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Abstract: In superconducting films, the role of intrinsic disorder is typically to compete with su-
perconductivity by fragmenting the global phase coherence and lowering the superfluid density.
Nonetheless, when a transverse magnetic field is applied to the system and an Abrikosov vortex
lattice form, the presence of disorder can actually strengthen the superconducting state against
thermal fluctuations. By means of Monte Carlo simulations on the uniformly frustrated XY model in
two dimensions, we show that while for weak pinning the superconducting critical temperature Tc in-
creases with the applied field H, for strong enough pinning, the experimental decreasing dependence
between Tc and H is recovered with a resulting more robust vortex lattice.

Keywords: 2D vortex lattice; uniformly frustrated XY model; disordered superconducting films

1. Introduction

The melting transition of two-dimensional (2D) Abrikosov vortex lattice (VL) has
always attracted significant experimental and theoretical interest. The interplay between
magnetic field, random pinning, and phase fluctuations makes the phase diagram of the
system rich of different phases of matter ranging from the 2D Bragg glass to the 2D vortex
glass [1–3], from the isotropic vortex liquid to the more recently observed hexatic liquid
phase [4,5]. In the absence of disorder, at low temperatures and low vortex densities,
the vortex lattice exhibits a quasi-long range order. As the temperature or the vortex
density increases, topological defects such as dislocations and disclinations form, eventually
leading to the melting of the vortex lattice according to the Berezinskii–Kosterlitz–Thouless
theory [6–8] afterwards refined by Nelson, Halperin and Young [9–11]. In this frame,
the role of disorder is on the one hand to favour the formation of such lattice defects
turning the ground state from a quasi ordered Bragg glass [12,13] to a disordered vortex
glass. On the other hand, by acting as a pinning potential for vortices, it also prevents
the VL from sliding throughout the system and destroying the global superconducting
(SC) phase coherence. Thus, differently from the Meissner state, where disorder competes
with superconductivity, in the mixed state, its role is less straightforward. Here, indeed,
a true superconducting state exhibiting zero resistivity in the limit of zero current can only
settle if a certain degree of disorder is present within the system. Moreover, as recently
shown [14], vortex thermal fluctuations responsible for the fast depletion of the superfluid
stiffness can be even reduced by the presence of a strong vortex pinning.

From a theoretical perspective, one possible way to investigate such interplay is by
studying the classical XY model in the presence of both disorder and transverse magnetic
field. As an effective model for superconducting phase fluctuations, the 2D XY model has
been applied to the study of disordered and inhomogeneous SC films over the years [15–24]
as well as to the 2D vortex lattice melting for different values of the applied magnetic
field [25–32]. The combined effect of quenched disorder and transverse magnetic field has
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been so far addressed by including in the XY model spatially random quenched magnetic
fluxes, but with a resulting zero net magnetic field [2,15,33,34].

In this manuscript, we will instead consider the effect of quenched disorder on the
melting of the 2D vortex lattice which forms when a nonzero net transverse magnetic field is
included within the XY model. Starting from the consideration that the presence of a lattice
introduces a pinning effect at low temperature even in the absence of disorder, our Monte
Carlo (MC) simulations show that, apart from disordering the VL ground state, the presence
of inhomogeneities makes the vortex lattice stronger against thermal fluctuations with
respect the homogenous case according to the experimental observations [14]. The presence
of a very weak pinning can indeed lead to a very counter-intuitive observation, namely
the increase of the SC critical temperature by the increase of the applied magnetic field.
However, when the disorder is sufficiently strong, the experimentally observed dependence
between Tc and H is recovered.

2. Materials and Methods

We consider a two-dimensional XY model in the presence of random pinning and
transverse magnetic field. Its Hamiltonian reads:

HXY = − ∑
µ=x̂,ŷ,i

Jµ
i cos(θi − θi+µ + Fµ

i ), (1)

where θi is the SC phase at site i of a Lx× Ly lattice, Jµ
i are the random couplings between the

neighbouring sites i and i + µ and the phase shift Fµ
i accounts via the minimal substitution

for the presence of a finite transverse magnetic field Hẑ = ~∇× ~A, being:

Fµ
i =

2π

Φ0

∫ ri+µ

ri

Aµ
i · dµ, (2)

with Φ0 = hc/2e the quantum flux, and Aµ
i is the vector potential along the bond connect-

ing two neighbour spins i and i + µ. The sum of Fµ
i going counterclockwise around any

closed path C of such bonds is 2π times the number of magnetic flux quanta fC passing
trough the relative enclosed area defined by C:

∑
C

Fµ
i =

2π

Φ0

∮
C
~A · d~l = 2π

ΦC
Φ0

= 2π fC (3)

Since in the following we will always consider H to be uniform in space, we will refer
to the intensity of the applied field in terms of the flux quanta f penetrating through a
unitary plaquette P:

2π f =
2π

Φ0

∮
P
~A · d~l = 2π

Φ0

∮
P
~∇× ~H · d~l = 2π

Φ0
Ha2 (4)

with a = 1, so that f = H
Φ0

. In literature, one usually refers to this case as the uniformly
frustrated XY model with frustration f . Indeed, the phase shift Fµ

i in the cosine argument
of (1) adds frustration to the system by rendering the ground state no longer ferromagnetic:
at T = 0, the phases θi’s instead being all equal will vary from site to site trying to
minimise the new gauge-invariant phase (θi − θi+µ + Fµ

i ). Consequently, the value of f
will correspond to the level of such frustration, determining the inhomogeneous space
structure of the ground state itself. Specifically, the ground state of the uniformly frustrated
XY model will consist of a periodic configuration of vortices in the phase angle θi, whose
number is directly proportional to f . The number of vortices Nv of the ground state for a
given value of f can be easily derived by rewriting the charge neutrality condition in terms
of the new gauge invariant phase:
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∑
i

∮
Pi

(~∇θ − ~A)d~l = 2π ∑
i
(ni − f ) = 2π ∑

i
qi = 0 (5)

where the sum runs over all the LxLy unitary plaquttes Pi, so that:

Nv = f LxLy. (6)

Since in the present study we will consider periodic boundary conditions, a good
gauge choice for the vector potential ~A is the Coulomb gauge: ~∇ · ~A = 0. For simplicity,
we will consider:

~A = B(0, x), (7)

so that:

Fµ
i =

{
0 if µ = x
2π f xi if µ = y

(8)

Finally, it is important to highlight that, with this choice, not all the values of f will
be allowed. Indeed, periodic boundary conditions, together with the Coulomb gauge
Ay = 2π f x, give rise to the constraint:

Lx · f = 1, 2, 3, . . . (9)

Hence, for a given value of Lx, the smallest frustration we can introduce within the
system is: f = 1/Lx.

In the present work, we have studied the model Equation (1) on a square lattice with
periodic boundary conditions for a linear size of Lx = Ly = L = 64 and different values
of f . In our MC simulations, we have used a local Metropolis algorithm, needed to probe
the correct canonical distribution of the system, combined with a micro-canonical over-
relaxation algorithm. Specifically, each MC step consists of five Metropolis spin flips of the
whole lattice, followed by 10 over-relaxation sweeps of all the spins. To help the correct
thermalization of the system at lower temperatures, we have used a Simulated-Annealing
procedure. For each run, we have made 50,000–75,000 MC steps, measuring the main
observables with a frequency of five steps, after having discarded the first 25,000. Finally,
the averages have been computed over five independent runs for the clean case and over
10 different realizations of quenched disorder for the disordered case.

In the present work, together with the ground state of the vortex lattice, we have
studied the SC transition as a function of the frustration f and the level of disorder.
To address this issue and measure the SC phase coherence of the system, we have computed
the superfluid stiffness Jµ

s , which accounts for the linear response of the system to an
infinitesimal twist ∆µ of the gauge-invariant phase along a given direction µ. As such, it is
defined as the second derivative of the free energy with respect to ∆µ at ∆µ = 0:

Jµ
s ≡ −

1
L2

∂2 ln Z(∆µ)

∂∆2
µ

|∆µ=0

being finite in the SC phase and zero in the normal phase. Its expression for the model
Equation (1) reads:

Jµ
s =

1
L2

〈
∑

i
Jµ
i cos(θi − θi+µ + Fµ

i )
〉
+

− β

L2

[〈(
∑

i
Jµ
i sin(θi − θi+µ + Fµ

i )

)2〉
−
〈
∑

i
Jµ
i sin(θi − θi+µ + Fµ

i )
〉2
]

,

(10)

where β is the inverse temperature and 〈. . . 〉 stays both for the MC thermal average and
for the average over the independent runs.
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3. Results

In what follows, we will present the numerical results obtained via MC simulations
both for the clean and for the disordered case, considering different values of f ∈ [0, 1

2 ].

3.1. Clean Case

Let us start with the clean case where Jµ
i = 1 ∀i, µ so that:

HXY = −J ∑
µ=x̂,ŷ,i

cos(θi − θi+µ + Fµ
i ). (11)

For f = 0, the model (11) is the classical XY model which undergoes to the well
known Berezinskii–Kosterlitz–Thouless [6–8] (BKT) transition at T = TBKT . As already
mentioned, for finite values of f , the phase transition is no longer driven by the unbinding
of vortex–antivortex pairs, but rather by the melting of the vortex lattice which naturally
forms when a transverse magnetic field is applied to the system. In the clean case, despite
the absence of disorder, the vortex lattice is pinned at low temperatures by the presence
of the underlying square grid that defines the array of Josephson junctions. By acting
as a periodic pinning potential for vortices, such a square grid can become particularly
relevant for large values of f eventually determining the symmetry of the vortex lattice
itself. The most emblematic example is the limiting case f = 1/2, wherein the ground state
of the vortex lattice assumes a checkerboard ordered pattern. The model Equation (11)
with f = 1/2 is also known as the fully frustrated XY model (FFXY) and as such it has been
extensively studied (see [35] and reference therein) with a particular focus on its critical
behavior and the nature of the phase transitions it undergoes.

In the present work, we will instead focus on a smaller value of f , where the periodic
pinning potential does not induce such peculiar vortex lattice configuration. The resulting
ground state vortex lattices for f = 1/64; 1/32; 1/8 are shown in Figure 1. For clarity,
only a portion of the entire lattice is shown. For all the values of f considered, at low
temperatures, the vortices form an ordered and pinned lattice whose symmetry partially
depends also on the commensurability with the underlying numerical grid.

Figure 1. Vortex lattice ground state for different values of the frustration f = (a) 1/64; (b) 1/32;
(c) 1/8. Each vortex core is plotted as a blue point. The linear size of the simulated system is L = 64,
while for the sake of clarity in the figure only a portion of the whole VL is shown.

At finite but not maximal f , different kinds of phase transitions can occur [27,31],
and their nature is still unclear in most of the cases. Without pretending to address this
issue, in the present work, we focus on the dependence of the critical temperature Tc,
at which the superfluid stiffness vanishes, on the applied magnetic field f . The numerical
results of Js(T) for different values of f are reported in Figure 2.
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Figure 2. Superfluid stiffness Js as a function of the temperature T for different values of frustration
f in the absence of disorder. The linear size of the simulated system is L = 64.

We can immediately notice that the critical temperature Tc at which the system loses
its phase coherence, resulting in the vanishing of Js, is strongly suppressed for smaller
values of f , completely at odds with the usual experimental observations [2,4,5,36–39].
The general trend seems, indeed, to be a proportionality between Tc and f : lower critical
temperatures for smaller frustration.

The observed trend has been already discussed in [31], where Alba et al. have shown
that, in the limit of small frustration f = 1/n (and n � 1), the critical temperature Tc
decreases with the increase of n: Tc ∼ 1/n→ 0 as n→ ∞.

Apart from specific cases where the commensurability with the underlying square grid
particularly strengthens or weakens the vortex-lattice structure, by lowering the applied
magnetic field, the pinning of the vortex lattice becomes weaker than in the case where
the vortex density is higher, with a resulting decrease of the critical temperature with f .
By increasing the pinning potential via the introduction of disorder, however, the scenario
is reversed and, in agreement with experimental observations, with increasing applied
magnetic field, the critical temperature decreases. We will discuss the numerical results of
the disordered case in the following section.

3.2. Disordered Case

We now consider the case of a transverse magnetic field applied to a disordered
SC film. In the present manuscript, as in some previous works [21,22], we will use as
disordered coupling constants in Equation (1) the inhomogeneous local stiffness Jµ

i derived
from the (quantum) XY pseudo-spin 1/2 model in random transverse field (RTF) [40,41]:

HPS = −∑
i

ξiσ
z
i + J ∑

〈i,j〉
(σ+

i σ−j + h.c), (12)

where the random transverse fields ξi, extracted from a uniform distribution between −W
and W, compete with superconductivity by mimicking the Cooper pairs localization due
to disorder. The resulting local stiffness that controls the SC phase fluctuations on top of
the SC ground state, read [22,41]: Jµ

i = J〈σx
i 〉〈σx

i+µ〉, with 〈σx
i 〉 being the mean field SC

order parameter. This disorder has been shown to be appropriate to model disordered
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superconductors with a non-trivial spatial structure [41–43], as well as to account for the
experimental observation of a rather broad BKT transition around the critical temperature
TBKT [21,22], at which a sharp jump of the superfluid-density would be expected for zero
disorder [44]. Previous studies at zero magnetic field [21,22] have shown that such a
spatially-correlated disorder with large enough low-stiffness puddles is crucial to induce
anomalous vortex nucleation and, consequently, a smearing of the BKT transition. On the
other hand, in the present case where vortices are induced by a finite transverse magnetic
field, we do not expect that the results will depend crucially on the choice of disorder,
so our finding should be general also for different disorder realizations. The level of
disorder is here labeled by W/J (see [21] for more details), and it is taken to be quenched
in temperature.

Let us start by considering a relatively weak disorder level W/J = 4. Consistently with
the experimental observations of [14], our MC numerical results reveal that the presence of
disorder leads to a modification of the ground-state vortex lattice, enlightening further its
underlying mechanism. As shown in Figure 3, the core of the vortices is indeed pinned by
the inhomogeneity of the local stiffness, which makes them move towards those regions
with lower Jµ

i in order to gain in energy by minimising the Hamiltonian (1). To highlight
the correlation in space between low-couplings regions and the vortex lattice deformation,
in Figure 3, we have superimposed the vortex lattice to the couplings map, obtained by
computing over each plaquette the average value of the local stiffness Jµ

i . The vortex cores,
represented by red dots, are found to be in the darker areas, corresponding to the regions
with the lowest local stiffness.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/64

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y

x

f=1/64

 0

 0.2

 0.4

 0.6

 0.8

 1

(d)(c)

Figure 3. Vortex lattice ground state for different values of the frustration f = (a) 1/8; (b) 1/16;
(c) 1/32; (d) 1/64 superimposed to a map of a given disorder realization with W/J = 4. The gray
scale refers to the the average value of the local couplings constant Jµ

i around each single plaquette.
Each vortex core is plotted as a red point. The linear size of the simulated system is L = 64, while,
for the sake of clarity in the figure, only a portion of the whole VL is shown.
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The presence of disorder not only modifies the vortex lattice ground state, but also
impacts the superfluid response of the system as a function of the applied magnetic
field. In Figure 4a, we report the temperature dependence of the superfluid stiffness
Js(T) obtained for different values of f . As one can see, the presence of disorder restores
the experimentally measured dependence between Tc and f by rendering more robust
the vortex lattice against thermal fluctuations. In this regard, it is quite impressive to
notice that, compared to the homogeneous case (see Figure 3), the critical temperature Tc
corresponding to the lowest value of f = 1/64 in Figure 4a has increased by a factor of ten
by the effects of the inhomogeneity.

The strengthening of the vortex lattice due to disorder is even more pronounced when
looking at stronger disorder regimes. In Figure 4b, we report the superfluid stiffness trend
in temperature for the same values of f but with a disorder level of W/J = 10. Looking
for instance at the lowest value of the field ( f = 1/64), the critical temperature is reduced
because of the field only by half with respect to the zero-field value, while, at weak disorder
(W/J = 4), it was five times smaller.

(a) (b)

Figure 4. Temperature dependence of the superfluid stiffness in the presence of (a) weak W/J = 4
and (b) strong disorder W/J = 10, for different values of the frustration f .The continuous gray line
is the BKT critical line 2T/π relative to the case f = 0.

In order to highlight such increase of robustness, as an effect of the increase of the
intrinsic disorder, we have reported in Figure 5a the extrapolated values of the critical
temperature as a function of the applied field, for the two disorder regimes considered.
In Figure 5b, this effect is made even more evident by rescaling the curves of Tc by their
value in absence of the magnetic field. The ratio Tc( f )/Tc(0) decreases with f almost twice
as fast at weak disorder W/J = 4 than in the strong disorder case W/J = 10.
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(a) (b)

Figure 5. Magnetic field dependence of (a) the critical temperature Tc( f ) and (b) of the rescaled
critical temperature Tc( f )/Tc( f = 0) for the two regimes of disorder considered: W/J = 4 and
W/J = 10. For each values of f 6= 0 and disorder level, the critical temperature Tc has been estimated
from the superfluid stiffness trend in temperature Js(T) as the temperature at which Js vanishes
starting from low temperatures. For the case f = 0, we used instead the Nelson–Kosterlitz universal
relation [44].

4. Discussion

By means of Monte Carlo simulations on the uniformly frustrated XY model, we have
shown that the presence of disorder, mimicked via random couplings, modifies the ordered
vortex lattice of the ground state. For strong enough disorder, the energy of the system
is no longer minimized by an ordered vortex-lattice structure, but rather by a disordered
structure in which the vortex cores are located where the local stiffness of the superfluid is
lower so as to reduce the energy cost associated with a phase twist.

At the same time, we have shown that, in the presence of a very weak pinning as
in the case with no disorder, where the only pinning potential is due to the presence of
the underlying square grid, the increase of the applied magnetic field does not reduce
the superconducting critical temperature, but, in most cases, it contributes to its increase,
in stark contrast with the experimental observations [2,4,5,36–39]. The presence of disorder
not only restores the experimentally observed dependence between Tc and f , but also acts
by making the ground-state vortex lattice more robust against thermal fluctuations. Com-
paring two different levels of disorder, we have indeed shown that the superconducting
critical temperature is suppressed much less with respect to the zero-field case in the strong
disorder regime than in the weak disorder regime.

In conclusion, despite separately both the disorder and magnetic fields acting on the
SC thin film by suppressing the superfluid stiffness, when a transverse magnetic field is
applied to the system, the presence of disorder helps to prevent the destruction of the SC
state by thermal fluctuations.
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