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Abstract: We present a theoretical study on the energy dispersion of an ultrathin film of periodically-
aligned single-walled carbon nanotubes (SWCNTs) with the help of the Bogoliubov–Valatin transfor-
mation. The Hamiltonian of the film was derived using the many-particle green function technique
in the Matsubara frequency formalism. The periodic array of SWCNTs was embedded in a dielectric
with comparatively higher permittivity than the substrate and the superstrate such that the SWCNT
film became independent with the axis of quantization but keeps the thickness as the variable param-
eter, making the film neither two-dimensional nor three-dimensional, but transdimensional. It was
revealed that the energy dispersion of the SWCNT film is thickness dependent.

Keywords: dispersion; single-wall carbon nanotube; many body theory; Hamiltonian diagonalization;
Bogoliubov–Valatin transformation

1. Introduction

A cylindrically rolled-up hexagonal two-dimensional (2D) lattice of carbon, called
a single-walled carbon nanotube (SWCNT), exhibits 2D-lattice-rolling axis-dependent
conductive behavior, providing a remarkable possibility for use in the electronics industry.
Carbon nanotubes (CNTs) have a low density, as low as 1.3 g/cm3 [1], but a tensile strength
as high as 100 gigapascals (GPa) [2], making them materials with a high specific strength
up to nearly 300 times of high-carbon steel’s specific strength. In a 2D hexagonal sheet of
carbon called graphene, a vector connecting any two carbon atoms can be expressed in
terms of two linearly-independent vectors, ~u and ~v, as n~u + m~v, where n and m are integers
and the pair (n, m) is called its chirality. Chirality specifies how the graphene sheet is rolled
up to form an SWCNT. The SWCNTs with n− m = 0 are metallic and have an electric
current density of about 103 times more than that of copper [3]. SWCNTs with n−m = 3`,
where ` is an integer, are quasi-metallic, while the other SWCNTs are semiconducting,
effectively affirming that the electrical conductivity of SWCNTs is chirality-dependent [4,5].
SWCNTs also show promising thermal conductivity along the axis of SWCNT [6] and
optical properties such as photoluminescence [7], hyperbolic metamaterial [8], and charge
transporting layers for perovskite solar cells [9].

We considered an SWCNT film of a homogeneous array of infinitely thin, period-
ically aligned, identical SWCNTs oriented along the y-axis, as shown in Figure 1. The
film was embedded in a medium of effective relative permittivity ε, and sandwiched in
between a substrate and a superstrate of relative permittivities ε1 and ε2, respectively,
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to form a reactangular thin-film. Carbon nanotubes have a circular cross-section radius
R = a0/π

√
n2 + mn + m2 , where (n, m) represents the chiral vector for (n, m) SWCNT

and a0 =
√

3b/2, where b = 0.142 nm is the carbon–carbon interatomic distance in an
SWCNT. If e and e′ are two charges in the nth and `th SWCNT cylinders with uniform
charge distribution, the Coulomb interaction between these charges can be approximated
by the Coulomb interaction between two uniformly charged rings whose radius is the same
as that of the respective cylinders [10,11]. An interesting thing happens as ε1 + ε2 � ε
and d� ρ, where d is the thickness of the dielectric in which the SWCNTs are immersed,
and ρ is the distance between the rings of the unit cells of the nth and `th SWCNTs. The
Coulomb interaction between the rings of unit cells loses the dependence on its vertical
component (for the geometry we choose, it is the z-component) but still retains the thickness
of the film as a parameter to represent the vertical size of the system and behaves as a
stronger Keldysh–Rytova (KR) interaction [12]. This brings the system into the transdimen-
sional (TD) regime [13]. TD materials are quite interesting, as their optical and electronic
properties show comparatively stronger dependences on structural parameters such as
thickness, stoichiometry, doping, strain, and surface termination than respective 3D-bulk
material properties and extreme sensitivity to external optical and electrical stimuli such as
2D-counterparts [14].

Figure 1. Schematic diagram showing our model system, which consists of a periodic array of
identical SWCNTs of radius R and length L. L⊥ and d are the width of the film and its thickness. ε1,
ε2, and ε are permittivities of the substrate, superstrate, and the dielectric medium in which SWCNT
film is embedded. ∆ is the center-to-center distance between two adjacent carbon nanotubes.

The mathematical formulation is quite involved, as it requires setting the Hamiltonian
for an array of interacting SWCNTs with the help of many-body Green’s function technique
in the so-called Matsubara formulation [15] and diagonalizing it to find the eigenvalues.
The purpose of the paper is two-fold: first, to investigate the energy dispersion in the film
of SWCNTs along with its dependency on the film thickness and second, to explore the
diagonalization technique, such as the Bogoliubov–Valatin transformation [16–18], for a
matrix whose entries are complex mathematical functions. The energy dispersion in the
thin SWCNT films neither varies with the square of momentum like that of a 3D bulk,
i.e., E(q) ∝ q2 [19], nor it is linear with the absolute value of the momentum as in the case
of a 2D graphene sheet from which it is made, i.e., E(q) ∝ |q| (see Ref. [20]). The energy
variation with momentum has a complicated mathematical expression.

A non-singular square matrix of order n can be diagonalized if and only if it has n
linearly independent eigenvectors, corresponding to the eigenvalues of the matrix [21].
Similarity transformation is one of the most common techniques of diagonalizing a matrix.
A square matrix S can be diagonalized this way with the help of an invertible matrix,
P, calculating a matrix S′ using S′ = P−1SP, where S′ is similar to S and such a trans-
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formation is a similar transformation. In this process, a non-diagonal square matrix S is
transformed to a diagonal square matrix S′ of the same order, such that the eigenvalues of
the matrices S and S′ will be the same. Dimension reduction is often a preliminary step
in the diagonalization of a higher dimensional square matrix, which can also be achieved
using the adjacency graph technique [22,23] in addition to the Hamiltonian and momentum
conservations [24–26]. Complications arise if matrix elements are mathematical quantities
more complex than just numbers or variables. Especially when the Hamiltonian matrix is
in a quadratic form of the second quantized creation and annihilation operators, the Bogoli-
ubov–Valatin transformation can be a great tool for diagonalizing the Hamiltonian matrix
and obtaining eigenenergies.

The energy dispersion also evaluates the energy band gap of the system. The literature
is rich in experimental studies on exciton dynamics and the electronic properties of an
isolated SWCNT [27–30]. The authors reported electronic and excitonic band gaps of
various isolated SWCNTs. However, to the best of our knowledge, no excitonic gap for a
film of (11,0) SWCNTs has been reported experimentally. The presented model involves
resolving the polarization of each SWCNT into its parallel and perpendicular components
and evaluating the collective polarization of the film. Polarization-resolved spectroscopy
can be used to analyze the film’s dispersion experimentally [31].

This paper is organized as follows. In Section 2, we revisit the Hamiltonian of the
SWCNT film of periodically aligned identical SWCNTs in terms of Bose creation and
annihilation operators. Next, we devote Section 3 to the diagonalization of the Hamiltonian
matrix and energy dispersion for the SWCNT film. We present a numerical example of
the dispersion relation by taking an example of a thin film made up of homogeneous,
periodically-aligned zigzag (11,0) SWCNTs in Section 4. Conclusions are drawn in Section 5.
Gaussian units are used throughout the paper unless otherwise stated.

2. Mathematical Formulation

Absorption of a photon in the valence band of an SWCNT excites an electron to the
conduction band, leaving a vacant space called a hole in the valance band, thereby creating
an exciton. Consequently, the SWCNT becomes polarized, producing an induced dipole
moment along the CNT axis. The SWCNTs communicate with each other via dipole–
dipole interaction. Due to the depolarization effect, the net polarization along the axis
perpendicular to the SWCT alignment is negligible and can be ignored [32,33]. As a result,
the net polarization of SWCNT film becomes anisotropic.

The wave vector k, in the x–y plane, can be resolved into two components, namely,
q and k⊥, which are, respectively, parallel and perpendicular to the direction in which

cylinders are aligned, i.e., k = q + k⊥. It is then evident that k = |k| =
√

q2 + k2
⊥ ,

where k⊥ = 2πnx/L⊥. Here, nx takes either one of 0,±1,±2, · · · ,±N⊥/2, where N⊥
stands for the total number of SWCNTs. The total Hamiltonian of the system in the wave-
vector space can be written as the sum of the unperturbed Hamiltonian of the system,
H0 = ∑q,E h̄ωE b†

q,E bq,E, and the perturbation Ĥint due to the interaction between different
excitations, E and E′ [10]

H = ∑
q,E

h̄ωE b†
q,E bq,E +

1
a∆ ∑

qEE′

′VEE′(q)
(

bq,Eb−q,E′ + bq,Eb†
q,E′ + b†

−q,Eb−q,E′ + b†
−q,Eb†

q,E′

)
, (1)

where a and ∆ are the translational period along the axis of the SWCNTs and the intertube
center-to-center distance in the array of the SWCNTs, respectively. The quantity ∆ satisfies
∆ ≥ 2R and determines the sparseness of SWCNT in the film. h̄ωE is the excitation energy
for an excitation E. The same for the E′ excitation reads h̄ωE′ . One can evaluate the total
excitation energy as the sum of an internal state exciton energy Eexc and the kinetic energy
T(q) of the exciton due to its longitudinal translational motion,
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h̄ωE = Eexc + T(q) = Eexc +
h̄2q2

2Mex
, (2)

where Mex is the effective mass of an exciton. b†
q,E and bq,E in Equation (1) are well known

creation and annihilation operators, which, respectively, creates and annihilates an exciton
with longitudinal momentum q and excitation E. The operator bq,E follows the standard
commutation relation of Bose–Einstein statistics and satisfies the following identities:[

bq,E , b†
q′ ,E′

]
−
= δqq′ δEE′ ,

[
bq,E , bq′ ,E′

]
−
=
[
b†

q,E , b†
q′ ,E′

]
−
= 0 . (3)

The interaction potential VEE′(q) between different excitations E and E′ is given by

VEE′(q) =
m∗ ω2

p(0, q)
N2D

X(E) Tyy(0, q) X(E′) , (4)

where N2D is the surface electron density, m∗ is the electron effective mass, and X(E)
is the transition dipole associated with an excitation E. Tyy(0, q) = Tyy(k⊥ = 0, q) is a
traceless second rank tensor, which depicts the Fourier transform of the dipole–dipole
interaction and plays a role in interrelating excitations in the momentum space. ωp(0, q)
is the SWCNT-plasmon frequency and it can be expressed in terms of zeroth order Bessel
functions I0(qR) and K0(qR) as [10]

ωp(0, q) =

√
4π e2N2D

ε m∗d
2 qR I0(qR) K0(qR)
1 + (ε1 + ε2)/(qε d)

. (5)

It is evident from Equation (5) that the SWCNT-plasmon frequency is thickness-dependent.
For a thick SWCNT film with ε1 + ε2 � qεd, the plasmon frequency varies as

√
q, i.e.,

ωp(0, q) ∼ √q, whereas for an ultrathin SWCNT film with ε1 + ε2 � qεd, the SWCNT
plasmon-frequency is linear with q, i.e., ωp(0, q) ∼ q. The I0(qR) and K0(qR) Bessel
functions in the SWCNT-plasmon frequency ωp(0, q) are simply because of the SWCNT’s
cylindrical geometry.

3. Bogoliubov–Valatin Transformation Technique of Hamiltonian Diagonalization

We concentrated on the diagonalization of the Hamiltonian (1) using Bogoliubov’s
canonical transformation technique [16–18] to obtain the dispersion relation associated
with the exciton-plasmon excitations in the SWCNT film initiated by illuminating the film
with a photon. Consider that uµ(q, E) and vµ(q, E) are the eigenfunctions of the system
with eigenvalues Eµ = h̄ωµ such that the system satisfies the following set of equations:

Eµuµ(q, E) = ∑
E′

h̄ωE′uµ(q, E) + ∑
q′E′E′′

VE′E′′(q′)
a∆

vµ(q, E) ,

Eµvµ(q, E) = ∑
E′

h̄ωE′vµ(q, E) + ∑
q′E′E′′

VE′E′′(q′)
a∆

uµ(q, E) . (6)

The transformation matrix U for excitons reads

U =

[
uµ(q, E) vµ(q, E)
−v∗µ(q, E) uµ ∗ (q, E)

]
, (7)

such that
∣∣uµ(q, E)

∣∣2 − ∣∣vµ(q, E)
∣∣2 = 1, for which the functions uµ(q, E) and vµ(q, E) satisfy

the following orthogonality and normalization conditions:

uµ(q, E)u∗µ′(q
′, E′)− vµ(q, E)v∗µ′(q

′, E′) = δµµ′δqq′δEE′ ,

vµ(q, E)u∗µ′(q
′, E′)− uµ(q, E)v∗µ′(q

′, E′) = 0 . (8)
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To diagonalize the Hamiltonian (1), we make the Bogoliubov’s canonical transforma-
tion of the bosonic operators, as follows:

bq,E = ∑
µ

[
uµ(q, E) ξ̂µ(q) + vµ(q, E) ξ̂†

µ(−q)
]

, (9)

such that the Hamiltonian (1) can be expressed as

Ĥ(q) = ∑
µ

h̄ωµ(q) ξ̂†
µ(q)ξ̂µ(q) , (10)

where ξ†
µ(q) and ξµ(q) are the new bosonic creation and annihilation operators of exciton-

photon excitations at the µ branch on the CNT film. We have here shifted the SWCNT
array’s energy in vacuum Evac = Ĥ(q)− ∑µ h̄ωµ(q) ξ̂†

µ(q)ξ̂µ(q) to the origin. Similar to
the transformation presented in Equation (9), bosonic operators b†

q,E, b†
−q,E and b−q,E can be

expressed in terms of ξ̂µ(q) and ξ̂†
µ(q) as

b†
q,E = ∑

µ

[
u∗µ(q, E) ξ̂†

µ(q) + v∗µ(q, E) ξ̂µ(−q)
]

, (11)

b†
−q,E = ∑

µ

[
u∗µ(q, E) ξ̂†

µ(−q) + v∗µ(q, E) ξ̂µ(q)
]

, (12)

b−q,E = ∑
µ

[
uµ(q, E) ξ̂µ(−q) + vµ(q, E) ξ̂†

µ(q)
]

. (13)

The q argument of the u and v transformation functions for b†
−q,E and b−q,E is an absolute

value of q because u and v are probability amplitudes. Otherwise, it would mean that
the probability amplitudes depend on the propagation direction of the exciton, which is
physically invalid. The canonically-transformed ξ̂µ(q) operator can be expressed in terms
of bq,E and b†

−q,E operators as

ξ̂µ(q) = ∑
q′E′

[
u∗µ(q, E) bq′ ,E′ − vµ(q, E) b†

−q′ ,E′

]
. (14)

The bosonic operators ξ̂µ(q) and ξ̂†
µ(q) satisfy the following commutation relation,[

ξ̂µ(q), ξ̂†
µ′(q

′)
]
−
= δµµ′ δqq′ . (15)

As a result, we have[
ξ̂µ(q), Ĥ(q)

]
− =

[
ξ̂µ(q), ∑

µ′
h̄ωµ′ ξ̂†

µ′(q)ξ̂µ′(q)
]
−
= h̄ωµ(q) ξ̂µ(q)

= h̄ωµ(q) ∑
q′E′

[
u∗µ(q, E) bq′ ,E′ − vµ(q, E) b†

−q′ ,E′

]
. (16)

Using Equation (1), the commutation relation
[
ξ̂µ(q), Ĥ(q)

]
− can be written as the

sum of the five commutations as follows:

[
ξ̂µ(q), Ĥ(q)

]
− =

[
ξ̂µ(q), ∑

q′ ,E
h̄ωE b†

q′ ,E bq′ ,E

]
−
+
[
ξ̂µ(q), ∑

q′EE′

′VEE′ (q′)
2a∆

bq′ ,Eb−q′ ,E′
]
−

+
[
ξ̂µ(q), ∑

q′EE′

′VEE′ (q′)
2a∆

bq′ ,Eb†
q′ ,E′

]
−
+
[
ξ̂µ(q), ∑

q′EE′

′VEE′ (q′)
2a∆

b†
−q′ ,Eb−q′ ,E′

]
−

+
[
ξ̂µ(q), ∑

q′EE′

′VEE′ (q′)
2a∆

b†
−q′ ,Eb†

q′ ,E′
]
−

. (17)
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Factor 2 in the denominator of the second to the fifth terms in the right side of Equation (17)
takes care of the double counting effect. We now use the expression of ξ̂µ(q) from Equa-
tion (14) and evaluate each of the five terms of Equation (17). After some algebra, we get

[
ξ̂µ(q), ∑

q′ ,E
h̄ωE b†

q′ ,E bq′ ,E

]
−
= ∑

q′ ,E′
h̄ωE′

[
u∗µ(q, E) bq′ ,E′ + vµ(q, E) b†

−q′ ,E′

]
, (18)

[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

bq′ ,Eb−q′ ,E′
]
−
= vµ(q, E) ∑

q′E′E′′

(
VE′′E′(q′)

2a∆
+

VE′E′′(q′)
2a∆

)
bq′ ,E′ , (19)

[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

bq′ ,Eb†
q′ ,E′

]
−
= u∗µ(q, E) ∑

q′E′E′′

VE′′E′(q′)
2a∆

bq′ ,E′′ + vµ(q, E) ∑
q′E′E′′

VE′E′′(q′)
2a∆

b†
−q′ ,E′ , (20)

[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

b†
−q′ ,Eb−q′ ,E′

]
−
= u∗µ(q, E) ∑

q′E′E′′

VE′E′′(q′)
2a∆

bq′ ,E′ + vµ(q, E) ∑
q′E′E′′

VE′′E′(q′)
2a∆

b†
−q′ ,E′ , (21)

[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

b†
−q′ ,Eb†

q′ ,E′

]
−
= u∗µ(q, E) ∑

q′E′E′′

(
VE′′E′(q′)

2a∆
+

VE′E′′(q′)
2a∆

)
b†
−q′ ,E′ . (22)

Here, we have used the fact that VE′′E′(−q′) = VE′′E′(q′) and VE′E′′(−q′) = VE′E′′(q′). With
the help of Equations (16) and (18), we have

[
ξ̂µ(q), Ĥ(q)

]
− −

[
ξ̂µ(q), ∑

q′ ,E
h̄ωE b†

q′ ,E bq′ ,E

]
−
= ∑

q′E′

(
h̄ωµ(q)− h̄ωE′

)
u∗µ(q, E) bq′ ,E′

− ∑
q′E′

(
h̄ωµ(q) + h̄ωE′

)
vµ(q, E) b†

−q′ ,E′ . (23)

Adding Equations (19) to (22) and collecting the like terms, we obtain

[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

bq′ ,Eb−q′ ,E′
]
−
+
[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

bq′ ,Eb†
q′ ,E′

]
−
+
[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

b†
−q′ ,Eb−q′ ,E′

]
−

+
[
ξ̂µ(q), ∑

q′EE′

′VEE′(q′)
2a∆

b†
−q′ ,Eb†

q′ ,E′

]
−
= (u∗µ(q, E) + vµ(q, E)) ∑

q′E′E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

bq′ ,E′

+ (u∗µ(q, E) + vµ(q, E)) ∑
q′E′E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

b†
−q′ ,E′ . (24)

From Equations (17), (23), and (24), we get

∑
q′E′

(
h̄ωµ(q)− h̄ωE′

)
u∗µ(q, E) bq′ ,E′ − ∑

q′E′

(
h̄ωµ(q) + h̄ωE′

)
vµ(q, E) b†

−q′ ,E′ = (u∗µ(q, E) + vµ(q, E))

× ∑
q′E′E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

bq′ ,E′ + (u∗µ(q, E) + vµ(q, E)) ∑
q′E′E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

b†
−q′ ,E′ . (25)

The coefficients of each of the bq′ ,E′ and b†
−q′ ,E′ on the left side and the right side of the

equation match. As a result, we get the following two simultaneous equations:

(
h̄ωµ(q)− h̄ωE′ −∑

E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

)
u∗µ(q, E) = ∑

E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

vµ(q, E) , (26)(
h̄ωµ(q) + h̄ωE′ + ∑

E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

)
vµ(q, E) = −∑

E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

u∗µ(q, E) . (27)
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Substituting the value of vµ(q, E) from Equation (27) to Equation (26), we get

(h̄ωµ(q)
)2 −

(
h̄ωE′ + ∑

E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

)2

+

(
∑
E′′

VE′′E′(q′) + VE′E′′(q′)
2a∆

)2
u∗µ(q, E) = 0 . (28)

Being an eigenfunction of the system, uµ(q, E) and, hence, u∗µ(q, E), cannot be zero
for any physically meaningful system. Thus, the quantity under the square bracket [ ] of
Equation (28) must be zero. More explicitly,

(
h̄ωµ(q)

)2 − (h̄ωE′)
2 − h̄ωE′ ∑

E′′

VE′′E′(q) + VE′E′′(q)
a∆

= 0 . (29)

For E′ 6= E′′, the interaction potential VE′E′′(q) indicates that two different exciton-plasmon
resonances communicate through it resulting in interband scattering. Here, we focus on
the first window of the exciton-plasmon resonance. In other words, we are interested
in the intraband scattering. For E′ = E′′, we have VE′′E′(q) = VE′E′′(q), which leads
Equation (29) to

(
h̄ωµ(q)

)2 − (h̄ωE′)
2 − 2 h̄ωE′ ∑

E′

VE′E′(q)
a∆

= 0 . (30)

Making use of Equation (4) and (5) along with Tyy(0, q) = 1/2, the interaction potential
VEE(q) can be expressed as

VEE(q) =
4π e2

εad∆
qR I0(qR) K0(qR)

1 + (ε1 + ε2)/(qε d)
(X(E))2 . (31)

Substituting the value of VEE(q) from Equation (31) into Equation (30), we get the following
dispersion relation,

(
h̄ωµ(q)

)2 − (h̄ωE)
2 − h̄ωE

8π e2

εad∆
qR I0(qR) K0(qR)

1 + (ε1 + ε2)/(qε d) ∑
E
(X(E))2 = 0 . (32)

One can express Equation (32) in a dimensionless form as below,

x2
µ −

x2
E

4
− xE

4π e2

4 εad∆ γ0

qR I0(qR) K0(qR)
1 + (ε1 + ε2)/(qε d) ∑

E
(X(E))2 = 0 . (33)

Here, xµ = h̄ωµ(q)/(4γ0) and xE = h̄ωE/(2γ0) are dimensionless energies, in which
γ0 = 2.7 eV is the carbon nearest-neighbor overlap integral [34]. The µ-subband with the
momentum q can either be associated to an electron in a conduction band or to the hole in
the valance band during the formation of an exciton. The dispersion equation, Equation (33)
has the following solution:

xµ = ±1
2

√
x2

E + xE
4π e2

εad∆ γ0

qR I0(qR) K0(qR)
1 + (ε1 + ε2)/(qε d) ∑

E
(X(E))2 . (34)

Defining a quantity A(d, ∆) as

A(d, ∆, X(E)) =
4π e2

ad∆ γ0
∑
E
(X(E))2 , (35)
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one obtains

xµ = ±1
2

√
x2

E + xE
qR I0(qR) K0(qR)
ε + (ε1 + ε2)/(q d)

A(d, ∆, X(E)) . (36)

One can also express Equation (36) in terms of SWCNT plasma frequency ωp(0, q) as

xµ = ±1
2

√√√√x2
E + xE

A(d, ∆, X(E))
2 ε

(
ωp(0, q)

ω3D
p

)2

, (37)

where ω3D
p = 2πeN1/2

3D (m∗ε)−1/2 is the effective bulk plasma frequency of the film. It is thus
evident that, with the aid of the Bogoliubov–Valatin canonical transformation of the bosonic
operators, the Hamiltonian of the system can be effectively diagonalized; the diagonalized
energy in the dimensionless form is given by Equation (37). The negative energy eigenvalue
is a mirror reflection of the positive eigenvalue about the x-axis. The absolute difference
between the two roots,

∆xµ = xµ+ − xµ− , (38)

is the excitonic energy gap [35] and depends on the permitivitties of the substrate, super-
strate, and dielectric medium, the radius of the SWCNT from which the CNT film is made,
the SWCNT plasma frequency, and the sparseness of SWCNT.

4. Numerical Example: Energy Dispersion of (11,0) SWCNT Film

Qualitative analysis can be helpful for a better understanding of the analytical expres-
sions of dispersion energy, which we have derived in the previous sections. The dispersion
relation presented in Section 3 holds for any non-chiral SWCNTs, i.e., both zigzag (n, 0) and
armchair (n, n) SWCNTs. One can see from Equations (4) and (5) that, if q = 0, both the
SWCNT-plasmon frequency ωp(0, q) and the interaction potential VEE′(q) vanish. The in-
tertube center-to-center distance ∆ and the thickness of the film d play crucial roles in the
energy dispersion of the SWCNT film. Interestingly, the background screening effect does
not vanish, even at the minimum value of d and ∆, i.e., dmin = 2R = ∆min. The background
screening effect increases if the thickness of the film or the intertube distance increases or if
both of them increase.

For illustrative purposes, we considered a periodic homogeneous array of (11,0) zigzag
SWCNTs embedded in a dielectric medium of a nominal permittivity value of ε = 10
standing in the air (ε1 = 1 = ε2). Our model considers the dielectric medium embedding
SWCNTs with a comparatively higher permittivity than substrate and superstrate. One
can take a dielectric medium with a permittivity that is an order of magnitude larger than
the substrate and superstrate without violating the conditions needed for KR-potential
in a transdimensional regime. Silicon (ε = 11.6) [36], GaAs (ε = 12.8) [36], and SiC
(ε = 9.7) [37] are some good examples of the dielectric medium in which SWCNTs can
be embedded. The radius of an (11,0) SWCNT is R = 11 b/π, in which b = 0.1421 nm is
the carbon-carbon nearest neighbor distance, to give the minimum thickness dmin ' 1 nm
(=2R) for the (11,0) SWCNT. The zigzag SWCNT’s translational period is a = 3 b/2, so that
a/R = 3π/22. The quantity γ0/e2 = γ0/(αh̄c) = 1.874/nm is a constant, where α, h̄, and c
are the fine-structure constant, the reduced Planck constant, and the speed of light in a
vacuum, respectively. The dimensionless parameter γ0R/e2 is also of the order of unity for
the (11,0)SWCNT.

We considered a homogeneous array of identical (11,0) SWCNTs to exclude possible
exciton-plasmon coupling due to other SWCNTs of nearly the same diameter [38]. The
discussion presented in Ref. [39] can be implemented to evaluate the quantity ∑E(e X(E))2

for our system as
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∑
E
(e X(E))2 =

6π3c3h̄4

E3
tot(q) τrad

tot
, (39)

where τrad
ex is the exciton-intrinsic radiative lifetime and Etot is the exciton total energy.

Thus, the quantity A(d, ∆, X(E)) becomes

A(d, ∆, X(E)) ≡ A(d, ∆, q) =
4π

ad∆ γ0
∑
E
(e X(E))2 =

4π

ad∆ γ0

6π3c3h̄4

E3
tot(q) τrad

tot
. (40)

For (11,0) SWCNT, the first Brillouin zone of the longitudinal quasimomentum is given
by −2πh̄/(3b) ≤ q ≤ 2πh̄/(3b). The total energy of the ground-internal-state exciton can
then be written as presented in Ref. [39], which reads Etot = Eexc + (2πh̄/(3b))2t2/(2Mex),
where the parameter t(= 3qb/(2π)) with −1 ≤ t ≤ 1 is the dimensionless longitudinal
quasimomentum. For (11,0) SWCNT, Mex = 0.44 m0, with m0 being the free-electron
mass [40] and t = 1.574 qR. For an (11,0) SWCNT, the quantity (2πh̄/(3b))2/(2Mex)
evaluates to 0.19 eV, which is about an order of magnitude smaller than the lowest bright
exciton energy Eexc. For an isolated (11,0) SWCNT, we take τrad

tot = 14.3 ps as presented in
Refs. [38,39].

Notice that the solution to the dispersion relation for a system with the chosen homo-
geneous SWCNTs array, substrate, superstrate, and the dielectric medium is a function of
longitudinal quasimomentum. Figure 2 shows the energy eigenvalues in the units of 2γ0 as
a function of dimensionless momentum and the dimensionless sparseness parameter C/∆,
where C = 2πR is the circumference of the circular cross-section of the (11,0) SWCNT. The
energy value is larger for a closely-packed SWCNT array when the momentum value is
larger. As one expects, the energy value ratio xµ/xE tends to unity as ∆→ ∞ and/or q→ 0.
The energy eigenvalue varies strongly with momentum for thinner SWCNT film, while
the energy value varies slowly in comparatively thicker SWCNT film, provided the film is
within the TD regime, indicating that the SWCNT energy dispersion is thickness-dependent
(See Figure 3). Thickness can be used as a tool in opto-plasmonic device applications, tuning
the excitonic energy gap in SWCNT films such that the transdimensional materials are
fully compatible with on-chip nanophotonic devices [41]. The thickness dependency of the
energy dispersion is lost as the thickness is increased to a 3D-bulk value. Moreover, the en-
ergy dispersion also depends on the dielectric medium in which the CNTs are immersed,
as the screening effect increases as the ε value of the dielectric increases (see Figure 4).

Figure 2. Figure shows solutions to the energy dispersion relation in terms of dimensionless energy
ratio xµ/xE, as a function of the dimensionless momentum qR and carbon nanotubes sparseness in
terms of circumference C to the center-to-center SWCNT distance ∆ ratio for a homogeneous periodic
array of (11,0) SWCNTs.
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Figure 3. Figure shows solutions to the energy dispersion relation in terms of dimensionless energy
ratio xµ/xE, as a function of the dimensionless momentum qR for a closely-packed homogeneous
periodic array of (11,0) SWCNTs for different thicknesses of the film. VEE = 0 represents the case in
which the interaction among SWCNTs is switched off.

Figure 4. Figure shows solutions to the energy dispersion relation in terms of dimensionless energy
ratio xµ/xE, as a function of the dimensionless momentum qR for a closely packed homogeneous
periodic array of (11,0) SWCNTs for an ultrathin film of thickness d = 2R with interlude center-to-
center distance ∆ = 2R for three different dielectric mediums with ε = 10, 20, and 30.

Of particular interest, the excitonic energy gap at q = 0 is in order. With the aid
of Equation (40), one finds from Equation (36) that xµ± → ±xE/2 as q approaches zero.
Similarly, from Equation (2), for q = 0, one gets xE = Eexc/(2γ0). Using the~k ·~p method of
carbon nanotube band theory [35,42], we obtained the first exciton resonance (the lowest
energy resonance), Eexc at 1.116 eV for an isolated (11,0) SWCNT, which is in good agree-
ment with the experimental value reported in [30]. Thus, for q = 0, the ∆xµ = Eexc/(2γ0),
which for (11,0) SWCNT thin film is 0.207 in the units of 2γ0 or 1.116 in electron volts. The
calculations were performed at room temperature (300 K).

5. Conclusions

We used the many-particle Green’s function technique and the Matsubara frequency
technique to derive an analytical expression for the Hamiltonian of a finite-thickness
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periodically-aligned SWCNTs array embedded in a dielectric layer with comparatively
high permittivity, sandwiched between a substrate and a superstrate of low permittivities.
The interaction among the unit cells of different SWCNTs, in addition to the interaction
between the unit cells within an SWCNT, makes the problem interesting and challenging.
In this paper, we have assumed that the SWCNTs talk with each other through the dipole–
dipole interaction. The effective interaction in the SWCNT film is a function of the incident
photon’s momentum and the thickness of the film. The effective collective polarization of
the film is anisotropic in nature, having predominately larger polarization along the axis of
SWCNT alignment and negligible value along the axis perpendicular to SWCNT alignment.

Not all real square matrices have eigenvalues; however, if they have eigenvalues, they
can be diagonalized [43]. Some simple approaches, such as (i) solving the characteristic
equation of a square matrix and setting the roots as diagonal entries of the matrix or
(ii) performing a similarity transformation with the help of an invertible matrix of the same
order, may not always be possible. Consequently, one needs a mathematically sophisticated
method to diagonalize a mathematically complicated matrix. Using the second quantization
method, the Hamiltonian of the film composed of identical periodically-aligned SWCNTs
can be expressed in a quadratic form of Bose operators as given in Equation (1), which
can be diagonalized by applying the Bogoliubov–Valatin canonical transformation as
discussed in Section 4. The energy dispersion in SWCNT film depends on longitudinal
quasi-momentum (q), the sparseness of SWCNTs, and the thickness of the film. The exciton
energy in the SWCNT film can be controlled and tuned by varying the thickness of the
film. The exciton transition band gap also depends on the incident photon’s momentum,
permittivities of the dielectric medium, substrate, and superstrate, and the thickness of the
film. For a thin film of periodically-aligned (11,0) SWCNTs, the excitonic energy gap for
q = 0 is about 1.116 eV.
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