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Abstract: This study aimed to probe the effect of heat treatment on zinc oxide nanoparticles doped
with ruthenium through a chemical co-preparation technique. Pure ZnO and Ru-doped ZnO nanopar-
ticles, with the general formula Zn1−x−RuxO, were synthesized for 0 ≤ x ≤ 0.04. Using the same
starting precursors, the growth temperature was 60 ◦C and 80 ◦C for set A and set B, respectively,
whereas the calcination temperature was 450 ◦C and 550 ◦C for set A and set B, respectively. For
the structure investigation, X-ray powder diffraction (XRD) revealed that the crystallite size of set A
was smaller than that of set B. For x = 0.04 in set B, the maximum value of the crystallite size was
attributed to the integration of Ru3+ ions into interstitial sites in the host causing this expansion.
Fourier transform infrared spectroscopy (FTIR) confirmed the formation of zinc oxide nanoparticles
by showing a Zn-O bonding peak at 421 cm−1. For x = 0.04 in set B, the divergence confirmed the
change in bonding properties of Zn2+ distributed by Ru3+ doping, which verifies the presence of
secondary-phase RuO2. Using UV–visible spectroscopy, the energy gap of set A swings as ruthenium
doping increases. However, in set B, as the crystallite size decreases, the energy gap increases until
reversing at the highest concentration of x = 0.04. The transition from oxygen vacancy to interstitial
oxygen, which is associated with the blue peak (469 nm), increases in set A under low heating condi-
tions and decreases in set B as Ru doping increases, as revealed in the photoluminescence optical
spectra of the samples. Therefore, ruthenium doping proves a useful surface defect and generates
distortion centers in the lattice, leading to more adsorption and a remarkable advantage in sunscreen
and paint products used for UV protection.

Keywords: ZnO nanoparticles; ruthenium; UV–vis; photoluminescence

1. Introduction

Due to its distinctive optical characteristics and numerous uses in industries like elec-
tronics, optoelectronics, photocatalysis, and sensor technology, zinc oxide (ZnO) nanoparti-
cles have attracted considerable attention [1,2]. ZnO is a good contender for optoelectronic
devices and photonics since it is a semiconductor material with a wurtzite crystal structure
and a straight wide bandgap (3.37 eV) at ambient temperature [3–5].

It has been discovered that by adding dopant elements to the ZnO lattice, researchers
were able to modify the main characteristics of the material to match certain application
needs, increasing its adaptability and performance. As for optical behavior, changes in
the bandgap energy, emission, and absorption features, are a few examples of the doping
effect. Therefore, it is now essential to understand how doping influences ZnO’s optical
properties [6–10]. Singh et al. [11] reported that the crystallite size decreases with ruthenium
(Ru) doping in zinc oxide (ZnO) and confirmed the presence of a secondary phase (RuO2)
at high doping concentrations (4 wt% and 5 wt%). Habanjar et al. [12] reported the practical
application in spintronic and biomedical applications after observing the enhancement
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of ferromagnetism with Ru doping in ZnO nanoparticles. Ghosh et al. [13] synthesized
Ru-doped ZnO nanoparticles by a chemical route and noted that the bandgap decreases as
Ru doping increases, which is useful for potential visible light photocatalytic applications.
Moreover, according to photoluminescence analysis, Kumar et al. [14] suggested that Ru-
doped ZnO may be very suitable for nano-optoelectronic devices due to its narrowing in
the bandgap and the formation of single ionized oxygen vacancy.

Wehbi et al. [15] synthesized ZnO, NiO, and Mn2O3 nanoparticles; additionally,
they formed ZnO-NiO-Mn2O3 nanocomposites and studied their photocatalyst activity
under UV light across different irritation times. It was found that NiO and Mn2O3
nanoparticles enhanced both the photocatalytic activity and the stability and durability
against photo-corrosion in the prepared nanocomposites, thereby leading to a long-term
photocatalytic application. Matei et al. [16] illustrated that ruthenium acted as a promoter
for ZnO/SBA-15 photocatalytic degradation of methylene blue dye. This was studied
under various light sources, pH levels, and compositions. In another study conducted
by Vaiano et al. [17], a promising photocatalytic behavior was confirmed for the removal
of methyl orange azo dye using a Ru-doped Zn photocatalyst. The optimal catalyst
exhibited 1216 µmol L−1 hydrogen production after 4 h of UV irritation for 0.25 wt%
Ru-doped ZnO. Recently, Albadri et al. [18] demonstrated the potential of a mesoporous
Ru-ZnO@g-C3N4 nanocomposite as an effective and sustainable photocatalyst for the
degradation of organic pollutants, especially in the case of methylene blue degradation
under UV light irradiation. This enhanced photocatalytic activity was attributed to the
combination of Ru-ZnO and g-C3N4, which improved mass transfer and provided a
larger surface area that promotes the generation of reactive oxygen species, thus leading
to higher degradation.

One of the key components of their utility is the controlled manufacturing of ZnO
nanoparticles with certain characteristics. Over the years, numerous techniques have been
developed to obtain nanoscale ZnO, each with unique benefits and drawbacks, including
chemical co-precipitation [19], sol-gel [20], and hydrothermal [21] methods. The significance
of chemical co-precipitation to regulate ZnO’s size, shape, and surface characteristics
makes it essential [22]. Jayasankari et al. [23] synthesized ZnO nanoparticles via the co-
precipitation method for the photocatalytic degradation of Eosin yellow and direct blue 15.
Calcinated at 350 ◦C for 2 h, the samples showed a good purity without any impurities,
and the samples were considered good candidates for photocatalytic activity. Also, ZnO
nanoparticles were reported by Usman et al. [24] for the enhancement of bactericidal action.
The samples were prepared via a co-precipitation method and dried overnight at 150 ◦C,
and the powder was obtained by mechanical grinding. Another study reported the effect
of calcination temperature on the structure and morphology of ZnO nanoparticles [25]. The
agglomeration increased with calcination at 500◦C, but as the temperature rose, there was a
notable decrease in agglomeration as a result of nanoparticle separation. Particle growth at
higher calcination temperatures led to a rise in particle size, which in turn promoted the
formation of ZnO nanoflakes.

This work aims to study the effect of growth and calcination temperatures on Zn1−xRuxO
nanoparticles by a chemical co-precipitation technique. The structures of the samples were
investigated via X-ray diffraction. The optical properties were studied by UV–vis analysis
and photoluminescence spectroscopy to identify the favorable preparation conditions for
different applications.

For crystallographic analysis, the prepared Zn1−xRuxO powder was examined
using a Brucker D8 diffractometer with Cu-Kα radiation (λ = 1.54056 Å) over a typical
2θ scan range of 20 to 80◦ . Then, Material Analysis Using Diffraction (MAUD) software
was used to examine the patterns. For chemical bonding and molecular structures,
Fourier transform infrared spectroscopy (FTIR) was employed using a Thermo Scientific
Nicolate iS5 spectrum in the infrared region between 400 and 4000 cm−1. For the optical
analysis, Zn1−xRuxO nanoparticles were dissolved in ethanol at room temperature
and tested with an ultraviolet–visible near–infrared (NIR) spectrophotometer V-670
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by which the energy bandgap was investigated. Moreover, a JASCO FP-8500 was
used for the photoluminescence study with a wavelength range of 200–800 nm with
350 nm excitation.

2. Results and Discussion

The structure was investigated via X-ray diffraction as shown in Figure 1a,b for set A
and set B, respectively. For both sets, sharp and intense peaks were observed at 2θ values
of 31.86◦, 34.52◦, 36.35◦, 47.64◦, 56.68◦, 62.96◦, 66.47◦, 68.05◦, 69.17◦, 72.68◦, and 77.07◦ [26].
This verifies the fingerprint of wurtzite hexagonal ZnO for crystal planes with space group
P63mc and agrees with the standard JCPDS data (Card No. 36–1451) [27]. For Set A, RuO2
appeared as a minor phase at crystal planes (110), (101), and (221) at 2θ values of 28.18◦,
35.12◦, and 54.32◦, respectively [28]. However, small broad peaks were observed in set B
at the highest Ru doping concentration (x = 0.04). This may be due to the solubility limit
of Ru atoms in the ZnO lattice, which is influenced by the lower heating and calcination
temperature in set A compared to set B [11].
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Figure 1. X-ray diffraction peaks of Zn1−xRuxO nanoparticles with (0 ≤ x ≤ 0.04) in (a) set A and
(b) set B, where * is related to RuO2 phase.

To verify the crystal structure, Rietveld refinement was performed using MAUD
software to check the purity of the samples. Figure 2a–d feature the refinement of the
Zn1−xRuxO samples of set A and set B for x = 0.00 and 0.04, respectively. Rietveld refine-
ment confirmed the formation of the hexagonal wurtzite structure of the ZnO nanoparticles
in both set A and set B with RuO2 as a secondary phase with a goodness of fit of ≈1.
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Figure 2. XRD refinement of Zn1−xRuxO nanoparticles (a) for x = 0.00, (b) for = 0.04 in set A and
(c) for x = 0.00, (d) for x = 0.04 in set B.

Table 1 lists the structural parameters calculated by the following equations [29–32].

Crystallite size D =
kλ

β cos θ
(nm) (1)

Volume fraction V =

√
3
2

a2 × c (m3) (2)

Bond length L =

√
(

a2

3
+

(
1
2
− u

)2
c2 (Å) (3)

Specific surface area S =
6
ρxD

(m2/g) (4)

Dislocation density δ =
1

D2 (lines/m2) (5)

Table 1. Zn1−xRuxO structural parameters for set A and set B.

Ru/Zn
Ratio x

Crystallite
Size (nm)

Unit Cell
Volume (m3)

Bond
Length (Å)

Dislocation
Density

× 1014 (Lines/m2)

Specific
Surface Area
× 103 (m2/g)

Se
tA

0.00 60.67 47.765 1.9798 2.72 5.83
0.01 50.00 47.796 1.9802 4.00 7.04
0.02 49.86 47.806 1.9803 4.02 7.05
0.04 45.64 47.776 1.9799 4.80 7.61

Se
tB

0.00 88.68 47.762 1.9797 1.27 3.99
0.01 59.15 47.777 1.9799 2.86 5.95
0.02 56.69 47.789 1.9801 3.11 6.18
0.04 57.11 47.880 1.9813 3.07 6.10

The variation in the lattice parameters, calculated using MAUD software, is repre-
sented by a comparison histogram in Figure 3 for set A and set B Zn1−xRuxO nanoparticles.
The lattice parameters reduce its value as the heating temperature increases in set B, similar
to the findings reported by Kayani et al. [33] while studying the effect of calcination temper-
ature on ZnO nanoparticles. As ruthenium doping increases, the lattice parameters increase,
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confirming the increase in crystallite size shown in Table 1. Such trends are attributed to
the increase in surface dangling bonds that tend to increase the bond length (L). Obviously,
lattice parameters (a) and (c) showed an increasing tendency with the volume fraction (V)
and bond length (L) with the reduction in the crystallite size as Ru doping increases, as
shown in Table 1. This may be due to a change in cation–anion attraction forces as Ru3+

ions are integrated into the Zn2+ interstitial position, leading to a change in the samples’
electronegativity [34].
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As seen, the crystallite size decreases as Ru doping increases in both sets; this result
is due to the large molecular weight of the dopant (Ru) compared to the host (Zn) atoms,
initiating an increase in the grain boundaries, resulting in the decrease in the crystallite
size [35]. The impurity phase of RuO2 shows a remarkable rise as Ru doping increases,
caused by the large ionic difference between the dopant Ru3+ (0.068 nm) and the host Zn2+

(0.0074 nm) [36,37]. This large ionic difference prevents the dopant from incorporating into
the host atoms leading to an increase in the crystallite size, as depicted in Table 1 [38]. From
Equations (4) and (5), the specific surface area and the dislocation density are inversely
proportional to the crystallite size. Accordingly, the structural parameters (δ) and (S) show
a good correlation with the reduction in the crystallite size and a rise in the free surface
energy in both set A and set B [39,40].

Energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM)
were used to study the effects of ruthenium (Ru) doping in the zinc (Zn) site. Figure 4a,
in addition to the inset in the SEM figure at a scale of 30 µm, establishes the impact of Ru
doping on the elemental composition of Zn and labels the resulting changes in both the Ru
and Zn concentrations. Figure 4b demonstrates that the weight percentage (wt%) of Ru
increases while that of Zn decreases as a direct consequence of Ru doping. These findings
provide valuable insights into the fundamental mechanisms governing these materials and
the accurate preparation technique.

The FTIR spectra of the Zn1−xRuxO nanoparticles for set A and set B are shown in
Figure 5. These spectra reveal the vibrations of various components; thus, the basis of
the functional groups found in the prepared samples can be analyzed. Two broad peaks
centered at 3440 cm−1 and 1570 cm−1 belong to the O-H stretching band and O-H-O
bending modes, respectively. As the growth temperature increases from set A to set B, the
O-H stretching shifts, which may be due to the distilled water added during the sample
preparation [41]. When comparing the two sets, the larger peak in set B corresponds to
the lower heating temperature in set A [42]. Another adsorption band found in both sets
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around 2360 cm−1 is assigned to the C=O stretching mode, which is relevant to CO2 present
in the atmosphere [43].
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In all the spectra, significant peaks are observed in the infrared region and are labeled
as E1(TO) for bands around 430 cm−1 and surface phonon modes (SPMs) for bands at
484 cm−1 and 533 cm−1 [44]. Table 2 lists the infrared band data and Zn/Ru-O band data
for the Zn1−xRuxO nanoparticles. The vibrational frequencies in set A are shifted forward
compared to those in set B and show higher wavelength values. This shift may be due to
the change in the bond length when replacing Zn2+ with Ru3+, causing a change in the
crystal structure. This is consistent with the XRD results from which the alteration in the
bond length is recorded. Using the band position E1(TO), the vibrational frequency of the
Zn/Ru-O bond may be calculated as follows [45]:

ν =
1

2πc

(
k
µ

)0.5
(6)
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where (ν) is the wavenumber, the speed of light is (c), and (k) is the force constant calculated
as a function of the bond length L, as k = 17/L3 [46]. The effective mass µ is estimated
as follows [47]:

µ =
MO × [xMRu + (1 − x)MZn]

MO + [xMRu + (1 − x)MZn]
(7)

where (MO), (MRu), and (MZn) are the molecular weights of oxygen, ruthenium, and zinc,
respectively. Srinet et al. [48] calculated the effective mass of pure ZnO nanoparticles,
resulting in the exact values listed in Table 2. As Ru is doped in the host atoms, the effective
mass, force constant, and bond length increase simultaneously; this change is anticipated
since (Ru) has a greater atomic weight than (Zn); this result is consistent with the findings
of the XRD study, as depicted in Table 1.

Table 2. Infrared band data and Zn/Ru-O bond data for the Zn1−xRuxO nanoparticles in set A and
set B.

Ru/Zn
Ratio x

Wave Number (cm−1) Effective Mass Force Constant Bond Length
Zn/Ru-O

ŠE1(TO)Š SPM ŠA(TO)Š µ (kg) × 10−26 K (N cm−1) r (Å)

Se
tA

0.00 430 468 2.134 1.402 1.3660
0.01 437 474 2.136 1.449 1.3603
0.02 439 478 2.138 1.464 1.3585
0.04 444 481 2.143 1.501 1.3544

Se
tB

0.00 427 462 2.134 1.382 1.3684
0.01 429 470 2.136 1.397 1.3666
0.02 430 474 2.138 1.405 1.3656
0.04 431 480 2.143 1.414 1.3645

For the investigation of the optical properties, UV–vis was used to study the optical
topographies such as the energy band gap (Eg) and Urbach energy (Eu). Figure 6 presents
the absorbance spectra for the Zn1−xRuxO nanoparticles in set A and set B. The fingerprint
of the ZnO nanoparticle is sharply seen near the UV region. This refers to the intrinsic
optical band gap of ZnO [49]. The absorbance peak becomes red-shifted, from 378 nm in
set A to 372 nm in set B, due to the absorption-induced transition of electrons from the
valence band to the conduction band, confirming the increase in the crystallite size [50].
The following sharp decrease in the visible region reflects the transmittance’s improvement
in the visible region.

For the determination of the energy gap (Eg), the first derivative of the UV–vis ab-
sorbance was used and is shown in Figure 7. (Eg) represents the intersection of dA/dE with
the energy axis [51]. In both sets A and B, the energy bandgap increases as the Ru doping
concentration increases. The quantum confinement effect is manifested when (Eg) increases
with the decrease in particle size [52]. Comparing the changes in set A and set B, a blue
shift in set B is noticed, showing that as ruthenium is doped in ZnO, oxygen vacancies may
occur in the host structure, allowing electrons to be liberated towards the conduction band
and charge positively [53,54].

Urbach energy (Eu) refers to transitions between the enhanced valence and conduction
bands. The transition between the valence band (VB) and conduction band (CB) increases
with a higher number of defects in set A. The Urbach empirical rule is given by [55]:

A = Aoe
hν
Eu (8)

where (A) and (hν) are the adsorption coefficient and incident photon energy, respectively,
while (Ao) is a constant. The linear fit of the plot ln(A) versus (hν) shown in Figure 8
represents the value of the Urbach energy. The higher values (Eu) in set A refer to a
higher magnitude of disorder that exists in the nanoparticles, which directly flow under
the crystallite size variation, as reported by Ngapal et al. [56]. Figure 9 shows an inversely
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proportional variation between (Eg) and (Eu), as reported by Singh et al. [57]. Moreover,
the highest concentration (x = 0.04) in set B showed a slight increase in the Urbach energy,
confirming the secondary phase RuO2 shown in the XRD refinements and the increase in
the crystal disorder.

Condens. Matter 2023, 8, x FOR PEER REVIEW 9 of 18 
 

 

μ M  xM 1 x MM  xM 1 x M  (7)

where (MO), (MRu), and (MZn) are the molecular weights of oxygen, ruthenium, and zinc, 
respectively. Srinet et al. [48] calculated the effective mass of pure ZnO nanoparticles, re-
sulting in the exact values listed in Table 2. As Ru is doped in the host atoms, the effective 
mass, force constant, and bond length increase simultaneously; this change is anticipated 
since (Ru) has a greater atomic weight than (Zn); this result is consistent with the findings 
of the XRD study, as depicted in Table 1. 

Table 2. Infrared band data and Zn/Ru-O bond data for the Zn1−xRuxO nanoparticles in set A and 
set B. 

Ru/Zn (break/) 
Ratio x 

Wave Number (cm−1) Effective Mass Force Constant 
Bond Length 

(break/) 
Zn/Ru-O │E1(TO)│ SPM │A(TO)│ μ (kg) × 10−26 K (N cm−1) r (Å) 

Se
t A

 0.00 430 468 2.134 1.402 1.3660 
0.01 437 474 2.136 1.449 1.3603 
0.02 439 478 2.138 1.464 1.3585 
0.04 444 481 2.143 1.501 1.3544 

Se
t B

 

0.00 427 462 2.134 1.382 1.3684 
0.01 429 470 2.136 1.397 1.3666 
0.02 430 474 2.138 1.405 1.3656 
0.04 431 480 2.143 1.414 1.3645 

For the investigation of the optical properties, UV–vis was used to study the optical 
topographies such as the energy band gap (Eg) and Urbach energy (Eu). Figure 6presents 
the absorbance spectra for the Zn1−xRuxO nanoparticles in set A and set B. The fingerprint 
of the ZnO nanoparticle is sharply seen near the UV region. This refers to the intrinsic 
optical band gap of ZnO [49]. The absorbance peak becomes red-shifted, from 378 nm in 
set A to 372 nm in set B, due to the absorption-induced transition of electrons from the 
valence band to the conduction band, confirming the increase in the crystallite size [50]. 
The following sharp decrease in the visible region reflects the transmittance’s improve-
ment in the visible region. 

 
Figure 6. UV–vis spectra for the Zn1−xRuxO nanoparticles in (a) set A and (b) set B. Figure 6. UV–vis spectra for the Zn1−xRuxO nanoparticles in (a) set A and (b) set B.

Condens. Matter 2023, 8, x FOR PEER REVIEW 10 of 18 
 

 

For the determination of the energy gap (Eg), the first derivative of the UV–vis ab-
sorbance was used and is shown in Figure 7. (Eg) represents the intersection of dA/dE with 
the energy axis [51]. In both sets A and B, the energy bandgap increases as the Ru doping 
concentration increases. The quantum confinement effect is manifested when (Eg) in-
creases with the decrease in particle size [52]. Comparing the changes in set A and set B, 
a blue shift in set B is noticed, showing that as ruthenium is doped in ZnO, oxygen vacan-
cies may occur in the host structure, allowing electrons to be liberated towards the con-
duction band and charge positively [53,54]. 

 
Figure 7. UV–vis absorbance of the first derivative of the Zn1-xRuxO nanoparticles in set A for (a) x = 
0.00 and (b) x = 0.04 and in set B for (c) x = 0.00 and (d) x = 0.04. 

Urbach energy (Eu) refers to transitions between the enhanced valence and conduc-
tion bands. The transition between the valence band (VB) and conduction band (CB) in-
creases with a higher number of defects in set A. The Urbach empirical rule is given by 
[55]: A A e  (8)

where (A) and (hν) are the adsorption coefficient and incident photon energy, respectively, 
while (Ao) is a constant. The linear fit of the plot ln(A) versus (hν) shown in Figure 8 rep-
resents the value of the Urbach energy. The higher values (Eu) in set A refer to a higher 
magnitude of disorder that exists in the nanoparticles, which directly flow under the crys-
tallite size variation, as reported by Ngapal et al. [56]. Figure 9 shows an inversely pro-
portional variation between (Eg) and (Eu), as reported by Singh et al. [57]. Moreover, the 
highest concentration (x = 0.04) in set B showed a slight increase in the Urbach energy, 
confirming the secondary phase RuO2 shown in the XRD refinements and the increase in 
the crystal disorder. 

Figure 7. UV–vis absorbance of the first derivative of the Zn1-xRuxO nanoparticles in set A for
(a) x = 0.00 and (b) x = 0.04 and in set B for (c) x = 0.00 and (d) x = 0.04.

Furthermore, Figure 10 shows a level diagram of the conduction band (ECB) and
valence band (EVB) for the Zn1xRuxO nanoparticles in set A and set B calculated by [58]:

ECB = χ − E0 − 0.5 Eg (9)

EVB = ECB + Eg (10)
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where χ and E0 are two constants related to electronegativity (5.79 eV) and free electron
energy (4.5 eV) [59]. The calculated energy was found to be around −0.32 eV for ECB and
around 2.93 eV for EVB, which showed a direct correlation with the UV–vis analysis. An
increase in the EVB as Ru doping increases is marked in both sets; this finding may be
directly related to the difference in the crystallite size, resulting in higher energy levels in
this region [60].
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The refractive index (n) is a major dielectric constant used in many manufacturing
applications such as those involving photoelectric, wave-guiding, and integrated optic
structures. (n) is calculated from the optical band gap energy and the empirical relation
using several models such as the Moss, Ravindra, Singh, and Herve and Vandamme models,
as listed in Table 3 and presented as follows [61–63]:

Moss: n4Eg = 95 (11)

Ravindra: n = 4.084 − 0.62 Eg (12)

Singh: n = k Eg
c (13)

Herve and Vandamme: n2 = 1 + (H/V +Eg)2 (14)



Condens. Matter 2023, 8, 102 12 of 18

where (k) and (s) are constants equal to 3.3668 and −0.32234, respectively. (H) and (V)
are, respectively, the ionization energy equal to 13.6 eV and the difference in the bandgap
UV resonance equal to 3.47 eV [63]. The dielectric constant (ε∞) is extracted from the
calculated values of the refractive index calculated from different models. Moreover, the
static dielectric constant is directly related to the energy band gap by the following relation
18.52–3.08 Eg [64]. The calculated values of n and the dielectric constants are listed in
Table 3. As a result, set B (x = 0.02) has a lower dielectric constant at a high frequency as
well as a lower refractive index, resulting in a better data storage application [65].
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Table 3. Dielectric constants calculated by different models for the Zn1xRuxO nanoparticles.

Ru/Zn
Ratio x

Refractive Index Static
Dielectric

Constant ε0

Dielectric Constant at
High-Frequency ε∞

nM nR nH-V nS (ε∞)M (ε∞)R (ε∞)H-V (ε∞)S

Se
tA

0.00 2.325 2.069 2.257 2.303 8.510 5.407 4.281 5.096 5.302
0.01 2.323 2.063 2.255 2.300 8.479 5.398 4.255 5.084 5.291
0.02 2.322 2.057 2.252 2.298 8.448 5.390 4.230 5.072 5.281
0.04 2.320 2.050 2.249 2.296 8.418 5.382 4.204 5.059 5.271

Se
tB

0.00 2.313 2.026 2.239 2.287 8.294 5.349 4.103 5.012 5.230
0.01 2.312 2.024 2.238 2.286 8.285 5.347 4.096 5.008 5.227
0.02 2.312 2.021 2.237 2.285 8.273 5.344 4.085 5.004 5.222
0.04 2.312 2.023 2.237 2.286 8.279 5.345 4.091 5.006 5.225

Analysis of the photoluminescence spectra provides an understanding of the gen-
eration and recombination of photo-generated electrons and holes. This understanding
is essential for predicting the photocatalytic activity potentials of the studied materials.
Figure 11 illustrates the PL spectra for all the prepared Zn1xRuxO nanoparticles for set
A and set B. The deconvoluted spectra, shown in the inset, depict the emission peaks for
blue, green, and red colors for both sets at 468 nm, 527 nm, and 625 nm, respectively. The
green emission at 527 nm shows a broader peak in set B with no remarkable shift. This
reveals a reduction in surface defect emission, which is verified by the specific surface area
results tabulated in Table 1. Set B (3.99 to 6.1 m2/g) shows a lower value than set A (5.83
to 7.61 m2/g). At 394 nm for set A, a high peak centered around the band edge emissions
drops to 386 nm for set B, confirming the quantum confinement effect noted in the UV–vis
analysis, leading to recombination of free excitons at a lower growth temperature [66]. This
blue emission shift is also confirmed by the Stoke shift illustrated in Figure 12. The Stoke
shift is the main peak difference between absorption and emission. Figure 12 demonstrates
a stack graph for UV–vis absorption and PL emission versus the wavelength for both sets.
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Considering the effect of Ru doping, the significant change in the area under the emission
curve shows increased photocatalytic efficiency due to recombination of photo-generated
electrons and holes [67].
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3. Experimental Techniques
Synthesis and Characterization

A co-precipitation method was used to synthesize pure ZnO and Ru-doped ZnO
nanoparticles with the general formula Zn1−xRuxO, where x = 0.00, 0.01, 0.02, or 0.04, as
summarized in the scheme of Figure 13. Solutions of 1 M zinc chloride (ZnCl2 ≥ 98%, Sigma
Aldrich) and 1 M ruthenium (III) chloride (RuCl3.xH2O ≥ 99.9%, Alfa Aesar) were prepared
in 50 mL of distilled water. Both solutions were mixed with different Ru contents with
continuous stirring. To avoid agglomeration, polyvinyl alcohol (PVA) solution was added
to dilute the solutions; the PVA solution was prepared by dissolving 4 g of PVA in 1 L of
distilled water under continuous stirring at 80 ◦C for 30 min. Then, 4 M sodium hydroxide
solution (NaOH) was added dropwise under continuous stirring to reach pH = 13. The
resultant basic solutions were divided into sets A and B for a heating process as follows:
set A was heated at 60 ◦C, and set B at 80 ◦C. To remove the impurities and neutralize both
solutions, the acquired grey precipitate was then washed repeatedly until the pH reached
7. Lastly, set A was dried at 100 ◦C, ground, and calcinated at 450 ◦C, whereas set B was
dried at 100 ◦C, ground, and calcinated at 550 ◦C.
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4. Conclusions

In this report, chemical co-precipitation was used to successfully synthesize
Zn1−xRuxO nanoparticles, with x = 0.00, 0.01, 0.02, and 0.04, under different thermal
conditions. Set A was synthesized at a growth temperature of 60 ◦C, followed by a
calcination temperature of 450 ◦C. On the other hand, set B was synthesized at a growth
temperature of 80 ◦C, with a subsequent calcination temperature of 550 ◦C. XRD analysis
revealed that higher growth temperatures resulted in smaller crystallite sizes and a de-
crease in the presence of secondary-phase RuO2. FTIR analysis confirmed the presence
of a Zn-O bond at 420 cm−1 in all prepared samples, supporting Rietveld refinement
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confirmation of ZnO structure formation for both set A and set B. For the elemental
composition, EDX successfully confirmed the doping of Ru in ZnO sites, where the wt%
of Ru increased from 0% to 2.88% as x increased from 0.00 to 0.04. Optically, UV–vis
analysis demonstrated an inverse relationship between the energy bandgap (Eg) and
crystallite size, with set B exhibiting a larger Eg (3.34 eV) than set A (3.28 eV) due to the
quantum effect confinement. Another inverse relationship was observed between the
energy bandgap (Eg) and Urbach energy (Eu), where higher calcination temperatures
resulted in fewer defects and a lower Eu, while doping with ruthenium increased defects
and agglomerations at high doping concentrations (for x = 0.00, the set A Urbach energy
was equal to 2.5 eV, while for set B, the Urbach energy was equal to 2.2 eV). Furthermore,
set B exhibited a lower photoluminescence intensity, suggesting an improved photo-
catalytic activity attributed to a lower specific surface area. Finally, set B showcased
advanced properties suitable for spintronic and optical applications. Based on the ex-
isting literature that emphasizes the significance of the photodegradation of ZnO, our
future work will primarily focus on investigating the photodegradation capabilities of
nanoparticles under sunlight, specifically targeting various types of dyes.
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