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Abstract: Charge density waves (CDWs) profoundly affect the electronic properties of materials and
have an intricate interplay with other collective states, like superconductivity and magnetism. The
well-known macroscopic Ginzburg–Landau theory stands out as a theoretical method for describing
CDW phenomenology without requiring a microscopic description. In particular, it has been instru-
mental in understanding the emergence of domain structures in several CDW compounds, as well as
the influence of critical fluctuations and the evolution towards or across lock-in transitions. In this
context, McMillan’s foundational work introduced discommensurations as the objects mediating
the transition from commensurate to incommensurate CDWs, through an intermediate nearly com-
mensurate phase characterised by an ordered array of phase slips. Here, we extended the simplified,
effectively one-dimensional, setting of the original model to a fully two-dimensional analysis. We
found exact and numerical solutions for several types of discommensuration patterns and provide a
framework for consistently describing multi-component CDWs embedded in quasi-two-dimensional
atomic lattices.

Keywords: charge density waves; Ginzburg-Landau theory; domain formation

1. Introduction

Various materials display phases with charge density waves: periodic modulation of
electronics charge density among a crystalline atomic lattice in (static) wave-like patterns.
The presence of CDWs impacts, among other things, the electronic and transport prop-
erties of materials. Furthermore, CDWs can influence the emergence of other collective
states, such as superconductivity or magnetism [1–10]. Theoretical models capturing the
qualitative physics of the CDW phase are well known both starting from a microscopic de-
scription, such as in the Peierls model [11,12], and in terms of macroscopic order parameter
theories based on the Ginzburg–Landau paradigm [13–16]. Moreover, recent advances in
experimental techniques and material synthesis have enabled the detailed exploration of
CDWs in various material classes, leading to tunable properties and potential applications
in areas like nanoscale electromechanics and energy storage [17–20].

Often, multiple charge ordered phases are present in the phase diagram of a single
material. Generically, these go from the high-temperature metallic phase to an incommen-
surate CDW at lower temperature, which can turn into an ordered array of commensurate
patches as it is cooled further, and finally, locks into the lattice to become a fully commen-
surate CDW at the lowest temperatures. Whether some or any of these states appear in the
phase diagram of any particular materials depends on their detailed material properties.

The incommensurate charge density waves (IC-CDWs) exhibit a periodic charge
density modulation that does not precisely match the underlying crystal lattice, in the sense
that the wave vectors describing their atomic displacements are not linear combinations of
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the pristine lattice vectors. The incommensurate wave vectors appearing in specific CDW
materials typically arise from the interplay between nesting in the electronic band structure
and the momentum dependence of electron–phonon coupling [21–28].

Upon cooling sufficiently, an IC-CDW may undergo a second transition into a com-
mensurate charge density wave (C-CDW) phase. In this state, the CDW wave vector is
a linear combination of lattice vectors. The “lock-in” of the CDW to the atomic lattice is
favoured by the Coulomb interaction between the positively charged atomic cores and
negatively charged electrons. Some materials also have a phase interpolating between the
high-temperature IC-CDW and the low-temperature C-CDW, characterised by an ordered
arrangement of commensurate patches separated by domain walls and topological defects.
Between commensurate patches, either the phase or the amplitude of the CDW can vary,
or both. The patches can have a variety of shapes and sizes, which generically depend on
temperature and pressure.

The initial theoretical exploration of this intermediate phase was undertaken by
McMillan in the context of 2H-TaSe2, laying the groundwork for understanding its phe-
nomenology [14,29,30]. In this work, McMillan introduced a model for an effectively
one-dimensional crystal structure with a single charge density wave. His investigation
showed that, within a specific temperature range, the formation of domain walls between
commensurate patches (discommensurations) becomes favourable as a result of the balance
between the contributions of the atomic lock-in energy and electron–phonon coupling. The
original paper is widely cited and has been extended and applied to several materials,
including higher harmonics or a position-dependent amplitude to model 2D discommensu-
ration patterns [31–33]. Among others, this has been used to show that the introduction
of a triple charge density wave in two dimensions reduces the IC-C phase transition in
2H-TaSe2 from a second- to a first-order transition [32]. Complementary to the extension
of the CDW Ansatz in the earlier works, we here focused on the effect of the curl term in
the free energy, which we considered using an exact minimisation of the free energy. This
adapts McMillan’s original Ansatz to general materials and, in particular, allowed us to
explore the theory in more-realistic, higher-dimensional settings.

The material investigated in the original study, 2H-TaSe2, can be argued to be approximated
by a combination of quasi-one-dimensional CDWs, because all CDW components align with
high-symmetry directions in the atomic lattice. In contrast, materials like 1T-TaSe2 or 1T-TaS2
exhibit a CDW wave vector that is rotated with respect to the atomic lattice [34,35], necessitating
a broader two-dimensional framework. Here, we will give a detailed derivation of McMillan’s
original results within a consistently two-dimensional theory. We will show that this leads to
novel predictions for the orientation of discommensuration lines in generic CDW materials that
are not captured in the simplified one-dimensional analysis.

2. Results
Single-Q Free Energy

A Ginzburg–Landau theory for charge order can be formulated for charge density
modulations α = ∑i Re(ψi). The CDW is then described by a sum of wave-like components
of the form ψi = ψ0ei(φi+~qi ·~r), where the amplitude ψ0 serves as the order parameter for
the multi-component CDW, while ~qi and φi describe the wave vector and phase of the
ith component. Spatial variations of ψ0 and φi may be used to describe the formation of
various types of domain walls.

The total free energy for a single-component (single-Q) charge density wave in two
dimensions can then be written as [29]

F =
∫

d2r
[

āα2 − bα3 + c̄α4 + e|~Q · (~∇− i~Q)ψ|2

+ f |~Q× ~∇ψ|2
]
.
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where ~Q is the preferred wave vector for the IC-CDW phase, which is determined by
the electronic nesting or, more generally, by the momentum at which the full electronic
susceptibility has a maximum [22,26–28]. The coupling constants ā, b, c̄, e, and f can be
(and typically are) dependent on parameters like temperature or pressure. The terms
proportional to e and f measure the energy cost of changing the CDW wave vector q away
from ~Q. Here, Fe (the term proportional to e) encodes the cost in energy of altering the
wavelength, while Ff is affected by rotations of the CDW wave vector.

The coupling constants can have spatial dependence as well, as long as they respect
the lattice symmetries. This can be ensured by expanding them in terms of reciprocal lattice

vectors ~Ki as ā(~r) = ā0 + ā1 ∑i ei~K(1)
i ·~r + . . . [29], where ~K(1)

i denote the shortest possible

reciprocal lattice vectors, ~K(2)
i the second shortest, and so on. A similar expansion can be

made for all coupling constants.
To reproduce the results of McMillan in describing the single-Q IC-CDW and C-CDW

phases in the quasi-two-dimensional material 2H-TaSe2, it suffices to include only the
constant part of ā, c̄, e, f , the terms up to b1 in the expansion of b, and a constant CDW
phase φ(r) = φ. All other terms either lead to higher-order effects or drop out of the
analysis when performing the integral in the free energy expression. Keeping only these
contributions, the free energy becomes:

F =
∫

d2r
[

ā0ψ2
0 cos2(φ +~q ·~r) + c̄0ψ4

0 cos4(φ +~q ·~r)

+
(

b0 + 2b1 cos
(
~K(1) ·~r

))
ψ3

0 cos3(φ +~q~r)

+ e0ψ2
0 |~Q · (~q− ~Q)|2 + f0ψ2

0 |~Q×~q|2
]
.

The spatial integrals over odd powers of periodic functions vanish, because of their
cancelling positive and negative contributions. This can be used to also evaluate the
integrals over even powers of a periodic function by using trigonometric addition formulae.
As an explicit example, consider the Fa term with the wave vector for its periodic function
written as ~q = 2π

λ (cx, cy, 0). Here, we take c2
x + c2

y = 1 such that λ = 2π/|q| is the
CDW’s wavelength. We can then define a periodically repeated unit cell for the function
cos2(φ +~q ·~r) with edge lengths in the x and y directions equal to λ/cx and λ/cy. The free
energy density Fa for this term then becomes:

Fa =
cxcy

λ2

∫ λ/cx

0

∫ λ/cy

0
ā0ψ2

0 cos2(φ +~q ·~r) dx dy

=
cxcy

λ2

∫ λ/cx

0

∫ λ/cy

0
ā0ψ2

0 cos2(~q ·~r) dx dy

=
cxcy

λ2

∫ λ/cx

0

∫ λ/cy

0
ā0

ψ2
0

2
(1 + cos(2~q ·~r)) dx dy

=
ψ2

0 ā0

2
.

The shift introduced in the periodic function in the second line is made possible by
the fact that we integrated over an entire unit cell of the periodically repeating pattern. The
cosine in the third term contributes zero when integrated over due to its periodicity, and
only the constant term in the third line is left.

The analysis can be repeatedly used to evaluate any of the integrals appearing in
the Ginzburg–Landau theory. For the term Fc, we use cos4(z) = 3/8 + 1/2 cos(2z) +
1/8 cos(4z), and the only term surviving the integral is 3/8, yielding Fc = 3c̄0ψ4

0/8. For
the elastic energy Fe, we have

Fe =
1
A

∫
e0ψ2

0 |~Q · (~q− ~Q)|2 d2r.
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Since the integrand is constant, this simply yields Fe = e0ψ2
0 [Qx(qx −Qx) + Qy(qy −

Qy]2. Similarly, the term proportional to f becomes F f = f0ψ2
0 |~Q×~q|2. As the b0 term is odd,

it vanishes. The b1 term, however, can give a non-zero contribution due to the lattice vectors Ki:

Fb1 = −
∫

2b1ψ3
0 cos

(
~K(1) ·~r

)
cos3(φ +~q ·~r) d2r

= − b1ψ3
0

4

(
3 cos(φ) δ~K(1),±~q + cos(3φ) δ~K(1),±3~q

)
.

Again, the integrals over all odd powers of the cosine vanish, except when the argument
itself is zero. This happens when either ~Ki = ±~qi or ~Ki = ±3~qi as the cosine can be expanded
using cos3(z) = 1

4 (3 cos(z) + cos(3z)). This b1 term represents the lock-in energy coming
from the Coulomb interaction between the atomic lattice and the electrons in the CDW.

Combining all terms gives the free energy density:

F =
ā0ψ2

0
2

+
3c̄0ψ4

0
8

− b1ψ3
0

4

(
3 cos(φ)δ~K(1),±~q + cos(3φ)δ~K(1),±3~q

)
+ e0ψ2

0 |~Q · (~q− ~Q)|2 + f0ψ2
0 |~Q×~q|2.

The equilibrium CDW configuration will minimise the free energy with respect to
the parameters ψ0, ~q, and φ. In the Fe and Ff terms, the energy is minimised when the
CDW wave vector ~q equals the preferred IC-CDW (“nesting”) vector ~Q. The Fb term,
however, is minimised when the CDW is commensurate with the atomic lattice, so that
either ~q = ±~K(1) or ~q = ±~K(1)/3. There are, thus, two competing processes, the lock-in
with the lattice coming from the b1 term and the nesting preference coming from the e0 and
f0 terms. The interplay between these effects at different temperatures will determine the
CDW phase diagram.

The b1 term also determines the CDW phase φ, since its contribution to the energy
is minimised for φ = 2πm when ~q = ~K(1) and for φ = 2πm/3 when ~q = ~K(1)/3. In both
cases, the preferred values of the phase are such that the electronic charge maxima in the
CDW coincide with a lattice position. For incommensurate values of ~q, the CDW phase
does not influence the energy at all, as any shift of the CDW pattern leaves the combined
CDW–lattice configuration invariant up to a redefinition of the origin.

3. Incommensurate Charge Density Wave

For incommensurate charge order within a two-dimensional atomic lattice, the CDW
wave vector~q equals the preferred “nesting” vector ~Q. All of the terms Fe, Fb, and Ff then
vanish, and the free energy density needs to be minimised only with respect to the order
parameter amplitude:

∂ψ0F = ψ0

(
ā0 +

3c̄0

2
ψ2

0

)
= 0.

Assuming that, to the lowest order in T− Tc, all temperature dependence is contained
in the quadratic term, we can write ā0 = ā′(T − Tc) [13]. This yields two regimes. The
first is for T > Tc, where ψ0 = 0 and there is no charge order (disordered, metallic phase).

The second regime with T < Tc has ψ0 =
√
−2ā0
3c̄0

and contains the incommensurate CDW

ψ = ψ0ei(φ−~Q·~r).
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For the sake of concreteness, we will consider this IC-CDW phase within a two-
dimensional implementation of the model for 2H-TaSe2 studied by McMillan [14]. We,
thus, introduce a hexagonal two-dimensional atomic lattice described by the lattice vectors:

~a1 = a0(

√
3

2
,

1
2

, 0), ~a2 = a0(−
√

3
2

,
1
2

, 0).

This gives the reciprocal lattice vectors:

K1 =
2π

a0
(1/
√

3, 1, 0), K2 =
2π

a0
(−1/

√
3, 1, 0).

The three-component IC-CDW in McMillan’s model for this material is assumed to
align with the three high-symmetry directions of the atomic lattice, but the length of its
wave vectors, |Q|, is observed to be 2% shorter than |K(1)/3| [29]. The IC-CDW wave
vectors then become:

~Q1 =
π

2.55a0
(1,
√

3, 0), (1)

with ~Q1, ~Q2, and ~Q3 related by three-fold rotations.
The charge modulation for the single IC-CDW component with wave vector ~Q1 is

shown in Figure 1. As the IC-CDW does not repeat over any integer number of lattice
points, the peaks in electron density indicated by black diagonal lines do not coincide with
the lattice points (black), except for a single line in the lower left corner.

Figure 1. Incommensurate charge density wave with the wave vector of Equation (1). The colour
scale indicates the electronic charge density modulation, ranging from −ψ0 in blue to +ψ0 in red. As
the IC-CDW does not repeat over an integer number of lattice points, the peaks of the CDW do not
coincide with the lattice points (black dots), except for a single line (lower left corner).

4. Commensurate Charge Density Wave

As temperature decreases, the amplitude of the order parameter ψ0 increases, causing
an increase in the contribution to F of the b1 term relative to that of the e0 term. Since the b1
and e0 terms favour different values of the wave vector~q, there may, thus, be a transition of
the CDW wave vector away from the “nesting” vector ~Q at low temperatures. The energy
cost due to the e0 and f0 terms encountered in a commensurate CDW is the lowest for the
commensurate wave vector closest to ~Q.

For 2H-TaSe2, the vector ~C = ~K(1)/3 is the closest commensurate vector, the “nesting”
vector ~Q, with only a 2% difference in wavelength between the two. The charge density
modulations for one of the components of this C-CDW is displayed in Figure 2 [29].
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Figure 2. C-CDW with wave vector ~C = ~K(1)/3. As the C-CDW repeats over a linear combination
of lattice vectors, the ridges of CDW peak intensity +ψ0 (red) always coincide with the rows of the
lattice points (black dots).

Substituting the C-CDW Ansatz in the free energy, the equilibrium value of its am-
plitude ψ0 and phase φ can again be determined by minimising the free energy. The
minimisation with respect to the phase always yields the locked-in value φ = 0. The
amplitude, on the other hand, is temperature dependent, and found to be zero above

the critical temperature Tc2 = Tc − 2e0
ā′ (

~Q · (~q− ~Q))2 +
b2

1
12c0 ā′ . At the threshold, there is a

first-order phase transition, and the amplitude jumps to:

ψ0 =
b1

4c0
(2)

+

√( b1

4c0

)2
− 2

3c0

(
ā′(T − Tc) + 2e0(~Q · (~q− ~Q))2

)
.

To determine whether the IC-CDW, C-CDW, or disordered phase will be energetically
favourable at any given temperature, we can compare the free energy densities of their
corresponding Ansatzs. In Figure 3, this is shown as a function of temperature for three
different values of the parameter b1 and (arbitrary) fixed values of the other parameters. At
each temperature, the IC-CDW and C-CDW energies are shown for the value of ψ0 that
minimises the energy for the corresponding Ansatz. In the grey area at high temperature, it
is not favourable for any CDW to form, and the phase is metallic (T > Tc). Going down in
temperature, the second, blue area indicates the IC-CDW being the lowest-energy solution.
Finally, the purple region shows the C-CDW with wave vector ~K(1)/3 being favoured.
Depending on the value of b1 = 0.07, the phase transitions separating these regions shift
in temperature. Notice that, in this particular case, ~K(1)/3 and ~Q lie in the same direction
such that F f is zero regardless of the value of the f0 parameter.
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0 5T
−0.03

−0.02

0.00

F

b1 = 0.070

0 5T

b1 = 0.075

0 5T

b1 = 0.080

Figure 3. The energies of the IC-CDW, C-CDW, and disordered phases as a function of temperature.
The blue line indicates the energy of the IC-CDW Ansatz with wave vector ~Q. The purple line gives
the energy of the C-CDW with wave vector ~K(1)/3. The grey area is the region where none of the
CDW Ansatzs have an energy lower than zero, and the disordered, metallic phase is favoured. The
blue area indicates the IC-CDW Ansatz having the lowest energy, and the purple area shows the
C-CDW being favoured. Here, we used the parameter values e0 = 0.04, c0 = 0.008, ā′ = 0.01, and
f0 = 0.

5. Discommensurations

So far, we have reproduced and given a pedagogical account of McMillan’s description
of the commensurate and incommensurate CDW phases in 2H-TaSe2 [29]. As shown by
McMillan, however, there may also be an intervening phase between the IC-CDW and
C-CDW phases, in which regions of commensurate CDW order are separated by lines
of phase slips or discommensurations [29]. Within the Ginzburg–Landau theory, these
defect lines can be included in the CDW order parameter ψ by allowing the phase φ to be
position-dependent. We, thus, consider the Ansatz:

ψ = ψ0ei(φ(~r)−~C·~r), (3)

such that, for φ being zero, the C-CDW with wave vector ~C is recovered, while for φ =
(~C + ~Q) ·~r, the IC-CDW is recovered. Notice that, for the specific case of McMillan’s model
for 2H-TaSe2, the preferred commensurate wave vector is again given by ~C = ~K(1)/3.
Moreover, adding integer multiples of 2π/3 to φ shifts the CDW pattern by an integer
number of lattice distances, which does not influence the energy.

The free energy in the presence of a position-dependent phase can again be considered
term by term. For general φ(~r), the contribution proportional to ā0 becomes:

Fa =
∫

ψ2
0 ā0

4
(2 + cos(2(φ(~r) +~q ·~r))) d2r.

This integral cannot be evaluated exactly without specifying φ(~r). For sufficiently
smoothly varying functions φ(~r), however, the second term in the integrand is approxi-
mately a plane wave everywhere. The integral over it, therefore, approximately vanishes,
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and the contribution from the first, constant term dominates: Fa ≈ ψ2
0a0/2. Similarly, we

found for the quartic term that Fc ≈ 3ψ2
0c0/8.

For the b term, we have:

Fb =
b1ψ3

0
4

∫ (
cos
(

3φ(r) + 3~q ·~r + ~K(1) ·~r
)

+ 3 cos
(

φ(r) +~q ·~r + ~K(1) ·~r
))

d2r.

The elastic energy term Fe becomes:

Fe =
∫

e0ψ2
0

(
~Q · (~K(1)/3− ~Q) + ~Q · ~∇φ(r)

)2
d2r.

Finally, the Ff term can be written as:

Ff =
∫

f0ψ2
0

(
~Q× ~K(1)/3 + ~Q× ~∇φ(r)

)2
d2r.

To find the function φ(r) that minimises F, we need to take the two-dimensional
functional derivative of the free energy and equate it to zero. This can be performed by
first writing the free energy as:

F = cst +
∫ (
− b1ψ3

0
4

cos(3φ)

+ e0ψ2
0(E0 + ~Q · ~∇φ)2 + f0ψ2

0(G0 + ~Q× ~∇φ)2
)

d2r.

Here, “cst” is independent of φ and will, therefore, not contribute to the functional
derivative. We also defined E0 = ~Q · (~K(1)/3 − ~Q) and G0 = ~Q × ~K(1)/3. Setting the
functional derivative of F with respect to φ equal to zero then yields:

3ψ0b1

4
sin(3φ)

= 2e0(Qx∂x + Qy∂y)(E0 + Qx∂xφ + Qy∂yφ)

+ 2 f0(−Qy∂x + Qx∂y)(G0 + Qx∂yφ−Qy∂xφ)

Simplifying this expression yields the differential equation:

3ψ0b1

8
sin(3φ)

= e0(Qx∂x + Qy∂y)
2φ + f0(Qx∂y −Qy∂x)

2φ. (4)

This expression can be recognised to be the differential equation describing the motion
of a simple pendulum, which is solved by the Jacobi amplitude function:

φ(x, y) =
2
3

am(c1(x + Sy) + c2, m) +
π

3
,

with m =
9ψ0b1

8c2
1(e0(Qx + QyS)2 + f0(QxS−Qy)2

.

The full two-dimensional function is specified by the parameters ψ0, c1, c2, and S.
Among these, the integration constants c1 and c2 can be constrained by specifying boundary
conditions on φ(x = 0, y = 0), as well as on ∂xφ(x, y)|x=0,y=0 and ∂yφ(y)|x=0,y=0. As a
reminder, some of the properties and special values of the Jacobi amplitude function are:
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am(x, 0) = x

am(x + c, 1) = π/2 ⇐⇒ c� 1

am(x + 2K, m) = am(x, m) + π

Here, K =
∫ π/2

0 dθ/
√

1−m sin2(θ) is the quarter period.
For McMillan’s model of 2H-TaSe2, the C-CDW phase is represented by φ = 2πn/3 with

n ∈ Z . This solution can be written as a Jacobi amplitude function in terms of the limit:

c2 � 1 c2
1 =

9ψ0b1

8(e0S2
1 + f0S2

2)
.

Here, S1 = Qx + SQy and S2 = QxS−Qy, so that the function φ(x, y) does not depend
on S for the C-CDW. The IC-CDW phase can similarly be written as a Jacobi amplitude
function by choosing:

S =
√

3 ψ0b1 = 0,

c2 = −π

2
c1 =

1
2
(3Qx − K(1)

x ).

The Jacobi amplitude function can also be used to interpolate between the IC-CDW
and C-CDW Ansatzs. For general parameter values, it has approximately constant sections
smoothly connected with steps of height 2π/3 occurring every 2K (shown in Figure 4).
This corresponds to a CDW Ansatz with commensurate patches separated by lines of phase
shifts across which the CDW is moved by precisely one lattice distance in its propagation
direction. These are the discommensurations that McMillan proposed for his model of 2H-
TaSe2 [29]. The direction or slope of the discommensuration lines in the two-dimensional
x, y plane is determined by the value of the parameter S.

0 10 20 30 40

x

0

2

4

6

8

φ
(x

,y
=

0)

Figure 4. A slice of the Jacobi amplitude φ(x, y = 0) = 2/3am(ux, m) + π/2 with u = 1 and
m = 0.9999 as a function of position x. The function has steps whenever x equals an integer multiple
of 2K = 11.98. The red dashed lines indicate integer multiples of 2π/3 along the y-axis.

5.1. The Equilibrium Configuration

With any specific set of values for the coupling constants in the free energy, the values
for ψ0 and the parameters in the Jacobi amplitude function yielding the lowest possible free
energy can be found using a numerical optimisation routine. The energy of the equilibrium
configuration for S =

√
3, ā′ = 0.01, b1 = 0.048, c0 = 0.04, e0 = 0.008, and Tc = 4.5 is

shown as a function of temperature in Figure 5 (red line). The value of f0 is irrelevant as
S2 = 0 for S =

√
3. For each temperature, numerical optimisation using the Nelder–Mead

algorithm is performed to find the parameter values that minimise the energy of the Ansatz
based on the Jacobi amplitude function on a lattice of 300× 300 sites. The energies of the
IC-CDW (blue line) and C-CDW (purple line) Ansatzs are shown for comparison.
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0 5T

0.000

−0.003

−0.009

−0.012

F

Figure 5. Free energies as a function of temperature for the IC-CDW Ansatz (blue line), the C-CDW
Ansatz (purple line), and the discommensuration Ansatz based on the Jacobi amplitude function
(red line). Here, we used S =

√
3, ā′ = 0.01, b1 = 0.048, c0 = 0.04, e0 = 0.008, and Tc = 4.5. For each

temperature, numerical optimisation using the Nelder–Mead algorithm was performed to find the
parameter values that minimise the energy of the Ansatz based on the Jacobi amplitude function on a
lattice of 300× 300 sites. The inset zooms in on the lines in the red area where the discommensuration
Ansatz has significantly lower energy than the IC-CDW and C-CDW.

Between the phases where either the IC-CDW or the C-CDW has the lowest energy, we
found a region where the discommensuration Ansatz using the Jacobi amplitude function
with finite-sized domains has the overall lowest energy. The optimised functions of φ for
different temperatures are displayed in Figure 6.

0 50

0

2π/3

4π/3

6π/3

φ

IC

0 50

x

NC

0 50

C

0.0 2.5 5.0

T

Figure 6. Slices of the phase φ(x, y = 0) as a function of position for different temperatures T, in
three different CDW phases. All φ were vertically offset to separate the curves. The IC-CDW phase
(left panel) has approximately no domain walls and becomes a straight line aligning with the exact
IC-CDW Ansatz (dashed black line) at high temperatures. Lowering the temperature, the lowest-
energy Ansatz crosses over into a regime with clear finite-sized discommensurations separating
domains of finite width (middle panel). The phase slip across each of the discommensurations is
2π/3. At even lower temperatures, the commensurate state obtains the lowest energy and φ becomes
constant (right panel). The value of φ = 2π/3 shown here is determined by the boundary conditions.
The optimisation was performed on a lattice of 300× 300 sites using S =

√
3, ā′ = 0.01, b1 = 0.048,

c0 = 0.04, e0 = 0.008, and Tc = 4.5.
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The Ansatz with the lowest energy is incommensurate for high temperatures, and φ is
approximately a straight line, as is visible in the left of Figure 6. The dashed black line shows
the exact IC-CDW Ansatz. The regime in the middle panel shows the discommensuration
phase with a domain of around the same width as those found by McMillan [29]. In the
right panel, the lowest-energy Ansatz is shown to be the C-CDW phase, in which φ is
constant. Because the equilibrium configurations were determined using a numerical
optimisation routine, the results can vary slightly depending on the initial conditions and
the search algorithm used. The qualitative behaviour shown in Figure 6 was verified in
multiple runs and with multiple choices for the initial conditions.

The parameter c1 determines the width of the domain walls and domain interiors, while
the constant c2 only shifts the Jacobi amplitude function as a whole. In this Ansatz, the width
of the domain wall and the domain’s interior are thus co-dependent. The c1 that minimises
the free energy in the discommensuration phase is determined by the coupling constants
coefficients e0 and b1, as well as ψ0. The slices visible in Figure 6 are one-dimensional cuts
through a two-dimensional structure. The fill two-dimensional pattern contain stripe-like
domains, with the domain walls perpendicular to the CDW propagation vector due to the
choice of S =

√
3, as shown for one particular choice of the parameters in Figure 7. Any

parallel one-dimensional cuts taken through the two-dimensional (infinitely large) structure
are equivalent, rendering the problem effectively one-dimensional.

5.2. Rotation in Two Dimensions

To observe the full effect of the CDW being embedded in two dimensions, we can
release the constraint on S and minimise the free energy for S, as well as the other param-
eters in the discommensuration Ansatz. This allows the orientation of the domain walls
to vary away from being perpendicular to the CDW propagation vector. An example of
the resulting discommensuration pattern is visualised in the bottom panel of Figure 7 for
S =

√
(3)− 1. This construction allows for the generalisation of McMillan’s Ansatz to truly

two-dimensional discommensuration configurations.

Figure 7. Electronic charge density modulations in the discommensuration phase. Here, we used
S =

√
(3) for the top panel and S =

√
(3)− 1 for the bottom. In both panels, we used c1 = 8, c2 = 0,

and m = 0.9999. The colour denotes the amplitude of the charge modulations, ranging from −ψ0 in
blue to ψ0 in red.
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The energy of the two-dimensional discommensuration Ansatz can be minimised with
respect to S, c1, c2, and ψ0 on a lattice of 200× 200 sites. This gives the patterns shown for
different temperatures in Figure 8 as the equilibrium configurations. The left panel displays
the one-dimensional slice φ(x, y = 0) for different temperatures. The right panel indicates
the orientation S of the domain walls as a function of temperature.

0 116x
0

2π/3

4π/3

6π/3
φ

0 5T 0.45 5.00T
1.6

√
3

1.8

S

Figure 8. Left panel: Slices of the phase φ(x, y = 0) as a function of the position for different
temperatures T, in three different CDW phases. All φ have been vertically offset to separate the
curves. At low temperatures, the C-CDW with a constant phase is found to have the lowest energy.
At high temperatures, the phase becomes a straight line matching the IC-CDW Ansatz shown as a
dashed black line. At intermediate temperatures, an Ansatz with clear discommensurations is most
favourable. Right panel: The orientation S of the domain walls in the Ansatz with lowest energy, as
a function of temperature. The horizontal dashed black line is the value S =

√
3 for which domain

walls appear perpendicular to the CDW wave vector. Here, we used ā′ = 0.01, c0 = 0.04, e0 = 0.0008,
f0 = 0.002, and Tc = 4.5.

At high temperatures, the lowest-energy Ansatz approaches the IC-CDW solution, and
the slope of the domain walls is found to be S =

√
3, indicating the domain walls are

perpendicular to the CDW wave vector. For the low-temperature C-CDW phase, in which
φ is constant and there is only a single domain, S loses meaning, and the temperatures in
which the C-CDW Ansatz has the lowest energy are omitted from the right panel of Figure 8.
In the discommensuration phase favoured at intermediate temperatures, the optimal value
for the slope S was found to vary between 1.65 and 1.8, surrounding the value S =

√
3. The

variation of S was confirmed not to originate in numerical artefacts by establishing its stability
under changing initial conditions. The two-dimensional electronic density modulations for
the configuration obtained when S has its lowest equilibrium value of 1.65 is displayed in
Figure 9. The small absolute value of the difference between 1.65 and

√
3 ≈ 1.73 implies that

the difference between Figures 7 and 9 is hard to see with the naked eye within the limited
field of view. Following the thinnest blue region in Figure 9 from the top to the bottom of the
figure, however, a small oscillation around the lattice sites can be distinguished.
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Figure 9. Electronic charge density modulations in the discommensuration phase. Here, we used
the parameter values obtained from the energy minimisation at T = 0.45, which were found to be:
S = 1.65, c1 = 8, c2 = −π/2, and m = 0.9999. The colour denotes the amplitude of the charge
modulations, ranging from −ψ0 in blue to ψ0 in red.

The energy cost associated with the variation of the CDW phase across domain walls
originates from the Fe and Ff terms in the free energy, while the energy gain of having the
local C-CDW structure within the domains is provided by the b1 term. Considering a regime
in which the b1 term is sufficiently dominant to favour the formation of discommensurations,
a domain wall could reduce the cost of the Ff term to zero by orienting itself perpendicular
to the CDW wave vector. The Fe term does cost energy in that case, because of the rapid
variation of the phase across the domain wall, making the local wave length appear shorter
than its preferred value. Starting from this situation, we can keep the width of the domain
wall constant, but rotate it slightly so as not to be perpendicular to the CDW wave vector
any longer. This will cost energy from the Ff term, but since it stretches the effective local
wave length observed within the domain wall, it reduces the Fe cost. The reduction in the cost
associated with Fe generically scales linearly with the rotation angle, while the increase in Ff
will generically be quadratic (since it starts from an absolute minimum). We, thus, expect it
to typically be favourable for S to deviate slightly from the orientation perpendicular to the
CDW wave vector, in agreement with the numerical results shown in Figure 8.

6. Conclusions

McMillan introduced discommensurations into the theory of charge density waves in
his seminal work on the Ginzburg–Landau model for 2H-TaSe2 [29]. This model showed
that it can be favourable for a charge density wave to create commensurate domains sepa-
rated by discommensurations rather than switching directly from a fully incommensurate to
a fully commensurate phase. The original treatment was of an effectively one-dimensional
model for a two-dimensional material. Here, we gave a detailed derivation of these original
results in a consistently two-dimensional setting and went beyond them by also allowing
for intrinsically two-dimensional discommensuration patterns and specifically the effect
of the curl in the free energy. The orientation of domain walls in the two-dimensional
configuration is governed by the competition between the lock-in effect, the preferred
orientation of local charge density modulations, and their preferred local wave length. We
showed that, as a result of this competition, discommensuration lines in two-dimensional
CDW materials will rotate away from being perpendicular to the CDW wave vector. Even
though the expected rotation angle will typically be small, the effect is predicted to occur
generically. When the direction of the incommensurate wave vector diverts further from the
commensurate one, such as occurs for example in 1T-TaSe2 or 1T-TaS2, the rotation angle of
domain walls may be expected to increase accordingly. The current results, thus, lay a basis
for the consistent modelling of discommensurations in quasi-two-dimensional materials in
general, including in particular within the family of transition metal dichalcogenides.



Condens. Matter 2023, 8, 100 14 of 15

Author Contributions: Conceptualization, L.M., J.v.d.B. and J.v.W.; formal analysis, L.M.; writing
L.M., J.v.d.B. and J.v.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silva, A.; Henke, J.; van Wezel, J. Elemental chalcogens as a minimal model for combined charge and orbital order. Phys. Rev. B

2018, 97, 045151. [CrossRef]
2. Kakehashi, Y.; Kakehashi, Y. Antiferromagnetism and spin density waves. In Modern Theory of Magnetism in Metals and Alloys;

Springer: Berlin, Germany, 2013; pp. 149–180.
3. Chang, J.; Blackburn, E.; Holmes, A.; Christensen, N.B.; Larsen, J.; Mesot, J.; Liang, R.; Bonn, D.; Hardy, W.; Watenphul, A.; et al. Direct

observation of competition between superconductivity and charge density wave order in yba2cu3o6.67. Nat. Phys. 2012, 8, 871–876.
[CrossRef]

4. Ghiringhelli, G.; Tacon, M.L.; Minola, M.; Blanco-Canosa, S.; Mazzoli, C.; Brookes, N.; Luca, G.D.; Frano, A.; Hawthorn, D.; He, F.;
et al. Long-range incommensurate charge fluctuations in (y, nd) ba2cu3o6+ x. Science 2012, 337, 821–825. [CrossRef]

5. Achkar, A.; He, F.; Sutarto, R.; McMahon, C.; Zwiebler, M.; Hücker, M.; Gu, G.; Liang, R.; Bonn, D.; Hardy, W.; et al. Orbital
symmetry of charge-density-wave order in la1. 875ba0. 125cuo4 and yba2cu3o6.67. Nat. Mater. 2016, 15, 616–620. [CrossRef]

6. Rosenthal, E.P.; Andrade, E.F.; Arguello, C.J.; Fernandes, R.M.; Xing, L.Y.; Wang, X.; Jin, C.; Millis, A.J.; Pasupathy, A.N. Visualization of
electron nematicity and unidirectional antiferroic fluctuations at high temperatures in nafeas. Nat. Phys. 2014, 10, 225–232. [CrossRef]

7. Shimojima, T.; Malaeb, W.; Nakamura, A.; Kondo, T.; Kihou, K.; Lee, C.-H.; Iyo, A.; Eisaki, H.; Ishida, S.; Nakajima, M.; et al. Antiferroic
electronic structure in the nonmagnetic superconducting state of the iron-based superconductors. Sci. Adv. 2017, 3, e1700466. [CrossRef]

8. Hervieu, M.; Barnabé, A.; Martin, C.; Maignan, A.; Damay, F.; Raveau, B. Evolution of charge ordering in manganites. Eur. Phys.
J.-Condens. Matter Complex Syst. 1999, 8, 31–41. [CrossRef]

9. Baggari, I.E.; Savitzky, B.H.; Admasu, A.S.; Kim, J.; Cheong, S.-W.; Hovden, R.; Kourkoutis, L.F. Nature and evolution of
incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc. Natl.
Acad. Sci. USA 2018, 115, 1445–1450. [CrossRef]

10. Cao, Y.; Wang, Z.; Park, S.Y.; Yuan, Y.; Liu, X.; Nikitin, S.M.; Akamatsu, H.; Kareev, M.; Middey, S.; Meyers, D.; et al. Artificial
two-dimensional polar metal at room temperature. Nat. Commun. 2018, 9, 1547. [CrossRef]

11. Peierls, R.E. Quantum Theory of Solids; Oxford University Press: Oxford, UK, 1955.
12. Peierls, R. More Surprises in Theoretical Physics; Princeton University Press: Princeton, NJ, USA, 1991.
13. Landau, L. On the Theory of Phase Transitions II, Phys. Z. Soviet 545 (1937). the English Translations of Landau’s Papers Can Be Found in

“Collected Papers of LD Landau”, by D. Ter Haar; Gordon and Breach: New York, NY, USA, 1965
14. McMillan, W. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 1975, 12, 1187. [CrossRef]
15. Ginzburg, V.; Landau, L. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 1950, 20, 1064.
16. Hohenberg, P.C.; Krekhov, A.P. An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns.

Phys. Rep. 2015, 572, 1–42. [CrossRef]
17. Pásztor, Á.; Scarfato, A.; Barreteau, C.; Giannini, E.; Renner, C. Dimensional crossover of the charge density wave transition in

thin exfoliated vse2. 2D Mater. 2017, 4, 041005. [CrossRef]
18. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

[CrossRef]
19. Campi, G.; Bianconi, A.; Ricci, A. Nanoscale phase separation of incommensurate and quasi-commensurate spin stripes in low

temperature spin glass of la2- xsrxnio4. Condens. Matter 2021, 6, 45. [CrossRef]
20. Leininger, P.; Chernyshov, D.; Bosak, A.; Berger, H.; Inosov, D. Competing charge density waves and temperature-dependent

nesting in 2 h-tase 2. Phys. Rev. B 2011, 83, 233101. [CrossRef]
21. Johannes, M.; Mazin, I.; Howells, C. Fermi-surface nesting and the origin of the charge-density wave in nb se 2. Phys. Rev. B 2006,

73, 205102. [CrossRef]
22. Johannes, M.; Mazin, I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 2008, 77, 165135.

[CrossRef]
23. Zhu, X.; Cao, Y.; Zhang, J.; Plummer, E.; Guo, J. Classification of charge density waves based on their nature. Proc. Natl. Acad. Sci.

USA 2015, 112, 2367–2371. [CrossRef]
24. Bosak, A.; Souliou, S.-M.; Faugeras, C.; Heid, R.; Molas, M.R.; Chen, R.-Y.; Wang, N.-L.; Potemski, M.; Tacon, M.L. Evidence for

nesting-driven charge density wave instabilities in the quasi-two-dimensional material laagsb 2. Phys. Rev. Res. 2021, 3, 033020.
[CrossRef]

25. Rossnagel, K.; Rotenberg, E.; Koh, H.; Smith, N.; Kipp, L. Fermi surface, charge-density-wave gap, and kinks in 2 h- tase 2. Phys.
Rev. B 2005, 72, 121103. [CrossRef]

http://doi.org/10.1103/PhysRevB.97.045151
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1038/nmat4568
http://dx.doi.org/10.1038/nphys2870
http://dx.doi.org/10.1126/sciadv.1700466
http://dx.doi.org/10.1007/s100510050665
http://dx.doi.org/10.1073/pnas.1714901115
http://dx.doi.org/10.1038/s41467-018-03964-9
http://dx.doi.org/10.1103/PhysRevB.12.1187
http://dx.doi.org/10.1016/j.physrep.2015.01.001
http://dx.doi.org/10.1088/2053-1583/aa86de
http://dx.doi.org/10.1038/natrevmats.2017.33
http://dx.doi.org/10.3390/condmat6040045
http://dx.doi.org/10.1103/PhysRevB.83.233101
http://dx.doi.org/10.1103/PhysRevB.73.205102
http://dx.doi.org/10.1103/PhysRevB.77.165135
http://dx.doi.org/10.1073/pnas.1424791112
http://dx.doi.org/10.1103/PhysRevResearch.3.033020
http://dx.doi.org/10.1103/PhysRevB.72.121103


Condens. Matter 2023, 8, 100 15 of 15

26. Flicker, F.; van Wezel, J. Charge order from orbital-dependent coupling evidenced by nbse2. Nat. Commun. 2015, 6, 7034.
[CrossRef] [PubMed]

27. Flicker, F.; van Wezel, J. Charge order in nbse2. Phys. Rev. B 2016, 94, 235135. [CrossRef]
28. Henke, J.; Flicker, F.; Laverock, J.; van Wezel, J. Charge order from structured coupling in vse2. SciPost Phys. 2020, 9, 056.

[CrossRef]
29. McMillan, W.L. Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition.

Phys. Rev. B 1976, 14, 1496. [CrossRef]
30. McMillan, W. Microscopic model of charge-density waves in 2 h- ta se 2. Phys. Rev. B 1977, 16, 643. [CrossRef]
31. Nakanishi, K.; Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate-

commensurate transitions in layered tantalum dichalcogenides. i. 1t-polytype. J. Phys. Soc. Jpn. 1977, 43, 1839–1847.
[CrossRef]

32. Nakanishi, K.; Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate-
commensurate transitions in layered tantalum dichalcogenides. ii. 2h-polytype. J. Phys. Soc. Jpn. 1978, 44, 1465–1473.
[CrossRef]

33. Bak, P. Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 1982, 45, 587. [CrossRef]
34. Wu, X.L.; Lieber, C.M. Hexagonal domain-like charge density wave phase of tas2 determined by scanning tunneling microscopy.

Science 1989, 243, 1703–1705. [CrossRef]
35. Scruby, C.; Williams, P.; Parry, G. The role of charge density waves in structural transformations of 1t tas2. Philos. Mag. 1975, 31, 255–274.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/ncomms8034
http://www.ncbi.nlm.nih.gov/pubmed/25948390
http://dx.doi.org/10.1103/PhysRevB.94.235135
http://dx.doi.org/10.21468/SciPostPhys.9.4.056
http://dx.doi.org/10.1103/PhysRevB.14.1496
http://dx.doi.org/10.1103/PhysRevB.16.643
http://dx.doi.org/10.1143/JPSJ.43.1839
http://dx.doi.org/10.1143/JPSJ.44.1465
http://dx.doi.org/10.1088/0034-4885/45/6/001
http://dx.doi.org/10.1126/science.243.4899.1703
http://dx.doi.org/10.1080/14786437508228930

	Introduction
	Results
	Incommensurate Charge Density Wave
	Commensurate Charge Density Wave
	Discommensurations
	The Equilibrium Configuration
	Rotation in Two Dimensions

	Conclusions
	References

