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Abstract: We review the topological gauge theory description of Josephson junction arrays (JJA),
fabricated systems which exhibit the superconductor-to-insulator transition (SIT). This description
revealed the topological nature of the phases around the SIT and led to the discovery of a new state
of matter, the superinsulator, characterized by infinite resistance, even at finite temperatures, due
to linear confinement of electric charges. This discovery is particularly relevant for the physics of
superconducting films with emergent granularity, which are modeled with JJAs and share the same
phase diagram.

Keywords: Josephson junction arrays; topological field theory; topological phases of matter;
superinsulators

1. Introduction

Josephson junction arrays (JJAs) [1] are fabricated materials which exhibit the
superconductor-to-insulator transition (SIT) [2,3], a paradigmatic example of a quantum
phase transition. Planar, quadratic JJAs are square lattices formed by superconducting
islands (typical size O(µm)), deposited on a substrate, with lattice spacing l (O(100nm)),
Josephson coupling EJ and capacitances C between nearest-neighbor islands. An elemen-
tary square on the lattice is called a plaquette. Each island is also characterized by the
phase of its local-order parameter and by a ground capacitance C0. The circulation over
a plaquette of the local phase represents the vortex degrees of freedom. When C � C0,
JJAs have only two relevant energy scales, EJ , the energy scale associated with the tun-
neling of Cooper pairs between the islands, and EC = e2/2C, the charging energy, with e
representing the electron charge. A schematic description of such an array is presented in
Figure 1.

The parameters EJ and EC can be traded for a massive parameter ωP =
√

2ECEJ ,
which represents the plasma frequency of the array, and a dimensionless parameter

g =

√
π2EJ
2EC

, which, as shown, drives the phase structure of the theory. In experimen-

tal realizations of JJA, the transition between the different phases is achieved by varying EJ
with EC essentially fixed. Varying EC is much more difficult.

In the classical limit EJ � EC, global phase coherence is realized, and the array be-
haves as a superconductor. Above a critical temperature, the array undergoes a Berezinskii–
Kosterlitz–Thouless (BKT) transition [4], and superconductivity is destroyed. When, in-
stead, Ec � EJ , the tunneling between islands is suppressed, and the array becomes
insulating. As shown in [5,6], however, this is not a usual Mott insulator but a new state of
matter, called the superinsulator.
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Figure 1. Sketch of a planar square JJA with Josephson coupling EJ , nearest-neighbor capacitance C
and ground capacitance C0.

Superinsulators are emergent condensed matter states dual to superconductors: they
exhibit infinite resistance even at finite temperatures. They were first theoretically pre-
dicted in [5], while the final form of the theory describing this new state of matter was
established in [7]. Superinsulators have been experimentally detected [8–14] in thin super-
conducting films, which, close to the SIT, have an emergent granularity and behave as a
self-organized JJA.

The infinite resistance which characterizes superinsulators is due to linear charge
confinement [7] of both Cooper pairs and electrons in a magnetic monopole plasma. This
squeezes electric field lines into electric flux tubes connecting charge–anticharge pairs,
in analogy to the Meissner effect in superconductors [13]. Superinsulators realize, thus,
an Abelian version of the dual superconductivity mechanism advocated by ‘t Hooft to
explain quark confinement [15]. In his picture, mesons are chromo-electric strings with
quarks at their ends. When quarks are separated, it is energetically favorable to pull out
of the vacuum additional quark–antiquark pairs and to form several short strings. Free
color charges can never be observed at distances larger than 1/ΛQCD, and quarks are,
thus, confined.

In [5], we derived a topological gauge theory description of JJAs. For planar JJAs, the
relevant term dominant at large distances is the mixed Chern–Simons term [16]. This is the
(2+1)-dimensional version of the BF term [17], which is the relevant term at long distances
in higher dimensions. This description has made it possible to derive the quantum phase
diagram of a JJA and to understand the nature of the various phases. This result is particu-
larly important since, as we pointed out before, JJAs are a model for thin superconducting
films near the SIT. Correspondingly, the gauge theory of JJAs is also an effective theory for
these materials near the SIT. Interesting topological phenomena in JJAs have also be found
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in [18], where they arise due to a network structure forming tree-like graphs, with singular
behavior of the temperature and magnetic field dependence of the Josephson current.

We have identified three possible phases depending on the value of a parameter
η encoding details of the array. When η < 1, there is a direct transition between the
superconducting and the superinsulating phases. The superconducting phase actually
realizes a new type of superconductivity, which we call type-III superconductivity [19],
in which the gap is opened by a topological mechanism and not by the usual Anderson–
Higgs mechanism and which is not described by the standard Ginzburg–Landau theory.
Superconductivity is not destroyed by the breaking of Cooper pairs but by a proliferation
of vortices, implying a BKT transition in two dimensions and a Vogel–Fulcher–Tamman
transition in three dimensions [19,20]. This superconductivity model may be relevant for
high-TC superconductivity [21]. When η > 1, an intermediate metallic phase opens up
between the superconducting and the superinsulating phases [22,23]. This is called Bose
metal (BM), since charge carriers are Cooper pairs, and has been experimentally confirmed
in superconducting films [24–29]. This phase has long challenged the understanding of
electronic fluids [30,31], since it is believed that a metallic phase in two dimensions cannot
exist due to localization. Moreover, it was puzzling that certain films realized this phase
and others not. In [22], we were able to identify this phase as a bosonic topological insulator
and to explain, through the η-dependence, why this phase appears or not.

In Section 2, we will review the topological gauge theory formulation of JJAs. We shall
focus, in particular, on the role of the kinetic term for vortices. In Section 3, we will derive
the quantum phase structure of JJAs, and, in Section 4, we will then describe the properties
of the new phases of matter, predicted thanks to the gauge theory formulation.

2. Topological Gauge Theory of JJAs

We consider the dynamics of a JJA on a square lattice with sites denoted by {x} and
directions indicated by Greek letters, from 0 to 2. The lattice spacing is l0 in the 0 direction
(time) and l in the 1 and 2 directions (space). We denote these different spacing compactly
by lµ. The forward and backward finite-difference and shift operators are defined as

∆µ f (x) = f (x + lµµ̂)− f (x) , Sµ f (x) = f (x + lµµ̂) ,

∆̂µ f (x) = f (x)− f (x− lµµ̂) , Ŝµ f (x) = f (x− lµµ̂) , (1)

where µ̂ denotes a unit vector in direction µ. Summation by parts on the lattice interchanges
both the two finite differences (with a minus sign) and the two shift operators. Using these
definition we introduce the operators:

Kµν = Sµεµαν∆α , K̂µν = εµαν∆̂αŜν , (2)

where no summation is implied over the equal indices µ and ν. These two operators are
interchanged by summation by parts with no minus sign. They allow us to define a gauge
invariant version of the Chern–Simons operator εµαν∂α on the lattice [5]. Their products
gives the lattice Maxwell operator:

KµαK̂αν = K̂µαKαν = −δµν∆ + ∆µ∆̂ν , (3)

where ∆ = ∆̂µ∆µ is the 3D Laplace operator.
Our starting point is the Hamiltonian for a JJA on the above lattice, with nearest-

neighbor Josephson couplings EJ , ground capacitances C0 and nearest-neighbor capaci-
tances C [1,32]:

H = ∑
x

C0

2
V2

x + ∑
<xy>

C
2
(
Vy −Vx

)2
+ EJ

(
1− cos

(
ϕy − ϕx

))
,

H = ∑
x

1
2

Vx(C0 − C∆)Vx + ∑
x,i

EJ(1− cos (∆i ϕx)) , (4)
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where < xy > indicates nearest neighbors and ∆ ≡ ∆̂i∆i is the two-dimensional finite
difference Laplacian. In what follows, we will use natural units c = 1, h̄ = 1, ε0 = 1.

Each island is characterized by an electric potential Vx and by the phase of the local-
order parameter ϕx, which is quantum-mechanically conjugated to the charge Ex on the
island. Charges are quantized in integer multiples of 2e (Cooper pairs), Ex = 2eqx , qx ∈ Z.

Using the discrete version of Poisson’s equation:

(C0 − C∆)Vx = Ex , (5)

and introducing the charging energy EC ≡ e2/2C, we can rewrite the Hamiltonian
Equation (4) as:

H = ∑
x

4EC qx
1

C0/C− ∆
qx + ∑

x,i
EJ(1− cos (∆i ϕx)) . (6)

The integer charges qx in Equation (6) interact via a two-dimensional Yukawa potential with
mass

√
C0/C/`, which, in the limit C � C0, becomes a two-dimensional Coulomb potential.

The next step in our derivation of the gauge theory description is the construction
of the phase-space path-integral representation [5] of the JJA. To this end, we introduce a
fictitious temperature β = 1/T and write the partition function of the JJA as:

Z = ∑
{q}

∫ +π

−π
Dϕ exp(−S) ,

S =
∫ β

0
dt ∑

x
i qx ϕ̇x + 4EC qx

1
C0/C− ∆

qx + ∑
x,i

EJ(1− cos (∆i ϕx)) , (7)

In the experimentally accessible limit C0 � C, this becomes

Z = ∑
{q}

∫ +π

−π
Dϕ exp(−S) ,

S =
∫ β

0
dt ∑

x
i qx ϕ̇x + 4EC qx

1
−∆

qx

+∑
x,i

EJ(1− cos (∆i ϕx)) . (8)

Since charges are integers, continuous time must be traded for a discrete time with
intervals l0. We thus also introduce forward and backward finite time differences ∆0 and ∆̂0.
Using the Villain representation [33], we can remove the cosine at the price of introducing a
set of integer link variables ai. By introducing real charge currents ji, we can express the
quadratic term (∆i ϕ + 2πai)

2, originating from the Villain approximation, as a Gaussian
integrals over these variables,

Z = ∑
{ai},{j0}

∫
D ji

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i j0∆0 ϕ + iji(∆i ϕ + 2πai) + 4`0EC j0
1
−∆

j0 +
1

2`0EJ
ji2 , (9)

where we renamed j0 the integer charges qx for reasons outlined below.
The longitudinal part of ai is not physical and can be reabsorbed in a redefinition

of ϕ. As shown, the transverse degrees of freedom encode the vortices of the model. In
fact, it is important to notice that Equation (9) contains a kinetic term only for the charges
but not for vortices. While this omission has no consequences for overdamped junctions,
in the general case this is not correct. As shown in [32], the kinetic term for vortices is
generated by integration over charge fluctuations and must thus be already included at the
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tree level. Moreover, in our case, the Coulomb interaction is long-range, and the dissipation
is reduced [34], making the vortex kinetic term relevant. The kinetic term for the vortices
represents tunneling events between adjacent plaquettes of the lattice. These events are
the generalizations to two dimensions of quantum phase slips, which play a crucial role in
Josephson junction chains [35]. They can be thought of as half-lines of simultaneous phase
slips of opposite chirality, which end on the island between the two adjacent plaquettes.
Ballistic vortex motion corresponding to vortex tunneling from one plaquette to the other
has actually been experimentally observed in [36]. The kinetic term for vortices involves
the time derivative of ai, (∆0ai)

2. To introduce it properly, let us start by introducing a
fictitious electric field ϕi = Kiµaµ and a real Lagrange multiplier a0. Taking the coefficient
of the kinetic term as π2/4`0EC, we write the vortex kinetic term and the charge Coulomb
interaction as:

Z = ∑
{ai},{j0}

∫
Da0D ji

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i j0(∆0 ϕ + 2πa0) + iji(∆i ϕ + 2πai) +
1

2`0EJ
ji2 +

π2

4`0EC
ϕ2

i , (10)

where now the Coulomb interaction between the charges follows from the Gauss law
constraint associated with the Lagrange multiplier a0. In this case, we have chosen a partic-
ular value of the vortex mass for which the JJA is dual with interchanges of charges and
vortices and of π2EJ ↔ 2EC, or, alternatively, g↔ 1/g. This is the self-dual approximation
introduced in [5]. It is important to notice, however, that a different vortex mass will, in
general, renormalize the value of EC and, as consequence, change the quantum parameter
g. A larger or smaller vortex mobility will, thus, influence the phase structure.

The integration over ϕ in Equation (10) gives the constraint ∆µ jµ = 0. The current jµ
is thus conserved and can be represented in terms of a fictitious gauge field bµ.

j0 = K0ibi , ji = Ki0b0 + Kijbj, (11)

In Equation (11), b0 is a real variable, while bi and ai are integers. These can be turned into
real variables using Poisson’s formula,

∑
nµ

f
(
nµ

)
= ∑

kµ

∫
dnµ f

(
nµ

)
ei2πnµkµ , (12)

so that all components of the gauge fields aµ and bµ become real at the price of introducing
integer link variables Qi and Mi:

Z = ∑
{Qi}

∑
{Mi}

∫
DaµDbµ

∫ +π

−π
Dϕ exp(−S) ,

S = ∑
x

i2π aµKµνbν +
1

2`0EJ
ji2 +

π2

4`0EC
φ2

i + i2πaiQi + i2πbi Mi

+bi
(
K̂i0∆0 ϕ + K̂ij∆j ϕ

)
+ b0K̂0i∆i ϕ . (13)

The last step of our derivation consists of reabsorbing the quantity
(
K̂i0∆0 ϕ + K̂ij∆j ϕ

)
in a redefinition of the integers Mi and introducing a set of integers M0 trough the definition
K̂0i∆i ϕ = 2πM0. This step is justified given that K̂µν∆ν ϕ are the circulations of the array
phases around the plaquettes orthogonal to the direction µ in 3D Euclidean space-time and
are thus quantized as 2π integers. At this point, again using Poisson’s formula, we can
express the integral over ϕ as a sum over the integer M0, giving the final expression for the
topological gauge theory describing the JJA:
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Z = ∑
{Qi}

∑
{Mµ}

∫
DaµDbµ exp(−S) ,

S = ∑
x

i2π aµKµνbν +
1

2`0EJ
ji2 +

π2

4`0EC
φ2

i + i2πaiQi + i2πbµ Mµ .

(14)

The first term in the action is the lattice version of the mixed Chern–Simons term,
which, being linear in derivatives, is dominant at large distances. The second and third
terms are the electric fields for the fictitious gauge fields aµ and bµ, respectively. The
effect of the CS term is to give a mass to these gauge fields without the Anderson–Higgs
mechanism [16]. This mass is nothing other than the plasma frequency of the array:
mtop = ωp =

√
8ECEJ . The two kinetic terms have a coupling constant with dimensions of

mass and are thus naively irrelevant. However, they cannot be neglected, since the correct
topological limit mtop → ∞ has to be derived from the full theory, including the kinetic
terms, in order to describe physical systems; otherwise, states will not be normalizable. The
topological limit EJ → ∞, EC → ∞ is not well defined without specifying the value of the
ratio g in this limit, and, as we will show, the phase diagram depends crucially on this.

The dual field strengths of the fictitious gauge fields, jµ = Kµνbν and ϕµ = Kµνaν

represent charge and vortex fluctuations, respectively. The integer fields Qi and Mi are the
electric and magnetic topological excitations, respectively. Together with the vortex number
M0, the latter forms a three-current Mµ, which is conserved due to gauge invariance in
the bµ gauge sector, ∆̂µ Mµ = 0. Perfect duality is broken by the absence of the integer
variable Q0, which can be explained as follows. In contrast to electric Noether charges,
magnetic vortices are topological excitations, characterized by a topological quantum
number. The configuration space of the theory of vortices decomposes into so-called
superselection sectors, characterized by the integer total vortex number. These sectors are
connected via instantons, non-perturbative configurations representing quantum tunneling
events between topological vacua [37]. As a consequence, electric charges are conserved,
but vortices are not and can “appear” and“disappear” via quantum tunneling events
represented by the instantons.

By rescaling the emergent gauge fields, expressed with their canonical dimensions, by
1/2π, and using lattice derivatives instead of finite differences, we can rewrite the action in
Equation (14) as

S = ∑
x

i
l0l2

2π
aµKµνbν +

l0l2

8π2EJ
ji2 +

l0l2

16EC
φ2

i + ilaiQi + il0b0M0 + lbi Mi . (15)

This equation is the limit for ε = 1, µ→ ∞ and v = 1/
√

εµ = 1/
√

µ� 1 of the action:

S = ∑
x

i
`2l0
2π

aµkµνbν +
`2l0v2

8π2EJ
j0 j0 +

l0l2

8π2EJ
ji2 +

`2l0v2

16EC
ϕ0 ϕ0 ++

l0l2

16 EC
φ2

i + ilaiQi + il0b0M0 + lbi Mi . (16)

We can now compute the induced action for the Qi and Mµ, obtained by integrating
over the emergent gauge fields. To this end, we add the term il0a0Q0 and the sum over Q0
in the partition function. This term renders the action completely self-dual with respect to
electric and magnetic degrees of freedom, which allows us to rewrite Equation (16) as:

S = ∑
x

i
`2l0v
2π

aµkµνbν +
`2l0v

8π2EJ
jµ jµ +

`2l0v
16EC

ϕµ ϕµ +

+ilaµQµ + ilbµ Mµ , (17)
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where we rescaled to l0 = l/v , d0 → d0 , ji(ϕi) → 1
v ji(ϕi). In Equation (17), gauge

invariance imposes the constraint d̂µQµ = d̂µ Mµ = 0. Since d̂iQi = 0, we also have d̂0Q0,
implying that there are no “electric instantons”. To recover the exact result for the JJA,
we should set Q0 = 0 at the end of the calculation. Making the theory perfectly self-
dual, however, will not change the nature of the possible phases, which justifies using
this approximation.

Integrating out the emergent gauge fields, we obtain [5,6]:

STOP = ∑
x

v
8EC
`

Qµ
1

v4m2 − d0d̂0 − v2∇2
2

Qµ +

+v
4π2EJ

`
Mµ

1
v4m̃2 − d0d̂0 − v2∇2

2
Mµ +

+i
2πv6m2

`
Qµ

Kµν

(d0d̂0 + v2∇2
2)(v

4m2 − d0d̂0 − v2∇2
2)

Mν . (18)

The last, imaginary term in the action is a lattice version of the topological linking of
electric and magnetic strings, which, due to the Dirac condition, becomes an integer in the
limit vm→ ∞. This term is also an integer if we set Q0 = 0. We can, thus, drop it [5].

3. Quantum Phase Structure

The T = 0 quantum phase structure of a JJA is determined by the behavior of the inte-
ger fields Qµ and Mµ. These can be decomposed into a transverse component, d̂µQT

µ = 0,
d̂µ MT

µ = 0, representing closed electric and magnetic loops or infinitely long strings, and a
longitudinal component, k̂µνQL

ν = 0, k̂µν ML
ν = 0, representing open electric and magnetic

strings ending on electric and magnetic monopoles q = d̂µQL
µ and m = d̂µ ML

µ . Notice,
however, that, in Equation (15), only the integers Qi appear, implying that d̂iQi = 0.

To determine when infinitely long electric or magnetic strings proliferate, one has to
consider the energy–entropy balance determined by the parameters of the model. Let us
start from Equation (18), where we ignore the imaginary term, as explained above. Near the
transition, we expect to have very long strings and large loops. These configurations are,
in general, very random, and we expect that forces between links in the same loop and in
other ones cancel out. Thus, we retain only the self-interaction terms in Equation (18) [38].
We assign an energy (equivalent to Euclidean action in statistical field theory) to a closed
string made of N links with integer quantum numbers Q and M on all the lattice links
forming the string (and zero elsewhere)

Stop = πm`G(m`)

[
2EC
π2EJ

Q2 +
π2EJ

2EC
M2

]
N , (19)

where G(m`) is the diagonal element of the lattice kernel G(m`, x − y) representing the
inverse of the operator `2(m2 −∇2). The kernel G(m`, x− y) is defined by the equation

`2
(

m2 −∇2
)

G(ml, x− y) = δx−y,0 . (20)

Defining the Fourier transform G(m`, x− y) =
∫ π
−π d3k G(m`, k)exp(ik · x), we obtain

∫ π

−π
d3k G(m`, k) `2

(
m2 −∇2

)
eik·x =

1
(2π)3

∫ π

−π
d3k eik·x . (21)
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Finally, applying the finite difference operator `2(m2 −∇2) to the exponential in the Fourier
transform gives the final result

G(ml) ≡ G(ml, 0) =
1

(2π)3

∫ π

−π
d3k

1

(m`)2 + ∑2
i=0 4 sin

(
ki

2

)2 . (22)

The string entropy, however, is also proportional to the length. It is given by µN with
µ ≈ ln(5), since at each step the non-backtracking strings can choose among five possible
directions on which to continue. One can thus assign the free energy

F = πm`G (m`)

[
1
g

Q2 + g M2 − 1
η

]
N , (23)

to a string of length L = `N carrying electric and magnetic quantum numbers Q and M,
respectively. Here, we have introduced the dimensionless parameter

η =
πm`G(m`)

µ
, (24)

which, together with the ratio g =

√
π2EJ
2EC

, fully determines the quantum phase structure,

as we now show.
The ground state of the quantum model is found by minimizing its free energy as

a function of N. When the energy term in Equation (23) dominates, the free energy is
positive and consequently minimized by short closed-loop configurations. When, instead,
the entropy dominates, the free energy is negative and minimized by large strings, long
closed loops, and instantons that break the original R gauge symmetry down to Z. The
condition for condensation of long strings with integer quantum numbers Q and M is thus
given by

η
1
g

Q2 + ηgM2 < 1 . (25)

If two or more condensations are allowed, one has to choose the one with the lowest
free energy.

This condition describes the interior of an ellipse with semiaxes

rQ =

√
g

1
η

,

rM =

√
1
g

1
η

, (26)

on a square lattice of integer electric and magnetic charges. The phase diagram is conse-
quently found by simply recording which integer charges lie within the ellipse when the
semi-axes are varied,

η < 1→


√

2EC
π2EJ

< 1 , electric condensation = type III superconductor ,√
2EC
π2EJ

> 1 , magnetic condensation = superinsulator ,

η > 1→



√
2EC
π2EJ

< 1
η , electric condensation = type III superconductor ,

1
η <

√
2EC
π2EJ

< η , no condensation = bosonic topological insulator/Bose metal ,√
2EC
π2EJ

> η , magnetic condensation = superinsulator .
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The phase diagram is shown in Figure 2.

Figure 2. The quantum phase diagram of a JJA as a function of g =
√

π2EJ
2EC

.

For η > 1, the SIT in a JJA occurs via an intermediate phase in which both Qµ and Mµ

are dilute. In this phase, the action for the JJA reduces to the action of a bosonic topological
insulator [39]:

S = ∑
x

i2π aµKµνbν . (27)

The existence of this phase was first predicted in [5]. The SIT point [40] is known to
be a universal quantum phase transition point with resistance R equal to the quantum of
resistance RQ. This topological state is often referred to as a Bose metal because it hosts
symmetry-protected metallic edge states [30]. It forms due to the same competition of
quantum orders, charge condensate, and vortex condensate that leads to the universal SIT
point. This intermediate phase is separated by two quantum BKT transitions from the
superinsulating phase for g < 1 and from the superconducting phase for g > 1 [22]. For
g ≥ 1, R ≤ RQ, the saturation of the sheet resistance and the vortex BKT transition has
been experimentally observed in [41] in an Al/InAs JJA using a gate voltage to suppress
charge tunneling and drive the transition, thereby confirming the validity of our model.
In terms of the array parameters, this means varying EJ , keeping EC fixed to increase the
value of g. An analogue result for g ≤ 1, showing the saturation of the resistance and the
charge BKT transition in JJA, confirms that superinsulation, already measured in NbTin
films in [42], is not associated with disorder.

In the superconducting phase, electric topological defects proliferate. It is this new
type of superconductivity that we call type-III [19]. It is characterized by a topological gap,
and superconductivity is lost through a BKT transition, both at T = 0 and at finite T, as
discussed in the introduction.

For η < 1, instead, when
√

2EC/π2EJ lies between η and 1/η, electric and magnetic ex-
citations coexist, indicating a direct first-order phase transition between the superinsulator
and the superconductor.

4. Superinsulators

In the superinsulating phase, it is the magnetic monopole defects Mµ which are
condensed. To understand the nature of this phase, we compute the induced effective



Condens. Matter 2023, 8, 97 10 of 14

action for the electromagnetic gauge potential Aµ minimally coupled to the electric current,

S→ S + i ∑
x

l0l2 Aµ jµ = S + i ∑
x,i

(
l2b0F0 + l0lbiFi

)
, (28)

where Fµ = k̂µν Aν. The induced action is:

e−Seff(Aµ) = ∑
Qµ ,Mµ

∫
aµ ,bµ

DaµDbµ e−S(aµ ,bµ ,Qµ ,Mµ ,Aµ) , (29)

and the corresponding induced current is:

jµ =
1
`3

δ

δAµ
Seff
(

Aµ

)
. (30)

The coupling with the external electromagnetic field can be taken into account by
shifting M0 and Mi in ∑x(l0b0M0 + ibi Mi) to:

M0 → M′0 = M0 +
l2

2π
F0 , Mi → M′i = Mi +

ll0
2π

Fi , (31)

we obtain, from Equation (18),

Stop
(
Qµ, Mµ, Aµ

)
= ∑

x,i
`0`

2 g
µη`

4π2

[
v
(

F0 +
2π

`2 M0

)2
+

1
v

(
Fi +

2π

`0`
Mi

)2
]

+∑
x

1
g

µη QµQµ + ∑
x,i

i
µηmv`

2π
(`0 A0Q0 + `AiQi) , (32)

where, also in this case, we retained only self-interactions. This corresponds to the limit
`0ωP = l0m� 1.

In the superinsulating phase, the electric topological excitations Qi are suppressed
because of their large energy, so that Qi = 0, and we restore Q0 = 0. By Equation (32) we
thus obtain,

∑
{Mi}

∫ +π

−π
DAµ eS(Aµ ,Mi) ,

S
(

Aµ, Mi
)
=

g
4π`0ωP

∑
x
(Fi − 2πMi)

2 , (33)

where we used m = ωP and finite lattice differences. In Equation (33), the gauge fields Fi are
periodic with the shifts Fi → Fi + 2πMi, showing that they are angular variables defined
on the interval [−π,+π]. What we obtained is the deep non-relativistic limit of Polyakov’s
compact QED action [43,44], in which only electric fields survive. It is the compactness of
the gauge fields that allows the presence of magnetic monopoles (instantons). As we will
show, also in the non-relativistic case, the presence of monopoles induces linear confinement
of probe charges, which become bound by electric flux tubes. There is, however, one crucial
difference with the relativistic case. To see this, we decompose Mi into its transverse and
longitudinal components [43,44]:

Mi = MT
i + ML

i , MT
i = εij∆jn + εij∆jξ , n ∈ Z

ML
i = ∆iλ , ∆λ = ∆̂i∆iλ = m , (34)

where m is integer magnetic monopoles (see Figure 3).
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Figure 3. A non-relativistic magnetic monopole instanton m. The fundamental vortex of flux 2π in
the tunneling event happening at time t, is divided up into four fluxes π/2 which flow out only in
the spatial directions and disappers, thus at t + `0.

The sum over {Mi} can be traded for the sum over {n} and {q}. The integers {n}
are used to shift the integration domain for the gauge field Aµ to [−∞,+∞], and the real
variables {ξ} can be absorbed into the gauge field, giving an integral over the non-compact
gauge field Aµ and a sum over the monopole degrees of freedom in the partition function:

Z = Z0Zinst = Z0 ∑
{m}

e−
πg

`0ωP
∑x mx

1
−∆ mx (35)

where Z0 is the Gaussian integral over Aµ. While, in the relativistic case, monopoles
interact with a potential ∝ 1/x and are, thus, always in a confining plasma phase, in the
non-relativistic case realized in JJA, they interact with the inverse of the spatial Laplacian,
which gives a (e2

eff/2π)log|x| potential in 2d with e2
eff = π2l0ωP/g. Monopoles thus

undergo a quantum BKT transition with g playing the role of an inverse temperature. For
low values of g, instantons are free and confine probe charges; at the SIT, instead, instantons
become confined, and probe charges are liberated.

To see how instantons modify the Coulomb potential and cause linear confinement,
we compute the expectation value of the Wilson loop operator W(C), where C is a closed
loop in 3D Euclidean space-time restricted to the plane formed by the Euclidean time and
one of the space coordinates. This gives the interaction potential between two external
probe charges of strength ±qext:

〈W(C)〉 = 1
ZAµ ,Mi

∑
{Mi}

∫ +π

−π
DAµ e−

g
4π`0ωP

∑x(Fi−2πMi)
2

eiqext ∑C Aµ , (36)

where we absorbed a factor l in Aµ. A linear interaction between the probe charges will
give rise to an area law: [37,43]

〈W(C)〉 = e−σA , (37)

where A is the area of the surface S enclosed by the loop C and σ is called the string
tension [37,43].

Using the lattice Stoke theorem, one rewrites Equation (36) as

〈W(C)〉 = 1
ZAµ ,Mi

∑
{Mi}

∫ +π

−π
DAµ e−

g
4π`0ωP

∑x(Fi−2πMi)
2

eiqext ∑S Si(Fi−2πMi) , (38)
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where the quantities Si are unit vectors perpendicular to the plaquettes forming the surface
S encircled by the loop C and vanish on all other plaquettes. We have also multiplied
the Wilson loop operator by 1 in the form exp(−i2πqextMi) on all plaquettes forming S.
Repeating the steps that lead to Equation (35), we obtain,

〈W(C)〉 = 1
Zm

∑
{m}

e−
πg

`0ωP
∑x mx

1
−∆ mx ei2πqext ∑S ∆̂iSi

1
−∆ mx , (39)

where we neglected Z0, which is not relevant for what follows [6].
We now perform the sum over the instantons. To this end, we introduce an auxiliary

scalar field χ and write the quadratic term in the instantons in Equation (39) as a Gaussian
integral. At low g, in the deep superinsulating regime, we use the dilute instanton approxi-
mation, summing only over the single-monopole configuration m = ±1. This gives [43],

〈W(C)〉 = 1
ZØ

∫
Dχ e−

`0ωP
4πg ∑x ∆iχ∆iχ+

8πg
`0ωP

z(1−cos(χ+qextη)) , (40)

where the angle η = 2π∆̂iSi/(−∆2) represents a dipole sheet on the Wilson surface S, and
the monopole fugacity z is determined by the self-interaction as

z = e−
πg

`0ωP
G(0) , (41)

with G(0) being the inverse of the 2D Laplacian at coinciding arguments. Equation (40) can
be rewritten as:

〈W(C)〉 = 1
ZØ

∫
Dχ e−

`0ωP
2πg ∑x

1
2 ∆i(χ−qextη)∆i(χ−qextη)+µ2(1−cos(χ)) , (42)

where we define µ2 = 4πgz/`0ωP and we shift χ→ χ− qext.
To compute the string tension σ, we have to evaluate the integral Equation (42) for

both Cooper pairs, with qext = 1 and single electrons, corresponding to qext = 1/2 in our
case. To evaluate Equation (42) we use the saddle point approximation,

∆2χcl = qext∆2η + µ2sinχcl , (43)

valid for small g where the integral is dominated by the classical solution to the equation of
motion. This reduces the problem to a one-dimensional equation when we consider time
and one spatial coordinate, e.g., in the (t, x2) plane far from the boundaries of S:

∆̂x1∆x1χcl = −2πqext∆̂x1S1 + µ2sinχcl . (44)

To solve this equation, we use the continuum limit [43] with boundary conditions χcl → 0
for |x1| → ∞ . For Cooper pairs (qext = 1), we obtain:

χcl = sign(x1) 4 arctan e−µ|x1| , (45)

which gives Equation (37) with σ:

σ =
h̄ωP
`

√
16

πg`0ωP

√
z =

h̄ωP
`

√
16

πg`0ωP
e−

πg
2`0ωP

G(0) . (46)

The string binds together charges, prevents charge transport on arrays of a sufficient
size and is the origin of the infinite resistance characterizing superinsulation. If we consider,
instead, a single-electron probe, qext = 1/2, with the same boundary conditions, we obtain
the string tension

σelectrons =
1
2

σ , (47)
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which implies that single electrons are also confined. This explains why charge transport
mediated by thermally excited normal quasiparticles is not present in superinsulators.

From Equation (46), we can estimate the typical string size `string =
√

ch̄/σ. Taking
the following typical values for the experimental JJA, ` = 100 nm and ωP = 10 GHz, and
taking for `0ωP = O(1000), we arrive at `string/` ≈ 150 lattice spacing, which represents
the distance between the superconducting islands. This sets a minimum dimension for the
arrays to be able to accommodate an electric pion and to show superinsulation. To be able
to see superinsulation in JJA, moreover, it is necessary to lower the value of g, which, in
terms of the array parameters, implies increasing the vortex tunneling parameter EC. While
making g > 1 has been experimentally achieved in [41], the opposite limit seems to be more
difficult. It will require a “more insulating” substrate to be able to increase vortex mobility
and govern EC. Taking as an example the experiment realized in [41] in Al/InAs JJA, we
can imagine an exposed substrate which forms a “dual lattice” with a mechanism that
can control the vortex tunneling and, thus, EC. In a system like this, it will be possible to
independently vary EJ and EC, the key features to explore the phase diagram of the model.
We predict that, in this case, it will also be possible to observe superinsulation in JJAs.
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