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Abstract: Superconducting stiffness ρs and coherence length ξ are usually determined by measuring
the penetration depth λ of a magnetic field and the upper critical field Hc2 of a superconductor (SC),
respectively. However, in magnetic SC, which is iron-based, this could lead to erroneous results,
since the internal field could be very different from the applied one. To overcome this problem in
Fe1+ySexTe1−x with x ∼ 0.5 and y ∼ 0 (FST), we measured both quantities with the Stiffnessometer
technique. In this technique, one applies a rotor-free vector potential A to a superconducting ring
and measures the current density j via the ring’s magnetic moment m. ρs and ξ are determined
from London’s equation, j = −ρsA, and its range of validity. This method is particularly accurate
at temperatures close to the critical temperature Tc. We find weaker ρs and longer ξ than exist-
ing literature reports, and critical exponents which agree better with expectations based on the
Ginzburg–Landau theory.

Keywords: superconductivity; iron-based superconductors; magnetism; stiffness; coherence length;
Fe1+ySexTe1−x

1. Introduction

The highest Tc measured in bulk iron-based superconductors (IBSs), in ambient pres-
sure, is 56 K [1], higher than some cuprates, e.g., optinally doped La2−xSrxCuO4. Conse-
quently, they have been at the forefront of research in the solid-state community. Out of
all IBSs, the crystalline structure of the FeSe is the simplest. By partially replacing Se with
Te atoms, the critical temperature increases up to 15 K, obtained at x = 0.45 y ' 0 in the
formula Fe1+ySexTe1−x. As summarized by Kreisel et al. [2], the material also possesses
surprising properties, such as highly anisotropic electronic properties (nematic effects)
and evidence for topologically non-trivial bands and superconductivity. In light of these
properties, it is important to characterize Fe1+ySexTe1−x as accurately as possible. Here, we
focus on the x ∼ 0.5 y ∼ 0 variant (FST), which is available as bulk crystal.

Bulk DC superconducting properties, such as the stiffness ρs, were measured in this
crystal by transverse field muon spin rotation (µSR) [3,4]. AC measurements were per-
formed by RF tunnel diode [5,6] and cavity perturbation [7,8] techniques. The coherence
length of FST with x = 0.45 was determined by vortex size ξ, using a scanning tunneling
microscope (STM) [9] and resistivity measurements [10]. The Cooper pair size ξ0 was eval-
uated with angle-resolved photoemission spectroscopy (ARPES) [11]. However, due to the
presence of Fe in the structure and residual magnetism, the field dependent measurements
might not provide a clear insight into the superconducting properties, since the applied
field interacts with a magnetic moment in addition to the superconducting currents. In
this work, we measure DC superconducting properties in a zero-applied field to avoid
contamination from magnetism.

The superconducting stiffness ρs is defined via the gauge-invariant relation between
the current density j, the total vector potential Atot from all sources, and the complex order
parameter Ψ(r) = ψ(r)eiφ(r) with ψ(r) > 0, according to:
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j = −ρs(Atot −
Φ0

2π
∇φ) , (1)

where Φ0 = 2πh̄/e∗ is the superconducting flux quanta,

ρs =
ψ2e∗2

m∗
, (2)

is the stiffness, and e∗ and m∗ are the carrier’s charge and mass, respectively. For anisotropic
stiffness, see Ref. [12]. When cooling the superconductor (SC) with Atot = 0 in the Lon-
don gauge, minimum kinetic energy requires ∇φ = 0. According to the second Joseph-
son relation, φ can only change by dissipating energy. Thus, Equation (1) becomes the
London equation:

j = −ρsAtot . (3)

This relation holds as long as ∇φ does not change. The stiffness, in turn, is related to
the penetration depth via:

ρs =
1

µ0λ2 . (4)

However, every superconductor has a critical current density jc, determined by the
penetration depth λ and coherence length ξ. When Atot exceeds a certain value, it is
worthwhile for the SC to change ∇φ so as to keep j below jc everywhere in the SC.
According to the Josephson equation, dynamic changes in φ lead to voltage, which, when
combined with current, result in power and energy dissipation in the process. When this
happens, the relation between j and Atot is no longer linear and the system’s rigidity breaks.
We used these properties to measure both ρs and ξ as a function of temperature in FST.

2. Experimental Setup

In the experiment, a ring-shaped SC cut out of a single crystal is used, shown in
Figure 1a, with a femtosecond laser. The ring is presented in panel (b). Since FST is brittle,
the ring is not perfect. However, as we argue below (in Section 4.1), the smallest outer
radius and height count for our analysis. The ring is pierced by a long excitation coil (EC).
These parts are shown in panel (c). The excitation coil, ring, and second-order gradiometer
are surrounded by a main coil, as in panel (d). The main coil is used to zero the field to less
than 0.1 µT on the ring, and for field-dependent measurement. Details of the dimensions
of the different parts are given in the figure’s caption. EC current Iec generates a vector
potential Aec on the ring, nominally without a magnetic field H. This vector potential is
responsible for persistent rotational current in the superconducting ring. This rotational
current produces its own vector potential Asc and a magnetic moment. The vector potential
in Equation (1) is Atot = Aec + Asc. The sample’s magnetic moment m is detected by
vibrating the ring with the EC rigidly relative to the gradiometer. This mode is called
vibrating sample magnetometer (VSM) mode. It utilizes a lock-in amplifier to measure
the SQUID output voltage at twice the vibration frequency. This output is proportional to
the magnetic flux of a sample through the gradiometer, namely, the vector potential of the
sample. It could also be represented by the magnetic moment of the sample.

The gradiometer is composed of two outer loops wound clockwise, and two inner
loops wound anticlockwise, see Figure 1d. In that way, we separate the magnetic signal
generated by the sample from any other field uniform in space, even if it drifted over time.
The gradiometer, main coil, and SQUID are part of the QD-MPMS3 magnetometer.

In principle, Aec does not change as the coil vibrates, since there are no EC flux Φec
variations, and the pickup-loop signal is only due to Asc. In practice, the small signal of the
EC is reduced from the measurements as background, (see Section 3.1). The ring’s vector
potential at a pickup-loop radius Rpl at z = 0 is related to m in the EC direction ẑ, by:

Asc(r = Rpl, z = 0) =
µ0

4π

m
R2

pl
ϕ̂ . (5)
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where ϕ̂ is the azimuth direction.

Figure 1. Experimental setup: (a) A scanning electron microscope image of a single crystal of FST,
from which the ring was cut out. (b) A microscopic image of the Fe1+ySe0.5Te0.5 ring. The sample is
not uniform. The minimal height, inner, and minimal outer radii are h = 0.10 mm, rin = 0.26 mm,
and rout = 0.50 mm, respectively. (c) A copper excitation coil and a superconducting ring beside it.
The coil has a length of 60 mm, an outer diameter of 0.25 mm, and 9300 turns in two layers. (d) The
ring and excitation coil assembly moves rigidly relative to a gradiometer, connected to a SQUID
system (not shown), and surrounded by a main coil for field zeroing or field-dependent measurement.
The SQUID, gradiometer, and main coil are part of a QD-MPMS3 system.
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3. Measurements
3.1. Stiffness and Critical Current

We cooled the system below Tc with Iec = 0. After the temperature has stabilized,
we gradually increased Iec while measuring the superconducting ring’s magnetic moment.
An example of a measurement at T = 12 K is presented in Figure 2a-inset. A repetition of
this process at different temperatures appears in panel (a). To isolate the superconducting
signal, we subtracted the moment of the measurement with zero current, which is due
to the ferromagnetic properties of FST and not its stiffness. In addition, we removed the
current dependent of the signal above Tc. This signal is due to the EC’s finite length and
asymmetry.
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Figure 2. Data: (a) Stiffness measurements. SC’s magnetic moment vs. the current in the excitation
coil at different temperatures, indicated by the colors. The inset is focused on the measurement at
12 K. A linear relation is found for low currents. At some critical current value, the signal drops to
zero. The blue circles in (b) depict the temperature dependence of the linear slope obtained at low
currents (far from Ic

ec) in panel (a). (b) Critical temperature. SC’s current in the EC vs. the temperature
(red down-pointing triangles), as described in Section 3.1; measured susceptibility (with a minus
sign) vs. the temperature (emerald diamonds) in MKS units in the presence of a magnetic field of
1 mT and without an excitation coil (according to Section 3.2). Inset (b) shows the critical currents vs.
the calibrated temperature (extracted from the breakpoints in panel (a)).
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Typical behavior in our measurements, for low currents, is a linear relation between
the ring’s moment and Iec, as expected (see Ref. [13] and Section 4). At some value of
Iec, which defines the critical current Ic

ec, this relation breaks. Beyond the breakpoint, the
magnetic signal drops sharply instead of the saturation behavior seen previously [14,15].
This drop is a result of two effects: (I) heat produced by the copper EC, which leads to a
temperature gradient between the ring and the thermometer and (II) heat produced by
energy dissipation as vortices enter the sample and φ changes dynamically. In fact, when
the moment drops to zero, the ring has passed its critical temperature and stops being
superconducting. A simple solution to the undesired effect of (I) could have been to use a
superconducting coil; however, the Tc of FST is higher than any commercially available
superconducting wire. Instead, we calibrated the temperature at the ring position using an
open ring. The calibration is discussed in Appendix A.

To extract the stiffness, we fit each m(Iec) to a line in a temperature-dependent range
due to the variation in the critical current. Such a fit is demonstrated in the inset of Figure 2a.
The slope represents dm/dI in the limit Iec → 0. The temperature dependence of the slopes
appears as blue circles in Figure 2b. The measurements do not cover all the temperature
ranges up to Tc, since it becomes exceedingly difficult to define a linear region in the m(Iec)
data. At a temperature slightly below Tc, a knee appears in the temperature dependence of
dm/dI.

The red down-pointing triangles in Figure 2b measure m/I as a function of T. This is
done by cooling with Iec = 10 mA, turning the current off, and warming while measuring.
At T > 13.45 K, this current is above Ic

ec, and such a measurement cannot be used to extract
the stiffness near Tc. On the other hand, such measurement can be carried out all the way
to Tc. Interestingly, the knee is observed even with this constant current measurement. It
is important to mention that the knee was detected in other FST rings as well. A detailed
discussion on the knee is given in Section 7.1.

Finally, in Figure 2b-inset, we present Ic
ec(T), corresponding to the moment’s maxi-

mum, as a function of the calibrated temperature. The large error bars at the low tempera-
tures range are due to the strong current in the coil, leading to a significant temperature
gradient and uncertainty in the temperature calibration.

3.2. Susceptibility

The emerald diamonds in Figure 2b depict the temperature dependence of the mea-
sured, zero-field-cooled (ZFC) susceptibility χ = m/(HVring), with a field of µ0H =
0.98 mT parallel to the axial direction of the ring; V stands for the ring’s volume. The
specific susceptibility is related to the measured one by:

χ =
χ0

1 + Dχ0
, (6)

where D is the demagnetization factor and χ0 is the specific susceptibility. For a ring with
our geometry, the demagnetization factor equals D = 0.6, and if we consider the inner
radius of the ring rin → 0, since in ZFC, it is hard for the field to penetrate the ring hole,
D = 0.7 [16]. With these D values (considering the effective volume of the ring in the latter
case), we obtain, at T → 0, χ0 = −1.30 and χ0 = −1.15, respectively. χ0 = −1 is excepted
in the case that all of the ring’s volume is superconducting. The extra 15% or more in χ0
could be a result of the irregular shape of the ring. In any case, it indicates that the entire
sample is superconducting.

As for the temperature dependence of χ, a sharp transition is observed towards the
critical temperature in this measurement Tc = 13.82 K, which indicates the quality of the
material. Interestingly, in DC magnetization measurements, the knee is not observed.

3.3. Hysteresis

To characterize the magnetic properties of the FST sample, we performed a magnetic
hysteresis loop measurement, between 2 T and −2 T, which is depicted in Figure 3a. This
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measurement is performed above the critical temperature, at T = 15 K. The opening of a
hysteresis loop is an indication of ferromagnetism. Another sign is that the moment of the
first point, at H = 0, is different from zero. It might be difficult to notice this in the figure.
However, this feature makes it possible to detect the sample without applying fields or
currents above and below Tc, in contrast to non-magnetic materials. Additional properties
that can be deduced from this measurement are the magnetization saturation, retentivity
(remanence), and coercivity values: msat = 1.58 A·mm2, mremanence = 0.22 A·mm2, and
µ0Hcoercivity = 0.0153 T, respectively. Although this ferromagnetism is sometimes ascribed
to the topological surface state [17], we analyze it as a bulk property. From the magnetiza-
tion saturation and the magnetic moment of a free Fe ion mFe2+ = 5.4 µB or mFe3+ = 5.9 µB,
where µB is the Bohr magneton [18], we can deduce that the fraction of the free iron ions
per unit formula in the sample is y = 0.009 or y = 0.008, respectively. Wang et al. [19],
performed inelastic neutron scattering measurements of Fe0.98Se0.5Te0.5 and claimed that
mFe = 2.85 µB. The corresponding value for the iron fraction in our sample is y = 0.017.
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Figure 3. Magnetic measurements: (a) Magnetic hysteresis loop above the critical temperature.
(b) m(H) at different temperatures below Tc, as indicated by the colors. Inset: The temperature
dependence of the critical fields Hc1 (blue circles) and Hc2 (red down-pointing triangles) on the left
and right Y-axis, respectively.
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3.4. Critical Magnetic Fields

The response of the superconducting ring to an applied magnetic field at different
temperatures below Tc is reflected in Figure 3b. From that measurement, we extract the first
and second critical fields, Hc1 and Hc2. Hc1 is defined by the maximum magnitude of the
moment for each temperature. A second peak emerges at an intermediate field between Hc1
and Hc2, and is attributed to the role of twin boundaries [20]. In principle, Hc2 is defined
by the value of H, for which m = 0 [21]. However, it is not easy to determine Hc2 because
of the asymptotic behavior of the moment. Therefore, we chose a criterion by which Hc2 is
the field at which the moment is 10% of the second peak magnitude. Below a temperature
of 10 K, Hc2 becomes higher than the maximum field available to us. Hc1 and Hc2 as a
function of temperature are shown in the inset of panel (b).

4. Analysis Model

The analysis of Stiffnessometer data is described in detail in Ref. [13], and is valid for
systems with cylindrical symmetry. Here, we provide only the major steps.

4.1. Stiffness

In the low-flux regime (low currents in the EC), the magnitude of the order parameter
is constant almost all over the superconducting ring and zero outside [13]. Substituting
B = ∇×A and the London equation into ampère’s law gives:

∇×∇×Asc = −µ0ρsAtot , (7)

since on the ring ∇×Aec = 0. In the London gauge, ∇×∇×A = −∇2A, and the vector
potential outside an infinitely long coil is given by:

Aec(r) = Φec/(2πr)ϕ̂ . (8)

With Equation (4), we arrive at the partial differential equation (PDE):

∇2Asc =
1

λ2

(
Asc +

Φec

2πr
ϕ̂
)

, (9)

where λ = ∞ outside the SC. Normalizing the spatial variables and vector potential is
completed as follows:

r/Rpl → r , Asc/Aec(Rpl)→ A , λ/Rpl → λ, (10)

and using cylindrical coordinates where A = A(r, z)ϕ̂, we end up with the following PDE:

∂2 A
∂z2 +

∂2 A
∂r2 +

1
r

∂A
∂r
− A

r2 =
1

λ2

(
A +

1
r

)
. (11)

We use the finite element-based FreeFem++ software [22] to solve this PDE for different
values of λ and the dimension of our FST ring, appearing in the caption of Figure 1. The
equation is solved in a box such that z ∈ [−L, L], and r ∈ [0, 8L] with L = Rpl = 8.5 mm.
Dirichlet boundary conditions are imposed.

As shown in Figure 1b, the ring’s outer radius is not uniform. However, the solution
of the Ginzburg–Landau (GL) equations [13] shows that in the low-flux regime, the current
flow is in a layer of width λ near the inner rim of the ring, so the system’s symmetry is
not severely compromised. When the flux through the ring is increased, the current layer
retreats toward the outer rim. This retraction ends when the current layer reaches the outer
rim. In our case, we assume that it happens at the shortest distance of the outer rim from
the center. We use this distance as the outer radius in the PDE (11). Nevertheless, our
assumption has not been tested numerically and the impact of a non-perfect ring on the
result is not clear yet.
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The red line in the inset of Figure 4a depicts the numerical solution of PDE 11. The
Y-axis is the normalized vector potential A at the ring’s height z = 0 and the pickup-
loop radial location r = Rpl. The X-axis is (Rpl/λ)2 on a logarithmic scale. Normalizing
Equation (5) by the vector potential of an infinite coil, we obtain:

Aec(Rpl) =
µ0nIec

2Rpl
∑

i
r2

ec,i , (12)

where n and rec,i are windings per unit length in one layer and radius of the ith layer,
respectively. We obtain the following dimensionless vector potential:

A(z = 0, Rpl) =
g

2πnRpl ∑i r2
ec,i
· m

Iec
, (13)

where m is the SC’s magnetic moment and g is a geometrical constant on the order of unity.
In reality, the coil is not infinite, and, as a result of cutting and drilling, the ring is not

perfect, see Figure 1b. Therefore, the calibration constant g is determined experimentally
in two different methods: (1) We compare the saturated value of A from the solution of
PDE (11) (see the red line in Figure 4a-inset) to the saturated value of dm/dI [the lowest
available temperature of the blue circles in Figure 2b]. This method cannot be used to
determine λ(T → 0), since exactly this limit is used for the calibration. Nevertheless, it
gives one value for g. (2) From the literature, we use low-temperature stiffness value of a
similar material to predict A with the PDE solution and compare it to our measured dm/dI
at the same temperature to extract a second value for g. For this work, the stiffness was
taken from Ref. [3]. We found g1 = 0.5363 and g2 = 0.5336 using methods (1) and (2),
respectively. We also applied the same calibration methods for a ring-shaped Niobium
with similar dimensions and found g1 = g2 = 0.68674(2) while using λ(0) = 39 nm as
the literature value for Niobium [23]. Although the two calibration methods give different
values for the penetration depth at low temperatures, towards Tc, the values converge
and almost coalesce, as we demonstrate shortly. In other words, the stiffness determined
by the Stiffnessometer is not sensitive to the calibration method once dm/dI is out of the
saturation region.

4.2. Coherence Length

In the low-flux regime Φec/Φ0 � r2
in/λε, and for λ� rout − rin and h, where h is the

ring’s height, deep inside the ring Atot = 0; hence, Asc = −Aec. In other words, the applied
flux is matched by the flux generated by the ring in the hole. For Φec/Φ0 > r2

in/
√

8ξλ, the
current necessary to produce Asc at rin exceeds the local critical current [13]. Then, it is
energetically preferable for the order parameter magnitude to gradually diminish in the
inner rim of the ring. Consequently, the superconducting ring hole effectively grows, and
an effective inner radius reff is established. At even higher flux, reff approaches rout, and
the SC is no longer able to expel the applied flux, namely, to cancel Aec. This happens at a
critical flux [13]:

Φc

Φ0
=

r2
out√
8ξλ

. (14)

While the derivation of Equation (14) is in the limit ξ � λ � rout − rin � h, we
believe it is valid for λ� rout − rin and λ� h separately.

For Φ > Φc, vortices are expected to penetrate from the inner rim towards the outer
one so that the SC’s moment no longer grows with amplification of Iec. These vortices are
manifested in ∇φ variations.
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5. Data Analysis

Equation (13) relates the linear slope of the m(I) measurements, shown by blue circles
in Figure 2b, to the numerical solution of the PDE. The blue open circles in Figure 4a-
inset represent the converted points using g2. Each of those points belongs to a different
temperature and gives a unique stiffness value. The temperature dependence of λ is
presented on a linear scale in Figure 4a, right Y-axis, and of λ−2 on a logarithmic scale
in Figure 4b, for the two different g values. The difference between the two calibration
methods is revealed in both subfigures, but they are minute at T → Tc. The linear regression
towards the critical temperature on the logarithmic scale represents the critical exponent
nρ, according to the power law:

ρ ∝ (1− T/Tc)
nρ , (15)

where nρ = 0.91± 0.02. This relation describes the data well from the knee temperature
12.4 K all the way to Tc. For comparison, the µSR measurements of 1/λ2 [3,4] are also added
to Figure 4b, and their nρ = 0.53± 0.04. It should be pointed out that all techniques agree
that λ(T = 0) ∼ 0.5 µm, but from the tunnel diode technique, λ(T = 0.9Tc) ∼ 2 µm [6],
which is longer than µSR, but shorter than the Stiffnessometer.

Based on the stiffness and the critical current in the inset of Figure 2b, we extract the
coherence length using Equation (14) and the calculated flux in the coil. The results are
depicted on a linear scale in Figure 4a and on a logarithmic scale in Figure 4c. Again, we fit
the data to the power law:

ξ−1 ∝ (1− T/Tc)
nξ . (16)

We found nξ = 0.41± 0.02. The deviation from the linear regression at high temper-
atures may be a result of analysis failure, since the penetration depth is no longer much
smaller than the ring’s height (λ ��� h). At low temperatures, we associate the deviation
with heating caused by the strong current in the excitation coil, which cannot be accurately
accounted for by the temperature calibration.

The alternative determination of ξ is from Hc2 [21] according to the equation:

µ0Hc2 =
Φ0

2πξ2(T)
. (17)

ξ, determined from Hc2, is presented on a linear scale with black squares in Figure 4a
and 1/ξ is presented on a logarithmic scale in panel (c) of the same figure for comparison.
Here, we also fit the data according to Equation (16) and obtained nξ = 0.60± 0.03.

For further comparison, low-temperature measurements of 1/ξ from other methods
have been added to Figure 4c (star-shaped): resistivity [10], ARPES [11], and STM [9].
The resistivity measurement is, in fact, an Hc2 measurement, and the result obtained is
close to the one obtained by the magnetization method (ξHc2 /ξRes = 1.6 at T = 0). The
ARPES value ξ0 is related to the GL ξ at T = 0, ξ(0), by a factor of 0.74 [21] (Equation 4.24).
The same factor was taken into account when converting the STM result. Unlike the Hc2
measurements, the results from the other two methods are closer to the linear regression of
the Stiffnessometer method (ξStiff/ξARPES = 1.7 and ξStiff/ξSTM = 1.9 at T → 0).
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as a function of the temperature in blue and emerald triangles, for the different calibration methods.
The left Y-axis shows the temperature dependence of the coherence length. The red-circles are taken
from the critical current measurement in Figure 2b-inset through Equation (14) with the measured λ,
and the black-squares are from the second critical field in Figure 3b-inset with Equation (17). Panels
(b,c) are log-log plots of the stiffness λ−2 and 1/ξ vs. 1− T/Tc, respectively. The linear regression
represents the critical exponents according to Equations (15) and (16), respectively. Earlier stiffness
measurements using the µSR method have been added to (b) in brown [3] and yellow [4] stars.
The same power law is fitted to this data. For comparison, we add to (c) asterisks reflecting the
measurements of 1/ξ from the resistivity method [10] in magenta, ARPES [11] in purple, and STM [9]
in green.

6. Reproducibility and Origin of the Knee

To examine reproducibility, we investigated more than one ring cut from different
crystals of FST. A comparison between different rings from other crystals appears in Figure 5.
The figure shows the normalized, and shifted (for clarity), SC moments as a function of
the temperature in two cases: panel (a) with a current in the EC and zero-applied field and
panel (b) with an applied field and no EC current. The applied currents and fields are in the
range [5, 10] mA and [0.1, 3] mT, respectively, but not necessarily equal for different rings.
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The main ring of this research is 1. The knee temperature and sharpness vary from ring to
ring (Figure 5a). Interestingly, multiple knees appear in the standard, in-field measurement
of ring 2 in panel (b).
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T e m p e r a t u r e  ( K )
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Figure 5. Reproducibility. Normalized magnetic moment m/m(T → 0) vs. temperature for different
rings. (a) in the presence of current in the excitation coil, as described in Section 3.1. (b) in the
presence of an applied field perpendicular to the ring. The central ring of this research is 1. An offset
is added for clarity.

It could be that the knee originates from the interaction of the superconducting order
parameter with the underline ferromagnet. To test this possibility, we measure the SC’s
magnetic moment vs. temperature in the presence of an applied field (ZFC) in the direction
of the EC, with and without current in the coil. The raw data are shown in the inset of
Figure 6. The difference between the two measurements is presented in Figure 6. For
comparison, the measurement with the current only is also displayed. The knee appears at
the same temperature with and without the field.
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Figure 6. The knee’s field dependence. Temperature dependence of the difference between the ring’s
moment measured with the excitation coil current and field, to a measurement with the field only
(blue circles, left Y-axis). The brown circles on the right Y-axis are the measurement in the zero-field
current in the excitation coil. The data are shifted for clarity. The knee is at the same temperature
regardless of the field. The inset shows the ring’s moment vs. the temperature in the presence and
absence of an applied field (1 mT) and current in the EC (10 mA). The data in the main panel are
obtained by subtracting the two datasets in the inset.

7. Discussion

We discuss the two major observations of this work, the knee and the critical exponents,
and examine the relation between the measured quantities.

7.1. The Knee

Mukasa et al. [24] presented the nematic transition temperatures Ts as a function
of the Tellurium composition in Fe1+ySexTe1−x. The lowest temperature measured by
X-ray diffraction is 13.3 K, and there are no measurements close to the mid point x = 0.5.
Nevertheless, extrapolation of their data suggests that Ts and Tc cross each other near
x = 0.5 and that Ts might drop below Tc. Perhaps, nematic order is the origin of the knee.
Alternatively, Peng Zhang et al. [25], suggested the existence of surface superconductivity
in FST. We speculate that this might lead to two different SC Tcs, one for the bulk and one
for the surface. FST is also known to have multiple Fermi surfaces. It could be that the
knee is a result of the different temperature dependences of the SC’s order parameters on
different bands.

Finally, there is always the possibility that the knee is a result of the geometrical imper-
fection of the ring. Such imperfections are difficult to account for in numerical simulations.

7.2. Critical Exponents

The GL theory assumes, and BCS theory predicts, a linear temperature dependence
of ψ2. According to Equation (2), this leads to the prediction that nρ = 1. Our finding is
not exactly as expected, but it is closer to unity than the results of µSR added to Figure 4b.
It should be pointed out that the µSR measurements are performed in a fixed magnetic
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field, which becomes higher than Hc2 as one approaches Tc. The discrepancy between tech-
niques could also result from an interaction between the applied field and the underlined
ferromagnet, as mentioned before. Similarly, standard GL predicts nξ = 0.5. In this case, ξ,
determined by the Stiffnessometer, and Hc2 are equally far from the expected value.

If we relax the linear assumption, the GL theory also predicts nρ/nξ = 2. We find:

nρ/nξ = 2.22± 0.12 . (18)

The result obtained from the µSR and Hc2 methods gives nµSR
ρ /nHc2

ξ = 0.88± 0.08, far
from the GL expected value.

7.3. First Critical Field

The first critical field, Hc1, is related to λ and ξ [26] via:

µ0Hc1 =
Φ0

4πλ2 ln
λ

ξ
. (19)

An attempt to test this equation fails severely regardless of the experimental method
used to determine the different quantities. Bendele et al. [4] addressed this problem by
considering the demagnetization factor D. They introduced the following equation:

B = µ0(m/V + Hint) , (20)

where Hint = Hext − D ·m/V, Hint, and Hext are the internal and externally applied field,
respectively, µ0Hc1 → B in Equation (19). This calculation is very sensitive to the ring’s
volume and D accuracy. In Section 3.2, we considered two options for D. If we adopt the
disk option, we obtain a much smaller B than measured. If we consider the ring option, we
find a negative B value. Sometimes, an additional constant is considered in Equation (19),
which includes the effect of the hard core of the vortex line [4,27,28], but in our case, this
effect is negligible. Once again, we speculate that the failure of Equation (19) is a result of
the underlining ferromagnetism in FST.

8. Conclusions

We developed a method, ideal for magnetic superconductors close to Tc, to measure
both the penetration depth λ and coherence length ξ. For FST, we find that λ and ξ are
longer than previously reported and their temperature dependence agrees better with the
GL predictions. A second transition, which looks like a knee, is observed at a temperature
below Tc in the stiffness measurements. Further experiments are required to determine
whether this transition is due to either nematic order, surface superconductivity, multiple
Fermi surfaces, or a simple geometrical effect.
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Appendix A. Temperature Calibration

Due to the heat produced by the current in the EC, a temperature gradient is developed
between the ring and the thermometer, that is, the actual temperature of the sample T and
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the temperature recorded by the chamber thermometer Tch are not the same. Our goal is to
determine the sample temperature T corresponding to each critical current Ic

ec based on the
chamber temperature Tch.

The calibration process is completed by measuring the temperature dependence of the
magnetic moment in the presence of an applied field of µ0H ≈ 1 mT (ZFC), similarly to
Section 3.2. However, this time, we use a disconnected FST ring and repeat the measurement
for different Iec values. The critical current values from Figure 2b-inset have been chosen to
improve the accuracy.

The current in the EC heats the sample, but cannot generate a persistent current in
the ring due to the disconnection. Nevertheless, there are two additional contributions
of the EC current to the signal, and both are consequences of its finite length. A good
way to understand them is from the EC signal in Figure 2-inset and Figure 3 in Ref. [14].
(I) The second-order gradiometer is insensitive to any field uniform in space, but even
around its center, the EC signal is not totally uniform, mostly due to asymmetry of the
coil (e.g., wires enter the coil from one side only). This contribution is identified from the
measurement above Tc and subtracted. The measurement results after this subtraction
appear in Figure A1a. (II) A field leakage from the EC, altering the field in the sample
and the sample’s moment accordingly. This field leakage could be partially canceled by
measuring the moment in two current directions, as presented in Figure A2a. The difference
between measurements increases with the current, while the zero-current measurement
stays in the middle. Averaging over both directions reduces the deviations due to field
leakage, as in Figure A2b. Notably, the magnitude of the field leaking from the coil at a
current of 10 mA is estimated to be 0.03 mT.
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I e c  ( m A ) :
2 7

0

Figure A1. Temperature Calibration. Temperature dependence of the magnetic moment of a discon-
nected FST ring in the presence of a magnetic field, repeated for different Iec, as indicated by the
colors. (a) Before calibration. (b) After calibration.
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Figure A2. The influence of the leaking field from the excitation coil on the measurements.
(a) Calibrated measurements in the presence of positive and negative current values, as indicated by
the colors. (b) Averaging over the directions of the currents in (a).

Once these contributions are eliminated, we search for the temperature correction,
∆T, for which m(Iec, Tch + ∆T) collapses onto the one without the current m(0, T) at the
steepest part of the measurement’s slope, as seen in Figure A1b. The collapse is best when
close to Tc, but the correction is suitable for a wide range of temperatures. The relation
generated between Iec and ∆T is given in Figure A3-inset.
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Figure A3. Critical currents before and after the calibration. Critical current vs. the temperature
before the calibration in gray diamonds and after in blue circles. The inset shows the temperature
correction ∆T vs. the current in the excitation coil. The relation is approximately parabolic.
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After the temperature correction is set for each current, we compare the measurement
with the current to the one without. The error in the temperature correction is estimated
by the temperature difference between points with the same moment value from both
measurements. An example appears in Figure A4. The errors depend on the current in the
coil and temperature. Finally, in blue circles in Figure A3, we present the SC critical current
Ic
ec as a function of the calibrated temperature T with error bars.
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Figure A4. Estimation of the temperature calibration process errors. Measurements after temperature
calibration (from Figure A1b) without current in the excitation coil in black circles and with a current
of Iec = 25 mA in red circles. The error is estimated by the temperature difference between two points
with the same moment value. It is represented by δT and depends on the current and the temperature.
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