alignment tool for the gun solenoid magnet. Finally,
the dark current is described in Section 6.
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2. Overview of the ARES Photoinjector

Figure 2 shows the setup of the ARES gun area in the SINBAD tunnel in January 2020,
including infrastructure and hardware [4].

Figure 2. Layout of the ARES photoinjector. (a) Setup of the ARES photoinjector in the SINBAD
tunnel, including the RF gun with RF waveguides, magnets and a diagnostic line. (b) Schematic
overview of the ARES gun section with the gun, magnets and diagnostic tools.

The 1.5 cell, normal-conducting, S-band RF cavity made of copper represents the
central part of the setup. Commissioning has been started with a 1.5 cell, spare REGAE
RF cavity [15]. The cavity was tuned at DESY, CO2 cleaned and afterwards, installed at
the ARES beamline. This RF gun will be replaced at a later date with a modified version
featuring a longer antenna connecting the RF coupler to allow for a second gun solenoid,
bucking coil and improved water cooling system.

The RF station comprises a Toshiba E37326A klystron and a Scandinova K1 modulator.
A main RF oscillator (MO) provides the operation frequency of 2.998 GHz. This MO
signal is distributed to various systems, such as the low-level RF (LLRF) and the laser-
synchronization system. The LLRF system controls the amplitude and phase of the cavity
RF signal, and the laser-synchronization system sets the arrival time of the laser-beam
on the photocathode. Laser to RF synchronization will ensure timing synchronization
of the RF reference and laser pulse. With direct synchronization, long-term stability
(24/7) of 18 fs was measured in the frequency range from 10 to 185 kHz, which can be
improved with a synchronization scheme based on a Mach–Zehnder modulator (MZM) [16].
The synchronization at femtosecond level allows one to fully exploit the potential of
ultra-short electron bunches while probing the novel acceleration techniques. The RF is
transferred from the klystron to the cavity via a waveguide system that is separated from
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the cavity itself by a double-coated vacuum window. The peak input power in the cavity is
6 MW, which corresponds to an accelerating gradient of 117 MV/m.

The electron beam is generated at the photocathode. We intend to implement metallic
and semiconductor cathodes (Cs2Te) in the gun, depending on the desired bunch charge
and bunch length. The photocathode transfer system allows the insertion of the cathode
plug from a cathode box in the back plane of the gun cavity without breaking the vacuum.
Electrons are produced via the photoelectric effect [17]; therefore, the photocathode is
illuminated by the drive laser. At ARES, the laser laboratory is located outside of the
tunnel. The laser is guided through a beampipe under vacuum conditions to the cathode.
The chosen cathode materials, molybdenum Mo for the first beam and cesium-telluride
Cs2Te for the beam commissioning (higher bunch charge), require UV laser light (257 nm)
for electron generation with maximum efficiency [18]. Automated harmonic generators
which are integrated in the commercial Pharos laser (model PHAROS-SP-200) produce the
UV light using the 4th harmonic of the near-infrared, Yb-doped photocathode laser [19].
The laser produces pulses with a pulse energy of 1 mJ, providing a transverse flattop and
a longitudinal Gaussian profile. The transverse flattop shape allows one to minimize the
nonlinearity of the longitudinal phase space and the transverse emittance [3]. The rms
beam size can be varied down to 80µm. The Gaussian longitudinal laser pulse is tunable
between 180 fs and 10 ps (FWHM) [3]. The laser is coupled with a mirror downstream
of the gun cavity and hits the photocathode under a small angle from normal incidence.
The laser spot size on the cathode can be visualized by a second mirror placed at the same
longitudinal position as the incoupling mirror. The generated electron beam is immediately
accelerated in the RF gun cavity up to 5 MeV in order to counteract space charge effects.

Several magnets are available to control the electron beam. A dual-coil solenoid
magnet right after the gun cavity exit focuses the beam in both transverse directions
simultaneously. Two dual plane steerer pairs serve for trajectory corrections in the ver-
tical and horizontal directions. A spectrometer dipole guides the electron beam to the
dispersive section, allowing momentum spectrum measurements. The accelerator is sup-
plemented with hardware diagnostics. Beam position and beam size measurements can
be done at two screen stations in the forward direction and one in the dispersive arm [20].
Besides GAGG (gadolinium aluminium gallium garnet) and LYSO (Lutetium-based scintil-
lator) screens [21], two grids are available in the first screening station after the gun cavity
for the evaluation of the transverse emittance [22,23]. Two Faraday cups and one cavity
based cup, and hence a non-destructive charge monitor (DaMon), enable bunch charge and
dark current measurements [24,25]. The Faraday cup after the spectrometer dipole is also
used as a beam dump.

The hardware and diagnostics at ARES are operated by a control system based on
DOOCS (Distributed Object-Oriented Control System) [26]. A magnet middle layer server
enables a desired magnetic field or transverse kick angle to be specified in addition to
adjusting the input current [27]. Furthermore, proper machine settings for different ap-
plications can be saved with the Sequencer program. Long-term data acquisition, even
for parameters following the repetition rate of up to 50 Hz, is done with a DAQ (Data
Acquisition) server used throughout DESY [28]. By leveraging the numerous possibili-
ties to interface with the control system (MATLAB, Python, Java, C/C++), the operators
contributed software both for commissioning purposes and for day-to-day operation of
the machine.

3. RF Conditioning of the Gun Cavity and RF Stability

As a first step during the accelerator commissioning, the gun cavity was fully condi-
tioned. The final goal is to run the ARES gun at an RF probe power of 6 MW at a vacuum
level of 10−10 mbar. Currently, a maximum RF power of 3.7 MW with an RF pulse length
of 4.0µs has been achieved during operation. The measured vacuum in the gun cavity
of 8 × 10−11 mbar fulfills the requirements. In the commissioning phase, the machine
normally runs 8 to 12 h per day. Measurements over 12 h confirmed stable RF power in the
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gun cavity with fluctuations of less than 10 kW (see Figure 3). A significant change in the
RF stability after 12 h is not expected.

Figure 3. Stability measurement of the RF probe power in the ARES gun over 12 h.

The final RF probe power of 6 MW will allow acceleration of the electron beam to
more than 5 MeV. A higher beam energy at the RF gun exit always helps to better control
space charge effects, since the transversely defocusing space charge force in a drift scales
with 1/γ, with γ being the Lorentz factor [29]. We assume that an RF stability of around
10−3 or better can be achieved at 6 MW with the same RF system using feedforward and
orbit vector corrections in addition.

The current limit to the maximum RF power coupled to the gun cavity is mainly
defined by the maximum power limit of the klystron, which is given by the quadratic sum
of the forward and reflected power that can theoretically reach the modulator. Due to a
high amount of reflection, the sum power comes close to the hard limit of the modulator
of 11 MW. Consequently, the forward and therefore the probe power in the gun cavity
cannot be further increased. Figure 4 illustrates this fact by showing the forward (blue
curve), reflected (yellow curve) and resulting probe power signal (green curve) measured
in the RF gun. The red curve gives the sum power that nearly reaches the 11 MW limit
of the klystron window. In the future, an RF, in-vacuum circulator will be installed in the
waveguide section between klystron and gun cavity. The device provides four ports, two
of them with loads, and allows one to control the RF signal direction and flow. The RF
signal entering one port is only circulated to its clockwise adjacent port, and all other ports
of the device are isolated (specification of isolation ≥ 25 dB). The circulator will filter out
the reflected part of the power signal instead of directing it back to the klystron where the
reflections can cause damages. This concept provides a way toward an increased maximum
RF field at shorter RF pulses in the gun and will enable the intended operation at ARES at
an RF probe power of 6 MW.
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Figure 4. RF power signals in the gun cavity: Displayed are the forward (blue), probe (green) and
reflected (yellow) power readout. The red curve represents the sum power given by the quadratic
sum of forward and reflected power.

4. Electron Beam Characterization

After the first electrons were detected at the end of October 2019, the electron beam
was systematically characterized.

4.1. Bunch Charge

We started with bunch charge measurements and the dependency of the generated
charge on laser pulse energy and RF parameters. At ARES, the charge can be detected using
a Faraday cup and a DaMon in the forward direction of the beamline, and an additional
Faraday cup in the dispersive section. A bunch charge of (16.20 ± 0.03) pC at the Faraday
cups and (16.70 ± 0.04) pC at the DaMon were measured at the current maximum RF
power (3.7 MW) and an RF phase −20 deg. The RF phase is always defined relative to
zero-crossing (total RF phase +2 deg) where no net acceleration occurs, and hence, no bunch
charge is detected. The charge values that are achieved with the two different measurement
techniques agree well. The error bars represent the statistical error due to the combination
of jitter sources. It is assumed that the remaining small discrepancy between the two
measurement values is due to a systematic error in the instrumentation, such as a small
miscalibration of one or both devices.

Following the theory of the photoelectric effect, the parameters which mainly impact
the number of electrons extracted from the cathode, i.e., the bunch charge qb, are: the pulse
energy of the drive laser Elaser and thus the number of incoming photons; and the quality
of the photocathode, i.e., the quantum efficiency QE. The latter is mainly defined by the
cathode material itself (metal or semiconductor), the surface roughness and the quality
of coating of the cathode plug. The number describes the ratio of emitted electrons to
incoming laser photons.

qb =
eElaser

Eph
QE. (1)

In Formula (1), Eph describes the photon energy determined by the laser wavelength.
In addition, the bunch charge can be increased with a higher RF field at the cathode. Due
to this so-called Schottky effect, the RF field lowers the effective surface potential of the
cathode and more electrons can escape the photocathode material [30].
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While the quantum efficiency of the photocathode cannot be varied in a controlled
way during a measurement without a cathode exchange, the laser pulse energy and the RF
field at the cathode can be modified. Figure 5 shows the bunch charge that was measured
with the Faraday cup, and the laser pulse energy was continuously changed by using an
attenuator on the laser table. An additional internal attenuator reduced the outcoming
laser energies to 20% and 29.5% in order to limit the emitted bunch charge to tens of pC
(see legend in Figure 5). The measurement was repeated for three different RF phases,
−20 deg relative to zero-crossing, a −35 deg RF phase that corresponds to a maximum beam
momentum and a −65 deg RF phase that gives maximum charge output. By increasing the
laser energy, the bunch charge grows linearly up to a laser energy of about 2 nJ. The electron
emission is limited by the amount of incoming laser photons and can be described with
Formula (1). For laser energies above 2 nJ, the charge emission is increasingly space-charge
dominated and runs into the space-charge limit (plateau). The electrons experience their
own image charge at the cathode surface, which produces a field opposing the applied
RF field. The electron emission saturates when the electric field that is triggered by space
charge equals the RF field at the surface of the cathode [31].

Figure 5. Charge measurement during a scan of the photoinjecor laser pulse energy at the photocath-
ode surface for different laser attenuator positions and RF phases in the gun cavity.

At ARES, a Cs2Te photocathode was used for the beam characterization measurements.
Based on the charge measurement data illustrated in Figure 5 and the theory of photon
limited emission (see Formula 1), the quantum efficiency was calculated as (4.5 ± 0.2)%
for an RF phase of −20 deg and (5.1 ± 0.2)% for an RF phase of −35 deg. The difference
between these two numbers was due to the Schottky effect, which increases the amount
of extracted electrons from the photocathode at the lower RF phase (here −35 deg). The
calculated quantum efficiencies are realistic compared to measurements from other electron
sources [32]. The combination of quantum efficiency and available laser pulse energy
is sufficient to operate the linac in the charge range of a few pC to several hundreds
of pC, extrapolating the data from the measurements shown in Figure 5. During the
commissioning phase, the charge was limited to tens of pC in order to control the dark
current and to protect diagnostics.

The dependency of the emitted charge on the RF field at the cathode can be illustrated
with a Schottky scan. In the experiment, the RF phase has been continuously varied during
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the charge measurement. Figure 6 shows the result of two Schottky scans done with the
DaMon in the gun area of ARES. A constant RF power of 3.6 MW was used for a rapid
acceleration of the electrons starting from the cathode.

Figure 6. Bunch charge measurement during an RF phase scan (Schottky scan). Purple colored
measurement data were achieved at a constant solenoid current of −60 A. The solenoid current was
optimized for a maximum charge at the DaMon for the green curve. A fit with an ASTRA (A Space
Charge Tracking Algorithm) simulation allows the duration of bunch emission to be estimated [33].

The purple colored curve in Figure 6 displays the Schottky scan at a constant solenoid
current of −60 A. The selected solenoid field allows the full amount of charge to be focused
to the DaMon in an RF phase range from 0 deg to around −70 deg. For smaller RF phases, it
becomes necessary to adjust the solenoid focusing. This was done in a second measurement
run that corresponds to the green data in Figure 6.

In general, the Schottky curve that displays the measured bunch charge against the
RF phase and therefore the RF field at the surface of the photocathode can be explained as
follows: Starting from an RF-phase above 0 deg, the entire cathode laser pulse impacted
the cathode when the gun field was decelerating. Hence, no electrons were accelerated
and no charge was detected at the DaMon. Below 0 deg down to approximately −15 deg,
an increasingly large part of the laser pulse hits the cathode when the gun field is accel-
erating. More and more photo-emitted electrons are extracted and the Schottky curve
rises. The bunch reaches its target bunch length defined by the laser pulse duration at
around −15 deg. Instead of a constant beam current at RF phases below −15 deg (plateau),
an additional increase could be detected in Figure 6. Further electrons escape from the
photocathode due to the external RF field, lowering the potential barrier. A lowered surface
barrier enables non-excited electrons to tunnel into the vacuum and favors the extraction
of excited electrons. At around −70 deg, the beam momentum becomes too low. Conse-
quently, the beam is over-focused at the DaMon by a constant solenoid current of −60 A
and the measured bunch charge drops in Figure 6 (purple curve). In the case of a variable
solenoid current (green curve) that is adjusted to achieve a maximum charge at the DaMon,
a further increase of the bunch charge due to Schottky effect up to 14 pC at −90 deg can be
observed. Afterwards, the momentum spectrum became too wide to be fully transported to
the detector, which led to a decrease in the measured charge in the case of variable solenoid
currents (green curve). The two peaks visible on the left side of the scan (purple curve)
were due to electrons traveling back and forth in the gun before exiting and to secondary
electrons emitted through cathode back-bombardment. These electrons can have high
enough energies (namely, close enough to the maximum momentum) to be focused by the
gun solenoid and collected by the Faraday cup. Another potential contribution is from very
low energy electrons undergoing multiple foci in the gun solenoid field before exiting it.
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The phase range from 0 deg to −15 deg in the Schottky curve, where the fraction of
the laser pulse hitting the cathode at accelerating field varies, can be used to estimate the
duration of the electron bunch emission from the photocathode. Besides the linear slope
and the non-linear tails between 0 deg and −15 deg, the Schottky effect is taken into account,
even if the effect is small due to the small RF field. The curve in Figure 6 is calibrated
with an ASTRA (A Space Charge Tracking Algorithm) simulation using a Gaussian laser
pulse as input to simulate the photoelectric effect, and assuming an instantaneous response
from the photocathode [33]. As a result, an emission duration of (2.5 ± 0.5) ps (RMS)
is estimated.

4.2. Beam Momentum and Momentum Spread

The momentum of the electron beam after acceleration in the ARES gun was evaluated
using two different methods. The spectrometer dipole in the gun section allowed the beam
momentum to be determined based on the dipole current that deflects the beam by 90 deg.
The spectrometer dipole was previously calibrated for this measurement.

As an alternative, the first steerer magnet together with a screen can be used for
a momentum measurement. In this case the momentum can be calculated using the
following formula:

pc =
elLc∆B

∆x
=

elc∆B
∆θ

, (2)

where e represents the elementary charge and c is the speed of light. l is the steerer magnetic
length, L gives the distance between the steerer and imaging screen, ∆x is the displacement
of the beam on the screen, ∆B describes the variation of the steerer magnetic field and
∆θ represents the corresponding kick induced by the steerer. Knowing the calibration of
the steerer, i.e., the magnetic length and the relation between steerer current and steerer
magnetic field, the beam momentum pc can be retrieved from the measurement of ∆x.
This technique of determining the momentum is valid as long as L � l and no element
is placed between the steerer and screen, which could induce a steerer-dependent kick.
These assumptions are valid in the ARES gun setup. Hence, the steerer-based momentum
measurement is routinely used as a fast alternative to the spectrometer measurement.

Since the orbit correction at ARES is done with dual-plane steerers, the momentum can
be determined using a horizontal and a vertical deflection. The average of the results from
both planes is calculated and afterwards compared with the momentum values obtained
from spectrometer measurements. The momentum measurement has been done for three
different RF power values and a constant RF phase of −20 deg relative to zero-crossing
using both techniques. Table 2 summarizes the obtained results.

Table 2. Comparison of the momentum measurement results for different RF powers using two
different measurement techniques (spectrometer dipole and steerer magnets).

Power [MW] Momentum Measured with Momentum Measured with
Steerer pc [MeV] Spectrometer Dipole pc [MeV]

3.70 ± 0.19 4.63 ± 0.06 4.64 ± 0.04
3.26 ± 0.16 4.39 ± 0.06 4.39 ± 0.06
2.77 ± 0.14 4.05 ± 0.05 4.09 ± 0.05

The results in Table 2 have been determined by acquiring several shots on the screen
after the spectrometer dipole and steerer, respectively. The average momentum value
was computed as the average of these shots. The error bars in Table 2 represent the
standard deviations of the measurements on the screens, and thus, reflect the statistical
error, including all jitter sources. No systematic error, such as magnet miscalibration or
beam misalignment, has been included. The measurement data from both methods are
very well comparable. Differences are within the error bars.
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Table 2 also displays the expected dependency of the beam momentum on the RF
power. A higher RF power increases the strength of the accelerating field that allows higher
electron beam momenta after the gun cavity.

A measurement of the beam momentum during an RF power scan was done. Figure 7
shows the measurement data and the corresponding ASTRA simulation at a constant
RF phase of −20 deg from the zero-crossing. The accelerating field used in the ATSRA
simulations is based on the shunt impedance of the gun and has been determined via the
LLRF law

E(MV/m) = 47.67
√

P(MW). (3)

Formula (3) calculates the accelerating gradient E from the RF probe power P in the
gun. The measurement results fit well with the simulation data from ASTRA and verify
the LLRF law simultaneously.

Figure 7. Measured beam momentum vs. RF power. The momentum measurement was done using
the first vertical corrector magnet. The RF phase was fixed at −20 deg relative to zero-crossing.
The measurement points are compared with ASTRA simulations.

Besides the RF power, the injection phase of the electron beam in the RF wave impacts
the final beam momentum. An additional scan of the RF phase between −100 deg and
0 deg illustrates this fact (see Figure 8). Maximum acceleration at this RF power in the gun
(3.7 MW), and therefore maximum beam momentum, is obtained at around −30 deg, the so
called “on-crest” phase. An acceleration gradient between 90.7 and 91.8 MV/m can be
estimated from the ASTRA simulations that fit the measurement data best. An acceleration
gradient of 91.7 MV/m can be estimated from the LLRF law.

Figure 8. Measured beam momentum vs. RF phase. The acceleration gradient is estimated with
around 91 MV/m from fitting ASTRA simulations.
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Furthermore, the spectrometer dipole was used to determine the momentum spread
of the electron beam. The bunch was deflected by 90 deg (only particles with target
momentum) in the dipole and afterwards projected on a screen. Particles with deviating
momenta are deflected by angles different from 90 deg. As a consequence, the horizontal
beam width that is recorded on the screen gives a measure of the momentum spread.
At a maximum RF power of 3.7 MW and an RF phase of −20 deg from the zero-crossing,
an RMS momentum spread of (8.84 ± 0.09) keV/c is determined. This value corresponds
to 0.19% of the beam average momentum at these RF settings. The momentum spread
which is obtained in an ASTRA simulation is slightly different at 11.9 keV/c. However,
the ASTRA simulation is based on the emission duration of (2.5 ± 0.5) ps estimated from
the Schottky scan as input parameter. The discrepancy in the measured and simulated
momentum spread numbers can well be explained with the large error on the emission
duration of the beam.

4.3. Transverse Spot Size

The electron beam was projected on the first screen in the ARES beamline, around
1.3 m behind the photocathode. Figure 9 displays the corresponding camera image. The RF
gun accelerated the (7.5 ± 0.1) pC beam to a momentum of (4.76 ± 0.07) MeV/c before the
solenoid focused it on the screen. An RMS beam size of around 133µm was measured.
The focus of this measurement was on a perfectly symmetric beam. RMS beam widths of
σx = (133.1 ± 1.7)µm and σy = (133.5 ± 2.0)µm in x and y directions were obtained with a
round laser pulse and focused by the pre-aligned solenoid magnet. The symmetry can be
also seen in the beam profiles along x and y that are plotted in Figure 10a,b.

Figure 9. Beam size measurement on the first screen in the gun section.

Figure 10. Analysis of the beam profile along x (a) and y directions (b).

Several different measurement techniques may be used to characterize the transverse
emittance, including metal grids, a pepper-pot mask and focusing magnets. At the ARES
photoinjector, the emittance can be evaluated by scanning the magnetic strength of the
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gun solenoid and measuring the beam size on one of the screens downstream. Since
the solenoid magnet was not completely aligned at this point of commissioning, not
enough measurement data of good quality could be taken. As an alternative, a pepper
pot and several metal grids are available in the ARES gun section, which allows not only
an emittance measurement but the full reconstruction of the 4D phase space. A pepper
pot cuts small beamlets out of the electron beam that are afterwards imaged on a screen
downstream. The moments can be calculated from the envelope of the beamlet peaks,
the beamlet widths and their mean positions on the screen [23]. Similarly, when using metal
grids, which are better suited for low-charge bunches, the shadow image of the bars on
the screen may be analyzed to calculate the moments. However, due to the initial solenoid
misalignment, the pointing of the electron beam must be compensated by operating the
spectrometer dipole with a small current. As a consequence, the beam was sheared and
the image of the beamlets on the last screen could not be analyzed. Further emittance
measurements will be taken after the solenoid alignment is fully finished. Measurement
tools and analysis software are available. Meanwhile, ASTRA simulations were performed
to estimate the transverse emittance for different laser settings. An emittance below
0.5 mm mrad is expected for a 10 pC electron beam.

5. Beam-Based Alignment of the Gun Solenoid

The beam-based alignment of the gun solenoid represents an essential step during the
RF gun commissioning [34]. In order to preserve the low emittance of an electron beam,
a good alignment of the axis of the focusing element with the beam trajectory is mandatory.

During our alignment process, the solenoid current was scanned and the correspond-
ing beam centroid position was recorded on the first screen downstream in the beamline.
The obtained data were fit using an algorithm based on linear transfer matrices to compute
the solenoid misalignment both in terms of offsets and angles [35]. The script is imple-
mented in a Matlab tool. A Matlab GUI visualizes the movement of the beam spot on
the screen with changing solenoid current. In addition, the misalignment in the solenoid
position, calculated by the Matlab script, is displayed.

In the first iteration of the solenoid alignment process, data were taken and analyzed
for two different power levels (3.6 MW and 2.6 MW) with ++ and +− polarity settings of
the double coil gun solenoid, respectively. Table 3 gives an overview of the calculated
solenoid offset in x |dX| and y directions |dY|, and its rotation around the x |dXrot| and
y axes |dYrot| averaged over multiple data sets.

Table 3. Results for the solenoid misalignment obtained for both polarity settings (++, +−) and two
RF powers (3.6 MW and 2.6 MW) from the beam-based alignment tool.

Misalignment Estimated Value

|dX| (mm) 0.81 ± 0.16
|dXrot| (mrad) 1.33 ± 0.27

|dY| (mm) 0.38 ± 0.08
|dYrot| (mrad) 1.98 ± 0.40

In order to check the validity of the results from the alignment script, a correction
to the x offset was experimentally applied. The solenoid was moved by 0.8 mm in the
horizontal direction. Figure 11 shows a clear improvement in the beam position on the first
screen after the beam-based alignment correction. However, it must be noticed that the
beam position changed not only in the horizontal but also slightly in the vertical position.
It was observed that the movers of the solenoid are not fully decoupled in their horizontal
and vertical motion. Furthermore, since the beam position still changes during a solenoid
current scan, further iterations are required in the alignment process. We intend to repeat
the procedure in order to perfectly align the ARES gun setup.
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Figure 11. Comparison of the beam position on the first screen before (left) and after (right) the
correction of the solenoid position in the horizontal plane. All other conditions (laser, RF settings)
are identical.

6. Dark Current Characterization

Besides the photo-emitted electrons that form the electron bunch, a significant num-
ber of dark current electrons was observed. The intensity of the most prominent dark
current spot exceeds that of the photo-electron beam. Therefore, subtraction of the back-
ground (including dark current) is required for the analysis of screen images and charge
measurement data.

The dependency of the dark current on the RF power is illustrated in Figure 12.
A Faraday cup measured the dark current charge (integrated dark current over the RF
pulse) while the RF power in the gun cavity was increased. In order to focus the dark
current electrons on the Faraday cup and cover the charge of most of the dark current spots,
a second measurement sequence was performed with the ARES gun solenoid switched
on (see Figure 12 black colored data). The solenoid current was varied to maximize the
measured dark current charge at each RF power. Figure 12 confirms that the currently
installed RF gun cavity with a Cs2Te photocathode delivers a dark charge level of around
1 nC at a maximum RF power of 3.7 MW and an RF pulse length of 4µs.

Figure 12. Dark charge measurement during an RF power scan. The data were taken with and
without solenoid focusing to the Faraday Cup.

The dark current was further characterized by a momentum measurement using one
steerer magnet. The momentum of the most significant dark current spot is 4.56 ± 0.06 MeV/c,
and thus, close to the maximum momentum of the electron beam. Therefore, it is assumed
that the source(s) of the dark current electrons can be mostly found at the back plane of the
gun cavity. Probably, field emitters generate dark current, which also explains the increase
in the charge while the RF power, and therefore the field at the cavity surface is maximized.

Further investigations of the dark current are planned, and strategies to lower the
dark current will be tested in order to avoid activation of the machine and to enable high
quality, low charge (sub-pC range) user experiments at ARES. The gun was exchanged
with an upgraded version of the ARES gun cavity with a different geometry in spring 2020.
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This new gun was especially designed for SINBAD ARES. An additional solenoid can be
installed around the cavity that will allow advanced emittance compensation in a high
charge mode. A characterization of the electron beam and of the dark current generated
from the new gun is ongoing.

7. Conclusions and Outlook

This paper summarized the RF photoinjector commissioning results for ARES gun 1.
The RF conditioning of the first ARES gun cavity was started, and the first iterations of the
alignment procedure of the solenoid magnet were finished. Afterwards, we characterized
the beam quality in terms of charge, momentum, momentum spread and beam size.
Furthermore, we investigated the dependencies of these parameters on RF settings (power,
phase). All measured beam parameters fulfill the requirements to operate the ARES linac
with this electron source. However, the large amount of dark current generated in the RF
photoinjector prompted the exchange of the gun cavity.

After the exchange of the gun with one with an upgraded design and the subsequent
RF conditioning, the electron beam properties will be measured at the exit of the RF
photoinjector again. As a next step, it is planned to guide the beam through the two
traveling wave structures of the ARES linac section. Here, the beam can be accelerated up
to 155 MeV. The infrastructure of the linac is well prepared. The two linac cavities were fully
RF conditioned during the last months. All magnets, including eight solenoids around the
traveling wave structures, several quadrupoles and several steerer magnets, were installed.
All diagnostics, such as screen stations and a toroid for charge measurements, are part of
the control system and ready for operation. Figure 13 shows the complete setup of the
ARES linac section.

Figure 13. Finished setup of the ARES linac section.

In the upcoming months, we aim to continue the commissioning of the ARES linac.
The parameters of the high energy electron beam must be determined after the linac.
Some first iterations to minimize the bunch length via velocity bunching are foreseen.
Furthermore, the experimental area has been commissioned [36]. In this area, we will start
the testing of dielectric structures as ultra-compact particle accelerators in the context of
the ACHIP (Accelerator on a Chip International Program) collaboration [37–40]. The setup
of the experimental chamber, including the ACHIP experiment, is finished and ready
for operation.

In 2021, the installation of a bunch compressor [41] and the Polarix TDS [6] will bring
ARES closer to the goal of generating and characterizing fs to sub-fs short electron bunches.
New diagnostics, such as the low-charge, beam profile monitor STRIDENAS (Strip Detector
for Novel Accelerators at SINBAD) will be tested in the future [42].
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