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Abstract: The experimental critical temperature of the systems of superconducting (Pb) and normal
(Ag, Cu and Al) nanoparticles, with a random distribution and sizes less than their respective
coherence lengths, is governed by the proximity effect, as shown by the experimental data. At first
glance, the behavior of the variation in the critical temperature in function of the ratio of volume
fractions of the superconducting and the normal metal components seems to suggest a weak coupling
behavior for the superconductor. In reality, upon a more careful analysis, using Eliashberg’s theory
for the proximity effect, the system instead shows a strong coupling nature. The most interesting
thing is that the theory has no free parameters and perfectly explains the behavior of the experimental
data just with the assumption in the case of the nanoparticles Ag and Cu, that the value of the density
of states at the Fermi level of silver and copper is equal to the value of lead.
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1. Introduction

The superconductive proximity effect consists of the modification of the supercon-
ducting and normal properties of a superconductor in contact with a metal [1–4]. In the
more general case, the metal can be superconductive (with a lower critical temperature
with respect to the first superconductor), which is normal or magnetic. The superconduct-
ing coherence length ξS = h̄vFS

π∆ is the characteristic length scale of the proximity effect
in the superconductor, while in the metal, the coherence length of normal electrons is
ξN = ( h̄vFN l

πkBT )
1/2, where ∆ is the superconductive gap, vFS,FN is the Fermi speed of the

superconductor and the normal metal, respectively, l is the mean free path and T is the tem-
perature. When the superconducting and normal layer thicknesses (dS, dN) are smaller than
the respective coherence lengths dS < ξS and dN < ξN , the system is the Cooper limit [5]
(S and N indicate “superconductor” and “normal”, respectively). It is possible to demon-
strate through experimental measurements and simple but accurate models, reproducing
the aforementioned measurements, that Tc just depends on the thickness ratio dS/dN . With
the original theory of the proximity effect, introduced into the framework before the BCS
theory in [6] and after Eliashberg’s theory in [2,7–12], one usually presupposes a plain
sample geometry, i.e., the theory was born for describing the proximity effect between a
slab of superconductor of thickness ds separated by a potential barrier from a slab of normal
metal of thickness dN . A profound analogy exists between the proximity system and the
two-gap model. If we assume that there is no intrinsic pairing in the second band as in
the normal film (for example, as has happened in magnesium diboride [13,14]), then we
induce superconductivity, i.e., an induced energy gap appears. The substantial difference
between these two situations is that, in the two-band model, the bands are separated in mo-
mentum space and the second band acquires an order parameter due to phonon exchange,
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while in the proximity effect, the systems are spatially separated and superconductivity
is induced by the tunneling of Cooper pairs. In the first case, the coupling is in k-space,
while in the second, the coupling is in the real space but the mathematical formalism
is the same. Furthermore, the effect of a static electric field on the critical temperature
of a superconductor can also be explained in the framework of proximity introduced in
Eliashberg’s theory [15–18]. Finally, the role of Andreev reflection [19] is fundamental in
the understanding of the microscopic mechanism at the origin of the proximity effect [20].
It happens that single-electron states from normal metal are converted into Cooper pairs
in the superconductor. The proximity effect can be seen as the result of interplay between
the long-range order inside the normal metal and Andreev reflection at the normal metal–
superconductor interface [21]. The link between Andreev reflection and the proximity
effect exists because the Andreev reflection of an electron or a hole is equivalent to the
transfer of a Cooper pair in or out of the superconductor, i.e., to presence of Cooper pairs
inside the normal metal.

Subsequently, it was understood that this theory could also include the more general
situation wherein only the ratio of the volume fraction of superconducting metal component
to the ratio of normal metal component was known, as happens in a two-component system
consisting of a random distribution of superconducting and normal nanoparticles, with
sizes which are inferior to their respective coherence lengths [5,22,23]. In this case, as
in [5], one may replace the ratio of the thickness of the superconductor metal layer to the
thickness of the normal metal layer dS/dN in the de Gennes–Werthamer theory [24,25]
by the ratio of the volume fraction PS/PN . This fact allows us to use Eliashberg’s theory
with the proximity effect [12], without free parameters, to also explain the experimental
data, as has been successfully achieved, for example, with experimental data relative to
the Pb/Ag heterostructure [26] grown on Si(111) using molecular-beam epitaxy. We will
examine the cases where the superconducting nanoparticles are of lead while the normal
ones are of silver, copper and aluminum. According to the interpretation proposed by
the authors of the measures [22], the lead behaves as a weak-coupling superconductor in
the random lead–silver (Pb− Ag) nanocomposites. The same situation occurred in [23]
for the lead–copper (Pb− Cu) nanocomposites. This interpretation is based on the use
of analytical formulas obtained with numerous simplifications from the BCS theory and
leading to the non-physical values of some parameters. The problem is that the lead is a
strong coupling superconductor and there is no reason why it should behave differently.
In the last case [5] which will be analyzed, namely that of lead–aluminum (Pb − Al)
nanocomposites, the strong coupling behavior will be immediately evident. In principle,
one should also consider the way in which the electron–phonon interaction interplays
with the quantum-size effects [27,28]. Here, we are not dealing with individual grains
but rather nanocrystalline films where these effects, which on the critical temperature
can be of the opposite sign, on average, probably cancel each other out. This paper is
organized as follows. In Section 2, the model used herein for the computation of the
superconductive critical temperature of these proximity systems is shown, i.e., the one-
band s-wave Eliashberg equations with the proximity effect. In Section 3, the results
obtained herein are discussed in comparison with experimental data. Finally, conclusions
are given in Section 4.

2. Model: Proximity Eliashberg Equations

By solving the one-band s-wave Eliashberg equations [29,30], generalized to the case
wherein the proximity effect is present, it is possible to calculate the critical temperature of
this superconducting–normal system. Four coupled equations have to be solved, namely
two for the gaps ∆S(N)(iωn) and two for the renormalization functions ZS(N)(iωn). If
the Migdal theorem is valid [31], the Eliashberg equations with a proximity effect on
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the imaginary axis [7–12,15] (where ωn denotes the Matsubara frequencies), for the gaps
∆S,N(iωn), read:

ZN(iωn)∆N(iωn) = πT ∑
m

[
ΛN(iωn, iωm)− µ∗N(ωc)

]
×

×Θ(ωc − |ωm|)N∆
N(iωm) + ΓNN∆

S (iωn) (1)

ZS(iωn)∆S(iωn) = πT ∑
m

[
ΛS(iωn, iωm)− µ∗S(ωc)

]
×

×Θ(ωc − |ωm|)N∆
S (iωm) + ΓSN∆

N(iωn) (2)

while those for the renormalization functions ZS,N(iωn) are

ωnZN(iωn) = ωn + πT ∑
m

ΛN(iωn, iωm)NZ
N(iωm) +

+ΓNNZ
S (iωn) (3)

ωnZS(iωn) = ωn + πT ∑
m

ΛS(iωn, iωm)NZ
S (iωm) +

ΓSNZ
N(iωn) (4)

where Θ is the Heaviside function, ωc is a cutoff energy and µ∗S(N)(ωc) are the Coulomb
pseudopotentials in the superconductive and normal layer, respectively. The coupling
terms between the normal and superconductive layers are

ΓS(N) = π|t|2 AdN(S)NN(S)(0) (5)

where |t|2 is the transmission matrix, A is the junction cross-sectional area, dS(N) are the
superconductive and normal layer thicknesses, respectively, NS(N)(0) are the densities of
states at the Fermi level for the superconductive and normal materials, respectively, and
the rate of the coupling terms is ΓS

ΓN
= dN NN(0)

dS NS(0)
. Finally, the terms relative to quasiparticles

and the Cooper pair density of states are:

NZ
S(N)(iωm) = ωm/

√
ω2

m + ∆2
S(N)

(iωm) (6)

N∆
S(N)(iωm) = ∆S(N)(iωm)/

√
ω2

m + ∆2
S(N)

(iωm) (7)

The phononic glue is inside the following term:

ΛS(N)(iωn, iωm) = 2
∫ +∞

0
dΩΩα2

S(N)F(Ω)/[(ωn −ωm)
2 + Ω2] (8)

where α2
S(N)F(Ω) are the electron–phonon spectral functions and the electron–phonon

coupling constants are defined as

λS(N) = 2
∫ +∞

0
dΩ

α2
S(N)F(Ω)

Ω

A lot of input parameters appear in this set of coupled equations; however, fortunately, these
are all known because these materials are phononic. In particular, these input parameters
are: two electron–phonon spectral functions α2

S(N)F(Ω); two Coulomb pseudopotentials
µ∗S(N)(ωc); two values of the normal density of states at the Fermi level NS(N)(0); and
the thickness of the superconductive layer dS and normal layer dN (these last ones are
experimental inputs). In principle, the product between the junction cross-sectional area A
and the transmission matrix |t|2 are also present, but we have verified, as it should be, that
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the final result does not depend on the value of A, and therefore, not even on the value of
the product A|t|2.

All inputs parameters are known and will be specified below. The letter S is for Pb
and the letter N is for Ag, Cu and Al. The electron–phonon spectral functions α2

S(N)F(Ω)

of lead (λPb = 1.55) [29], aluminum (λAl = 0.43) [32], silver (λAg = 0.16) [33] and copper
(λCu = 0.14) [33] are present in the literature (they are shown in the insert of the figures) as
the values of the normal density of states at the Fermi level [15,34] NPb(0) = 0.25866 eV−1

for the unit cell; NAl(0) = 0.20000 eV−1 for the unit cell; NAg(0) = 0.13000 eV−1 for
the unit cell; and NCu(0) = 0.13000 eV−1 for the unit cell. The value of the Coulomb
pseudopotential is fixed for obtaining Tc = 7.20 K in a system without a proximity effect
for lead and Tc = 1.18 K for aluminum: we find µ∗Pb(ωc) = 0.14023 and µ∗Al(ωc) = 0.14448
by using a cutoff energy ωc = 125 meV and a maximum energy ωmax = 130 meV. The
Coulomb pseudopotential for copper and silver is the same [33] µ∗Ag,Cu(ωc) = 0.11000. The
values of dS and dN are experimental data. By specifying these inputs parameters, this
calculation has no free parameters.

3. Results and Discussion

The Eliashberg equations are solved numerically in a recursive way. This is a stan-
dard method that works very well because the solution is quickly reached [29]. From the
solution of Eliashberg equations, it is possible to determine the critical temperature as a
function of the ratio of the volume fraction of the superconducting and the normal metal
components PS/PN . However, the comparison with experimental data is not so good, as
seen in Figures 1 and 2 (dark blue solid line). Thus, it is necessary to formulate specifically
one new hypothesis to solve this problem. We assume that, to explain the experimental
data, it is necessary that the density of the states at the Fermi level of the normal metal
nanoparticles is substituted, in the equations, by the value of the superconductor density
of states, but only when the size of normal metal nanoparticles is less than the supercon-
ductor coherence length. The characteristic length of the proximity effect is the coherence
length, that is, the typical size of the Cooper pairs and the proximity effect is connected
with the Cooper pairs inside the normal metal. If the dimensions of the nanoparticles
are only smaller than the coherence length of the superconductor (i.e., the dimensions
of the Cooper pairs), it is possible that the electronic properties of the nanoparticles are
replaced by those of the superconductor. The coherence length of lead [35] is 96 nm, so
the silver and copper nanoparticle size is always less than this distance. As such, we just
change the value of NAg,Cu(0): now NAg,Cu(0) = NPb(0), but all other input parameters
remain the same and we solve the Eliashberg equations. The result is the solid red line
in Figures 1 and 2 that shows very good agreement with the experimental data. The
author found the same behavior in the superconductor/normal metal heterostructure
(Pb/Ag) epitaxially grown [26]. Furthermore, in this case, we made the same hypoth-
esis and perfectly reproduced the experimental data [12]. One could say that, within a
thickness less than the superconducting coherence length, the superconductor “wins” over
the metal and this is observable because the Pb has a large coherence length. Since the
same phenomenon—namely a decrease in the critical temperature of these systems which
was faster than expected—occurred both in the nanocomposites and in the high-quality
superconductor/normal metal heterostructure, the fact that this phenomenon will be of a
general nature will probably not affect the quality or the particular characteristics of the
samples. Thus, this assumption that (NAg,Cu(0) = NPb(0)) allows us to very effectively
explain the experimental data, and could lead to investigating the nature of these systems
using first-principles calculus. If Eliashberg’s theory is assumed to be valid, and we see no
reason to doubt it, the only way to reproduce the experimental data is by this assumption.
The only other input parameters which, in theory, could be changed, are the Coulomb
pseudopotential and the electron–phonon coupling constants; however, in this case, we
should admit that these input parameters are a function of PS/PN , because for high values
of PS/PN , we have to regain the lead bulk critical temperature. Furthermore, even by
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varying the Coulomb pseudopotential, it is not possible to reproduce the experimental data
in any way, as we have been able to verify.

In the last case (aluminum), the standard theory without free parameters reproduces
the experimental data very well, as shown in Figure 3. In the latter case, the aluminum
which is a superconductor, but also a normal metal if under the temperature conditions
in the range studied herein, perfectly follows the standard theory. For completeness, the
calculation is also shown in the figure with the replacement of the density of the normal
states with the superconducting one as in the previous cases. Here, it is very clear that
this method does not work. The reason is simple: in this case, the standard theory works
because the Al layer size is greater and the starting assumption is therefore no longer valid.

Figure 1. (Color online) Case Pb− Ag. Theoretical critical temperature calculated by solving the
Eliashberg equations with NAg(0) 6= NPb(0) (dark blue solid line) and with NAg(0) = NPb(0) (red
solid line) is shown in function of the rate PS/PN . The experimental data (full red circles) are from
ref [22]. In the insert, the electron–phonon spectral functions of lead (green solid line) and silver
(orange solid line) are shown.

Figure 2. (Color online) Case Pb− Cu. Theoretical critical temperature calculated by solving the
Eliashberg equations with NCu(0) 6= NPb(0) (dark blue solid line) and with NCu(0) = NPb(0) (red
solid line) is shown in function of the rate PS/PN . The experimental data (full red circles) are from
ref [23]. In the inset, the electron–phonon spectral functions of lead (green solid line) and copper
(orange solid line) are shown.
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Figure 3. (Color online) Case Pb− Al. Theoretical critical temperature calculated by solving the
Eliashberg equations with NAl(0) 6= NPb(0) (dark blue solid line) and with NAl(0) = NPb(0)
(red solid line) is shown in function of the rate PS/PN . The experimental data (full red circles)
are from ref [5]. In the inset, the electron–phonon spectral functions of lead (green solid line) and
aluminum (orange solid line) are shown.

4. Conclusions

The experimental critical temperature of systems of superconducting (Pb) and normal
(Ag, Cu) nanoparticles with a random distribution can be very effectively reproduced in
the framework of Eliashberg’s theory by assuming that the density of the states at the Fermi
level of the superconductor is replaced by the value present in the normal material in the
proximity systems Pb− Ag and Pb− Cu. In the last case (Pb− Al), the standard theory
perfectly explains the experimental data without an additional hypothesis, and of course,
free parameters. We emphasize that, to justify this assumption, it would be necessary to
resort to calculations from the first principles, which are not present in the literature. In
general, it is possible to state that all the experimental data are accurately described by
Eliashberg’s theory of proximity effect with no free parameters and without any “strange
weak coupling behavior”, as had been hypothesized by the authors of the measurements
on the Pb− Ag proximity system [22].
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