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Abstract: The first objective of this paper is to investigate the scaling behavior of liquid-vapor phase
transition in FCC and BCCmetals starting from the zero-temperature four-parameter formula for
cohesive energy. The effective potentials between the atoms in the solid are determined while using
lattice inversion techniques as a function of scaling variables in the four-parameter formula. These
potentials are split into repulsive and attractive parts, as per the Weeks–Chandler–Anderson prescrip-
tion, and used in the coupling-parameter expansion for solving the Ornstein–Zernike equation that
was supplemented with an accurate closure. Thermodynamic quantities obtained via the correlation
functions are used in order to obtain critical point parameters and liquid-vapor phase diagrams.
Their dependence on the scaling variables in the cohesive energy formula are also determined. An
equally important second objective of the paper is to revisit coupling parameter expansion for solving
the Ornstein–Zernike equation. The Newton–Armijo non-linear solver and Krylov-space based
linear solvers are employed in this regard. These methods generate a robust algorithm that can be
used to span the entire fluid region, except very low temperatures. The accuracy of the method is
established by comparing the phase diagrams with those that were obtained via computer simulation.
The avoidance of the ’no-solution-region’ of the Ornstein-Zernike equation in coupling-parameter
expansion is also discussed. Details of the method and complete algorithm provided here would
make this technique more accessible to researchers investigating the thermodynamic properties of
one component fluids.

Keywords: liquid–vapour phase transition; metals; thermodynamic perturbation theory;
coupling-parameter expansion; critical point parameters; universal aspects; scaled variables

1. Introduction

The scaling and universal features in phase transition theory were first brought out
with the van der Waals equation of state [1]. Scaling the thermodynamic variables provided
a universal equation of state and critical behavior that is characterized via universal critical
exponents. The mean field approach implied in the van der Waals equation neglects long
range fluctuations that are close to the critical point and so provide only the classical
critical behavior as opposed to the renormalization group theory of critical phenomena [2].
The Ornstein–Zernike equation (OZE) defines the relationship between the short range
and long range correlation functions in fluids. When supplemented with appropriate
closure relations, which relate the correlation functions to inter-particle interaction, OZE
provides a framework to apply the mean field theory to fluids with arbitrary inter molecular
potentials [3]. The thermodynamic properties with an accuracy comparable to those
obtained via simulation are presently obtained with the OZE.

The zero-temperature cohesive energy for a variety of metals follows a universal curve
with suitable scaled variables [4]. It is then natural to explore whether the universal energy-
volume curve can be extended to the expanded volume states to describe the liquid-vapor
phase transition in metallic fluids [5]. This investigation becomes easy when used with the
corrected rigid spheres (CRIS) model, which is a thermodynamic perturbation theory that
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is based on the cohesive energy of nearest-neighbor pairs in the fluid [6]. In comparison
to other perturbation theories [7], which are based on inter-particle interaction potentials,
the CRIS model provides an approximate theory of fluids based on cohesive energy curves.
However, the accurate prediction of the liquid–vapor phase diagram within the CRIS
model needs a tuning of the reference-hard-sphere pair distribution function [8].

The first objective in this paper is to investigate the scaling aspects of the liquid–vapor
phase transition in metallic fluids, starting from the scaled cohesive energy (SCE) versus
volume curves. An improved SCE formula [9], involving four-parameters, is used for
this purpose. First of all, effective pair interaction potentials are derived from the SCE
formula by employing lattice inversion techniques, and split into repulsive and attractive
components while using the Weeks–Chandler–Anderson (WCA) prescription [10]. These
components are used in an accurate thermodynamic perturbation theory, called coupling-
parameter expansion (CPE) [11], for solving the Ornstein-Zernike equation (OZE) and an
appropriate closure relation. The coupling parameter (0 ≤ λ ≤ 1) tunes the strength of
the attractive component of the potential, and all correlation functions are expressed as
Taylor’s series in λ around λ = 0. It is important that the method offers series expansion
to arbitrary orders in Taylor’s series. Therefore, all of the thermodynamic quantities are
easily computed in the entire phase plane once the correlation functions are determined
to sufficient accuracy. The critical point parameters and phase diagrams of metallic fluids
are then obtained in terms of the scaling variables in the SCE formula. The results for
critical point parameters are similar to those obtained earlier [5] while using the CRIS
model; however, there are important differences. For example, the FCC and BCC lattices
are found to generate different type of critical point parameters. Further, the scaling of
phase diagrams was not considered earlier.

The second objective of the paper is to revisit, in some detail, the methods to be
used for implementing the CPE technique. It needs the correlation functions that are
given by the non-linear OZE for a reference system, and solutions to a hierarchy of linear
integral equations for derivatives of the correlation functions. It is most appropriate to
use the Newton–Armijo non-linear solver and Krylov space-based linear solvers [12] for
this purpose. In addition to facilitating computation of correlation functions to high order
perturbation theory, the CPE technique avoids the ’no-solution region’ of the OZE in the
liquid-vapor transition region. Indeed, the occurrence of such regions, for the hypernetted
chain (HNC) closure [13] and other closure relations [14], is a bottleneck in applying OZE
with the full potential.

The following sections discuss different aspects of the paper, such as the SCE ver-
sus volume formula, corrections to be applied for small volumes, lattice inversion to
derive potentials, and algorithmic details of the CPE technique. The simulation results
on phase diagrams, taken from literature, for specific potentials are compared with the
results that were obtained while using present method to establish its accuracy. Critical
point parameters and phase diagrams are obtained for potentials that correspond to FCC
and BCC lattices. The Appendix A provides details of the complete algorithm for easy
implementation of CPE.

2. Scaled Cohesive Energy Formula

The Fermi-pressure in degenerate electron systems, which is a pure quantum effect,
manifests as the zero-temperature isotherm in metals. This significantly contributes to
total pressure in compressed solids, and it becomes the dominant component at strong
compression. Density functional theories (DFT) are routinely used now [15] in order to
generate energy versus specific volume (or volume per atom) tables, which are then easily
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incorporated into semi-empirical formula. Such a formulation for zero-temperature energy
and pressure, involving four-parameters [9], is expressed in the SCE formula:

Ec(V) = −E0(1 + a + δa3)e−a, (1)

Pc(V) = 3B0

(
1− (V/V0)

1/3
)
(V/V0)

−2/3(1− 3δa + δa2)e−a, (2)

η =
(

9B0V0/E0

)1/2
, a = η

(
(V/V0)

1/3 − 1
)

, δ = (1/2)(B′0 − 1)/η − 1/3.

Here, the variable V is atomic volume or volume per atom. The four parameters in this
model are the atomic volume V0, the bulk modulus B0, its pressure derivative B′0, and the
cohesive energy per atom E0 at equilibrium conditions. This is a refinement over Rose
equation [4], and it provides accurate zero-temperature energy and pressure in compressed
states up to ∼ V0/2, (which corresponds to about 150 GPa) , and expanded states up to
about ∼ 2V0 for about forty metals [9]. If energy Ec and pressure Pc are scaled with E0
and B0, respectively, there only remains two dimensionless parameters η and δ in these
expressions. Note that the parameter a is related to the dimensionless length variable
(V/V0)

1/3, which is simply the (scaled) side length of the atomic volume. Unless specified
explicitly, length and energy will be scaled with V1/3

0 and E0, respectively, throughout.
Negative a corresponds to compressed states while it is positive for the expanded states.
Furthermore, the equilibrium atomic volume V0, which corresponds to 0K, should be
determined, such that the sum of zero-temperature pressure and thermal pressure of ions
and electrons is just one bar at 300 K.

Correction for Strong Compression

The expressions given above are inadequate in the region of strong compression. This
is evident from Equation (1), which approaches a finite value as V → 0. In this limit, energy
and pressure must approach those of an electron gas around the nucleus, as given by the
quantum statistical model (QSM) [16]. This model provides accurate electronic properties
above ∼250 GPa of pressure, as it accounts for exchange and correlation effects in addition
to incorporating corrections for electron density gradients [17]. Electron pressure in a
compressed atom within the QSM model is analytically expressed as:

Pq(V) =
h̄2

2me

[2
5
(3π2)2/3N5/3

s − 2
aB

13
36

(3/π)1/3N4/3
s

]
, (3)

Ns(V) =
Zn

V Exp
[
− α
( V
V0

)1/3
− β

( V
V0

)2/3]
,

α = 0.1935 Z[ 0.495−0.039(log10 Zn) ]
n

Rw

aB
,

β = [ 0.068 + 0.078(log10 Zn)− 0.086(log10 Zn)
2 ]
(Rw

aB

)2
.

Here, h̄ is reduced Planck’s constant, me electron mass, aB Bohr radius, Zn atomic
number, and Rw the equilibrium Wigner–Seitz radius. The quantity Ns(V) is electron
density at the atomic cell surface, and the negative contribution in pressure is due to
the exchange effect. This contribution extends the range of validity of Pq(V) to larger V .
The internal energy per atom, Eq(V), is obtained by integrating the thermodynamic relation
P = −dE/dV from a suitable initial volume, say V0.

It is easy to use an interpolation procedure [18] to smoothly go from SCE model to
QSM. Choose a volume Vm, such that the SCE model is accurate for V ≥ Vm, so that
the corrected zero temperature pressure and energy are, respectively, P0(V) = Pc(V)
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and E0(V) = Ec(V) for V ≥ Vm. The interpolated expressions for smaller volumes are
expressed as:

E0(V) = [Eq(V)− Eq(Vm)]Bi(V) + Ec(Vm), V ≤ Vm (4)

P0(V) = Pq(V)Bi(V) + [Eq(V)− Eq(Vm)]B′i(V), V ≤ Vm. (5)

where Bi(V) = [1 + b1V + b2V4/3 + b3V5/3] is an interpolating function. The parameters
b1, b2, and b3 are chosen, such that P0(V) and its first two derivatives are continuous
at Vm [18]. Note that E0(V) is continuous at Vm by definition. This procedure gives a smooth
transition from SCE model to the QSM, and it is expected to be better than modifying the
definition of Ec(V) arbitrarily [19].

3. Lattice Inversion for Potential

The lattice inversion method [20] is a convenient tool for extracting effective inter-
particle potentials from E0(V), which is re-expressed in dimensionless functional form
as E(x). More specifically, E(x) = E0(V0x3)/E0, where x = (V/V0)

1/3 is the scaled side
length of the atomic volume. The lattice is imagined as an assembly of successive shells
around a central atom, and so E(x) is expressed as a lattice sum over inter-particle potential
U(r), where r is the (scaled) nearest-neighbor distance (NND):

E(x) =
1
2

∞

∑
n=1

γn U(bn z0x). (6)

Here n is the shell index, γn number of atoms on the shell, and bn the normalized
shell-radius (b1 = 1) in units of NND. The factor 1/2 in this equation arises as U(r)
is defined for a pair of atoms, while E(x) corresponds to a single atom. For numerical
applications, the infinite sum is truncated at some finite shell (∼20), so that U is negligible
there after. The NND and x are related as r = z0 x, where z0 is a constant that is dependent
on the lattice type. For the FCC lattice (four atoms in unit cell) z0 = 21/6, while for BCC
lattice (two atoms in unit cell) z0 =

√
3/ 3
√

4. On separating the first shell-contribution,
Equation (6) is expressed as:

U(r) =
2

γ1
E(r/z0)−

1
γ1

∞

∑
m=2

γm U(bm r). (7)

The subtracted term is the contribution to U(r) from second and higher shells. This
equation is solved via iteration [21] to express U(r) explicitly in terms of E(x) [20]. How-
ever, for computational purposes, it is reasonable to assume that U(r) = 0 for r ≥ r∞ for
a sufficiently large value of r∞. Subsequently, Equation (7) is solved [21] by marching to
lower values of r starting from r∞, as the second term is already computed. It is advanta-
geous to define a geometrically progressing mesh over the required domain, r1 ≤ r ≤ r∞,
and interpolate U(r) for in-between values of r for computing the second term. Alterna-
tively, starting with the approximation provided by the first term, few iterations on the
second term readily provide a converged profile of U(r).

Tables for the lattice dependent constants have been enumerated [22] for 50 shells.
In fact, tabulations are provided for elementary sub-lattices, where atoms are placed only
at cell corners (SC), faces centers (FC), and edge centers (EC). All of the cubic lattices (FCC,
BCC, ECC, etc.) are decomposed into these sub-lattice types. The lattice dependent con-
stants γn and bn for 1 ≤ n ≤ 20 for FCC and BCC lattices are reproduced in Tables 1 and 2,
respectively, for convenience.
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Table 1. Shell radii and occupation numbers for FCC lattice. (see Equation (6)).

n γn bn n γn bn n γn bn n γn bn

1 12 1 6 8
√

6 11 24
√

11 16 48
√

17
2 6

√
2 7 48

√
7 12 24

√
12 17 30

√
18

3 24
√

3 8 6
√

8 13 72
√

13 18 72
√

19
4 12 2 9 36 3 14 48

√
15 19 24

√
20

5 24
√

5 10 24
√

10 15 12 4 20 48
√

21
Note that b14 =

√
15. There is no shell of radius

√
14.

Table 2. Shell radii and occupation numbers for BCC lattice. (see Equation (6))

n γn bn n γn bn n γn bn n γn bn

1 8 1 6 6 4/
√

3 11 12 4
√

2/3 16 24 2
√

11/3
2 6 2/

√
3 7 24

√
19/3 12 48

√
35/3 17 8 4

3 12 2
√

2/3 8 24 2
√

5/3 13 30 2
√

3 18 48
√

17
4 24

√
11/3 9 24 2

√
2 14 24 2

√
10/3 19 24 2

√
13/3

5 8 2 10 32 3 15 24
√

43/3 20 48 2
√

14/3
Note that there is no formula for radii in BCC lattice.

Chen-Möbius Formula

A remarkable explicit formula for the potential in terms of E(x) is obtained [23] by
generalizing the lattice sum expression to the form:

E(x) =
1
2

∞

∑
n=1

Γn U(Bn z0x). (8)

Here, the expanded sequence of shell radii {Bn}monotonically increses (B1 = b1 = 1),
and it contains the original sequence {bn}. Most importantly, the expanded sequence has
the additional property that it forms a semi-group. That is, for any two integers n and m,
there exists an integer p, such that Bp = Bn Bm. The elements of {Bn} that are not contained
in the original set {bn} are radii of virtual shells, and the corresponding occupation numbers
in the expanded set {Γn} are zero. Thus, for the FCC lattice, the expanded radii are given
by: Bn =

√
n. Hence, 14 is a virtual shell and Γ14 = 0 as B14 =

√
14 is not in the original set

{bn} (see Table 1). For the BCC lattice, the set {Bn} is to be generated appropriately from
{bn}, so as to have the semi-group property. Now, motivated by Equation (7), a general
expansion for U(r) is attempted in the form:

U(r) = 2
∞

∑
m=1

Im E(Bm r/z0), (9)

where {Im} are weight factors for different shells. Substituting this expansion in Equation (8)
gives:

E(x) =
∞

∑
n=1

Γn

∞

∑
m=1

Im E(Bm Bn x). (10)

The double sum on the right-hand-side can be rewritten by grouping terms while
using the semi-group prperty. Substituting Bm Bn = Bp, and grouping terms yields:

E(x) =
∞

∑
p=1

E(Bpx)
p

∑
m=1

ImΓm[p] δ[Bp − BmBm[p]]. (11)

Here, δ[x− y] equals 1 for x = y and 0 for x 6= y. For a given p, the indices m and m[p]
are those satisfying the semi-group property. The second sum terminates at p, due to the
monotonic property of the elements in {Bp}. Now, Equation (11) reduces to an identity if
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{Ip} are chosen, so that the second sum is 1 for p = 1 and 0 for p ≥ 2. A recursion formula
for Ip, for p ≥ 2, then follows on separating out the last term in this sum:

I1 =
1
Γ1

; Ip = − 1
Γ1

p−1

∑
m=1

ImΓm[p] δ[Bp − BmBm[p]], p ≥ 2. (12)

Note that m[p] = p for p = 1. Thus, the weight factors {Ip} in Equation (9) are readily
computed once {Γn} and {Bn} are specified. This choice is already discussed for FCC
lattice, and Table 3 provides the generated inversion-constants for 20 shells. Note that shell
14 is virtual and Γ14 = 0.

Table 3. Constants of Chen–Möbius inversion formula for FCC lattice.

n Γn Bn In n Γn Bn In n Γn Bn In n Γn Bn In

1 12
√

1 1/12 6 8
√

6 1/9 11 24
√

11 −1/6 16 24
√

16 −1/64
2 6

√
2 −1/24 7 48

√
7 −1/3 12 24

√
12 7/72 17 24

√
17 −1/3

3 24
√

3 −1/6 8 6
√

8 1/32 13 72
√

13 −1/2 18 24
√

18 −17/72
4 12

√
4 −1/16 9 36

√
9 1/12 14 0

√
14 1/3 19 24

√
19 −1/2

5 24
√

5 −1/6 10 24
√

10 0 15 48
√

15 1/3 20 24
√

20 5/24

Note that B14 =
√

14 and Γ14 = 0 are introduced.

Generating a new set of shell radii {Bn} and, consequently, {Γn} is more involved
in the case of BCC lattice. A possible approach [23] is to add virtual shells of radii
{b2 bj

2, b3 bj
2, b4 bj

2, · · · , for j = 1, 2, · · · } to the existing set {bn}. The occupation
numbers Γn of these new shells are zero. Subsequently, {Bn} is generated by reordering
the enlarged sets to obtain monotonically increasing shell radii which also satisfy the semi-
group property. This procedure is not unique and several virtual shells are introduced,
as seen in Tables 4 and 5. These tables, which cover a total of 30 shells, have 19 virtual shells.
Nevertheless, the method provides an inversion formula, as its parameters for sufficient
number of shells are easily generated on a computer.

Table 4. Constants of Chen–Möbius inversion formula for BCC lattice.

n Γn Bn In n Γn Bn In n Γn Bn In

1 8 1 0.12500 6 0 1.77778 0.03955 11 0 2.17732 −0.31641
2 6 1.15470 −0.0975 7 0 1.88562 0.28125 12 0 2.21108 0.5625
3 0 1.33333 0.07031 8 24 1.91485 −0.375 13 6 2.30940 0.09375
4 0 1.53960 −0.05273 9 8 2.0 −0.125 14 0 2.37037 0.02225
5 12 1.63299 −0.1875 10 0 2.05280 −0.02966 15 0 2.51416 0.31641

Note that B3 = 1.33333 and Γ3 = 0, and many others are introduced.

Table 5. Constants of Chen–Möbius inversion formula for BCC lattice—continued.

n Γn Bn In n Γn Bn In n Γn Bn In

16 24 2.51661 −0.375 21 24 2.82843 −0.375 26 32 3.0 −0.5
17 0 2.55314 −0.63281 22 0 2.9031 −0.29663 27 0 3.0792 −0.58008
18 24 2.58199 −0.375 23 0 2.90593 0.5625 28 0 3.16049 0.01251
19 0 2.66667 0.21094 24 0 2.94811 0.63281 29 12 3.26599 0.75
20 0 2.73707 −0.01669 25 0 2.98142 0.5625 30 0 3.35221 0.26697

Note that B17 = 2.55314 and Γ17 = 0, and many others are new.
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4. Inter-Particle Potentials for FCC and BCC Metals

The cohesive energy formula for metals is more general than in Equation (6), as it is
necessary to account for embedding energy [24] due to the presence of free electrons at
lattice sites. The generalized form is given by:

Eemb(x) = F(ψ) +
1
2

∞

∑
n=1

γn U(bn z0x). (13)

Here, F(ψ) is the embedding energy that results due to the electrons, and ψ is the
electron density at the central atom. This electron density is expressible as a sum of the den-
sity (ψa(rj)) contributions from all other atoms, which is, ψ = ∑j 6=0 ψa(rj). By employing
suitable empirical forms for F(ψ), its contribution from Eemb is readily subtracted out before
determining the inter-particle potentials [25]. However, such potentials would be devoid of
the binding effects modeled as embedding energy. On the other hand, approximating F(ψ)
with a Taylor’s expansion (truncated to second order) about an average electron density
ψ̄, Equation (13) is reducible to the pair-potential form [26], however, with an effective
potential given by Ue f f (r) = U(r) + 2F′(ψ̄)ψa(r) + F′′(ψ̄)ψ2

a(r). Furthermore, it is also
found that the radial distribution functions of liquid metals obtained with the effective
potentials agree quite well with the simulation results using full potentials [26]. Acordingly,
it will be assumed here after, although not indicated explicitly, that all of the potentials
derived from cohesive energy are effective potentials.

As an illustration of the model, the effective potential U(r) versus nearest-neighbor
distance r for Cu (curve-1) is shown in Figure 1A. Table 6 provides the parameters used
in the model. The potential minimum Umin = −0.07143 occurs at rmin = 1.359 in reduced
units. The repulsive (curve-2) and attractive (curves-3) components of the potential, as per
WCA specification (see below), are also shown. The cohesive energy E(x) versus side length
(x) of atomic volume is shown in Figure 1B. Keeping all of the parameters except η fixed,
variations of the potential minimum Umin and position rmin versus η are shown in Figure 2A.
These results, which correspond to FCC lattices in general, show that potential parameters
are somewhat insensitive to η beyond η ∼ 6. Therefore, critical point parameters, which
are to be discussed below, also would show this weak dependence for larger values of η.
Figure 2B shows similar results, obtained using data for Fe (see Table 6), which correspond
to BCC lattices. The trends of variation of the parameters are similar, although the range of
variation of rmin is much less.

Table 6. Material Parameters for four-parameter model .

Material V0 B0 B′
0 E0 η δ L0 At. No. At. Wt.

A3 GPa eV A Zn Mn

Copper 11.38 134.8 5.19 3.489 5.0619 0.0808 2.2771 29 63.50
Aluminum 16.35 79.3 4.37 3.389 4.6361 0.0296 2.5382 13 26.98
Gold 16.95 180.7 5.43 3.812 6.7182 −0.0034 2.5686 79 196.97
Iron 11.81 163.0 4.50 4.281 5.0270 0.0148 2.2775 26 55.85
Tungsten 15.82 325.0 4.36 8.791 5.732 −0.0402 2.2775 74 183.85
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Figure 1. (A) Effective potential U(r) for Cu versus scaled nearest-neighbor distance (curve-1, with repulsive (curve-2)
and attractive components (curve-3) as per WCA prescription. Potential minimum is Umin = −0.07143 at rmin = 1.359 in
reduced units. (B) Cohesive energy E(x) for Cu versus scaled side length of atomic volume x. Energy minimum (−1) occurs
at (1) in reduced units. Length and energy units are L0 = V0

1/3 and E0 (see text), respectively.
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Figure 2. (A) Potential minimum Umin and its position rmin versus η for FCC lattices. All other parameters correspond to
those of Cu (see text). (B) Similar results for BCC lattices. All of the parameters, except η, correspond to those of Fe (see text).

Having discussed the details of obtaining the inter-particle potentials, it is now appro-
priate to consider a general method for computing properties of metallic fluids. Critical point
parameters and phase diagrams in liquid-vapor phase transition are obtained thereafter.
The scaling of cohesive energy and potential would imply such a scaling of critical point
parameters with respect to η and some (approximate) universal form for phase diagrams.
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5. Coupling-Parameter Expansion

The CPE in thermodynamic perturbation theory [11] is based on dividing the inter-
particle potential U(r) into a reference (repulsive) and perturbation (attractive) components.
The most appropriate division is based on the WCA prescription [10], which is defined as

UR(r) = U(r)−Umin , r ≤ rmin , UR(r) = 0 , r > rmin ,

UA(r) = Umin , r ≤ rmin , UA(r) = U(r) , r > rmin . (14)

The reference part is purely repulsive and it determines the structure of dense liq-
uids, while the attractive perturbing component is responsible for cohesion and phase
changes [10]. A coupling-parameter λ is introduced into the potential and it is expressed
as U(r, λ) = UR(r) + λUA(r). Its magnitude 0 ≤ λ ≤ 1 determines the strength of the
perturbation; with U(r, 0) being the reference part and U(r, 1) the full potential. All of the
correlation functions, which determine the structure of the fluid, like the pair distribution
function g(r, λ), are now to be treated as functions of λ. In the thermodynamic perturbation
theory (TPT), these functions are expanded as Taylor’s series in λ regarding their reference
part as

g(r, λ) = g0(r) + λg1(r) + · · ·+
1
n!

λngn(r) + · · · . (15)

Here, g0(r) is the reference system’s pair distribution function and gn(r) denotes its
nth derivatives at λ = 0. Similar Taylor’s series representations hold for other correlation
functions as well: the direct correlation function c(r, λ), the total correlation function
h(r, λ) = g(r, λ)− 1, and the indirect correlation function y(r, λ) = h(r, λ)− c(r, λ). For all
of them, the subscript 0 will denote the function that corresponds to the reference system.
The effect of the perturbation is accurately determined if the derivatives, like gn(r), are
obtained up to sufficient orders. Traditional perturbation theory is mainly limited to the
first two orders [7]; however, CPE accounts for quite higher orders by taking recourse to
the OZE, which defines the relation between the short ranged direct correlation function
c(r, λ) and the long ranged total correlation function h(r, λ). The latter is the appropriate
function to be used in the OZE as it tends to zero for large r, just like the pair-potential.
For one-component systems with spherically symmetric potential, as in the present case,
the OZE is written as:

h(r, λ) = c(r, λ) + ρ
∫

c(|~r−~r′|, λ) h(r′, λ) d~r′. (16)

where ρ is the number density of atoms. This relation has to be supplemented with a
closure relation involving h(r, λ), c(r, λ) and the pair-potential U(r, λ). An exact closure is
unfeasible; however, several approximate forms are available [3]. All of the closures are
generally expressed in terms of a ’bridge function’ B(r, λ) in the form:

g(r, λ) = Exp[−βU(r, λ) + y(r, λ) + B(r, λ)], (17)

where β = (kBT)−1, kB Boltzmann’s constant and T absolute temperature. Note that kBT is
also scaled with energy unit E0. Approximate forms of B(r, λ) generate different closures;
for instance, the one called HNC that was mentioned earlier corresponds to the choice
B(r, λ) = 0.

Being an integral equation with displacement kernel, the OZE is easily solved in the
Fourier space, leading to the solution

h̄(k, λ) = c̄(k, λ)[1− ρc̄(k, λ)]−1. (18)
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where the Fourier transform and its inverse, for any function q(r), are defined as

q̄(k) = 4π

∞∫
0

[sin(kr)/(kr)]q(r)r2dr, q(r) =
1

2π2

∞∫
0

[sin(kr)/(kr)]q̄(k)k2dk. (19)

A ’bar’ is used throughout to denote Fourier transforms. It is useful to rewrite these
equations in terms of the functions [rq(r)] and [kq̄(k)] and the symmetric kernel [sin(kr)],
as discussed below.

The two algebraic equations Equations (17) and (18), although defined in two dif-
ferent spaces, define the non-linear systems that determine the correlation functions and
entire thermodynamic properties. When the inter-particle potential contains an attractive
component, solutions to the OZE with most of the closures develop singularities in the
liquid-vapor transition region [14]. Hence, the determination of the critical points and
phase diagrams is a difficult task, and very careful strategies need to be implemented [27].
The CPE technique completely avoids this problem of dealing with singularities, as all cor-
relation functions are expanded in Taylor’s series. The issues that are related to convergence
of the series and ’no-solution-region’ are discussed later. The Newton–Armijo non-linear
solver considered next is applicable to general potentials; however, it is discussed below
for the case of reference potential, as required in the CPE method.

5.1. Newton-Armijo Solver for Reference System

For repulsive inter-particle potentials, as in the case of reference system, an accurate
form of bridge function [28] is B0 =

√
1 + 2y0 − y0− 1, so the closure is expressed as

c0(r) = Exp[−βUR(r) +
√

1 + 2y0(r)− 1]− y0(r)− 1. (20)

The solution to the OZE in terms of ȳ0(k) is given by

ȳ0(k) = ρc̄2
0(k)[1− ρc̄0(k)]−1. (21)

These nonlinear equations are readily solved while using Newton’s method [29].
While, in this reference, these are treated as two equations and two unknowns, it is possible
to take Equation (20) as providing c0 if y0 is given. Accordingly, only Equation (21) is to be
solved by Newtons’ method. Starting with initial guess solution y0 (and, hence, c0, c̄0 and
ȳ0), an improved solution y0 + ∆y is obtained while using the first order correction terms:

∆c =
[

h0 + g0B′0
]
∆y and ∆ȳ =

[
ρ

2c̄0 + ȳ0

1− ρc̄0

]
∆c̄ +

[
ρ

c̄2
0

1− ρc̄0
− ȳ0

]
. (22)

where B′0 is the derivative with respect to y0. Taking Fourier transform of ∆c and substitut-
ing in the second equation yields

∆ȳ = ρ
2c̄0 + ȳ0

1− ρc̄0

[
(h0 + g0B′0)∆y

]
+
[
ρ

c̄2
0

1− ρc̄0
− ȳ0

]
. (23)

The linear operator A defining this equation involves the following operations: (i)
Fourier inverse taking ∆ȳ to ∆y, (ii) multiplication by a = h0 + g0B′0, (iii) Fourier transform
of the resulting product, and (iv) multiplication by b̄ = ρ(2c̄0 + ȳ0)/(1− ρc̄0). This may
be symbolically written as: A ∆ȳ = ∆ȳ − b̄F [aF−1[∆ȳ]], where F denotes the Fourier
transform. Thus, the action of A essentially involves two Fourier transform operations,
which is re-defined with a symmetric kernel as:

Q̄(k) = 4π

∞∫
0

[sin(kr)]Q(r)]dr, Q(r) =
1

2π2

∞∫
0

[sin(kr)]Q̄(k)dk. (24)
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where Q(r) = rq(r) and Q̄(k) = kq̄(k). Subsequently, the operator A is re-defined as
A[∆Ȳ] = [∆Ȳ]− b̄S [aS [∆Ȳ]], where S represents integration with the symmetric kernel
[sin(kr)]. The adjoint of A, as needed in Krylov space-based linear equation solvers
discussed next, is then easily computed as A†[∆Ȳ] = [∆Ȳ]− S [aS [b̄∆Ȳ]].

Numerical implementation of this algorithm uses a uniformly spaced discrete coordi-
nates {ri = i δr}, 1 ≤ i ≤ Nm with Nm = 2Nu where Nu is, typically, 10. This choice allows
the use of FFT (Fast Fourier-transform) techniques. With a typical δr ∼ 0.025, the discrete
mesh sufficiently extends to account for the asymptotic variation of the correlation func-
tions. In Fourier space, δk is chosen, such that δk δr = π/Nm, so that orthogonality of
trigonometric functions is maintained in the discrete space. With these choices, the linear
equation for ∆ȳ is reduced to a matrix equation of order Nm, which is most efficiently
solved while using Krylov space-based methods [12].

The process of improving the solution, called Newton’s iterations, is continued until
the Euclidean norm ‖∆Ȳ‖ is less than a prescribed value. If the norms satisfy the condition
‖∆Ȳ‖1 < (1− ε)‖∆Ȳ‖0 (subscripts ’1’ and ’0’ denote the current and previous iteration
values, and ε ∼ 10−4 is a small number), next Newton’s iteration follows. Otherwise, it
is likely that iteration with full step ∆Ȳ would diverge. Accordingly, a smaller step size
µ∆Ȳ with 0 < µ < 1 is to be used. Note that the norms ‖∆Ȳ‖1 correspond to µ1 = 1,
while ‖∆Ȳ‖0 to µ0 = 0. Armijo’s rule restricts the new step size to µ∆Ȳ with a value of
µ ≤ 1/2. For choosing that µ, a sub-iteration yielding ‖∆Ȳ‖2 with µ2 = 1/2 is performed.
A quadratic fit of ‖∆Ȳ‖2 versus µ is then used to obtain µ3, which corresponds to the
minimum of ‖∆Ȳ‖2 in the interval [0.1µ2, 0.5µ2]. Another sub-iteration providing ‖∆Ȳ‖3 is
performed and, if it satisfies the norm-reduction criterion, next Newton’s iteration follows.
Otherwise, more sub-iterations are performed, each time with the replacements µ2 → µ1
and µ3 → µ2, and, similarly, the respective norms. If the sub-iterations exceed a prescribed
limit (∼10), it would be necessary to restart Newton’s iterations with a new guess solution.

The linear equations to be solved, at each Newton’s iteration, is of the standard form
A~x = ~b. The Conjugate Gradient (CG) method is the simplest of all iterative methods
attempting a solution in the Krylov space, although it is applicable to symmetric matri-
ces [30]. For non-symmetric matrices, as in the present case, the CG method is applicable
to the normal equation A†A~x = A†~b as A†A is symmetric. The algorithm starts with a
guess solution ~x0 =~b and its error vector~e0 =~b−A~x0, and auxiliary vectors ~p0 = A†~e0.
Afterwards, the iteration process, called CGNR (Conjugate Gradient to Normal equations
to minimize Residual) (see Appendix A), generates new solutions {~xn}, such that the
residual error norm ‖~en‖ = ‖~b − A~xn‖ is minimized at each iteration n. The process
converges to the exact solution in utmost Nm (dimension of the matrix) iterations if A is
non-singular [30]. In practice, iterations are terminated when the error norm ‖~en‖ satisfies
a prescribed criteria. There is little point in getting a high degree of convergence in the
early stages of Newton’s iterations. In what are called inexact methods, the criteria used
are ‖~en‖ ≤ ξ‖∆Ȳ‖ with a typical value ξ ∼ 0.9. A more common method, called GMRES
(Generalized Minimum Residual), although it does not need A†, requires much larger
storage space [30].

The correlation functions of the reference system are determined with the methods
discussed (also see Appendix A) in the entire fluid-phase-plane, except at very low temper-
atures, where perturbation theories are inapplicable.

5.2. Derivatives of Correlation Functions

The next step in CPE is to compute the derivatives, like gn(r) in Equation (15). Writing
the general closure relation in Equation (17) in the form g = exp[ f ], where f = −βU + y +
B, repeated differentiation with respect to λ yields

gn = g fn +
n−1

∑
m=1

Cn−1
m fn−m gm , fn = −βUA δn 1 + yn + Bn. n ≥ 1. (25)
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where {Cn
m} denote the Binomial coefficients and δn 1 is the Kroenecker delta. This is

valid for arbitrary λ and, in particular, for λ = 0. The arguments r and λ of all functions
are omitted for simplifying the equations. Note that UA is the attractive component in
the potential according to the WCA prescription. The summation in Equation (25) only
contains derivatives lower than n as the term containing yn is separated out. Substituting
for fn and using the relation cn = gn − yn for n ≥ 1 yields the recursion relation:

cn = [(g− 1) + gΛ]yn + wn , n ≥ 1 (26)

wn = −g βUAδn 1 + gB∗n

+
n−1

∑
m=1

Cn−1
m [βUAδn−m, 1 + (1 + Λ)yn−m + B∗n−m] [ym + cm] , n ≥ 1.

The derivative Bn is written as Bn = Λyn + B∗n, so that B∗n only contains derivatives
of y of an order lower than n. This is needed, as yn is yet to be determined with another
equation. The definition of structure factor:

s̄(k, λ) = [1− ρc̄(k, λ)]−1 = 1 + ρh̄(k, λ), (27)

shows that ȳn = ρ−1 s̄n − c̄n for n ≥ 1. From now on, the arguments k and λ of all Fourier
functions are also omitted. Repeated differentiation of the relation s̄ = 1 + ρc̄s̄ yields

s̄n = ρs̄n c̄ + ρs̄c̄n + ρ
n−1

∑
m=1

Cn
m c̄n−m s̄m, n ≥ 1. (28)

where the first and last terms are separately written from the summation. Simplifying the
expression and substituting in ȳn gives the recursion

ȳn = [s̄ 2 − 1]c̄n + q̄n, n ≥ 1, q̄n = s̄
n−1

∑
m=1

Cn
m c̄n−m ρ[ȳm + c̄m] n ≥ 1. (29)

Here, the definition of s̄ is used and s̄m is substituted as ρ(ȳm + c̄m) in the summation.
Note that q̄n only contains lower order derivatives ȳm and c̄m for m < n. Taking Fourier
transform of Equation (26) and substituting in Equation (29) yields a linear equation for ȳn,
which is expressed as

ȳn = [s̄ 2 − 1]
[
(h + gΛ)yn

]
+ [s̄ 2 − 1]w̄n + q̄n, h = g− 1, n ≥ 1. (30)

This expression is valid for arbitrary value of λ. The linear operator in this equation
(for all n) is identical to that shown in Equation (23) if the derivatives are evaluated at λ = 0,
which is, for the reference system. Thus, the Krylov space-based methods mentioned above
are also applicable here; with the only change being the source term [s̄0

2 − 1]w̄n + q̄n.

5.3. Derivatives of Bridge Function

The density-dependent bridge function for a general potential with attractive compo-
nent is expressed as [28]

B =
√

1 + 2ζ − ζ − 1, ζ = y− λρβUA, (31)

where all are functions of r and λ. DefiningO = B + ζ + 1 =
√

1 + 2ζ yields Bn = On − ζn
for n ≥ 1 where ζn = yn − δn 1 ρβUA. Now, repeated differentiation of the relation
O O1 = ζ1 readily yields the recursion formula:

On+1 = O−1
[
yn+1 −

n−1

∑
m=0

Cn
mOn−mOm+1

]
, n ≥ 1 (32)
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which provides all derivatives Bn in terms of yn. The parameter Λ defined earlier is now
identified as Λ = O−1 − 1, and the summation term provides B∗n+1.

5.4. Thermodynamic Functions

After computing the Taylor’s series for all functions to an arbitrary high order, setting
λ = 1 provides correlation functions that correspond to the full potential. The results that
are discussed below are obtained with 7th order approximation, as a further increase in
order does not have any significant effect. Thermodynamic properties, like pressure (P)
and inverse compressibility (χ−1), are expressed as

βP/ρ = 1− (2/3)(πβρ)

∞∫
0

g(r)U′(r)r3dr, (33)

χ−1 = β(∂P/∂ρ)T = 1− 4πρ

∞∫
0

c(r)r2dr, (34)

Similar expressions hold for internal energy and chemical potential [27]. The argument
λ = 1 is omitted from these expressions. For computational purposes, Equation (33) is
re-expressed in terms of the ’cavity function’ Y = exp(βU)g(r), as:

βP/ρ− 1 = ρB2 v + (2/3)πρ

∞∫
0

[exp(−βU)]′(Y− 1)r3dr. (35)

Here, B2v is the second virial coefficient for U, and it is separated out explicitly.
An excellent first order perturbation theory [31] for the equation of state follows from this
equation with the approximations: U ≈ UR and Y ≈ Y0, thereby terminating the integral
at rmin. The second approximation is the basis of first order theory. The first approximation
is motivated from the observation that derivative [exp(−βU)]′ is only predominant near
rmin, where Y0 − 1 is small.

The OZE does not provide exact thermodynamic consistency [3] in the sense that
pressure that is computed from different routes does not agree with each other. The inverse
compressibility χ−1, being expressed in terms of the short ranged correlation function
c(r), is the more appropriate response function to compute pressure via integration with
respect to ρ. The method followed here employs a fine mesh of T and ρ over the phase
plane where χ−1 is computed. Subsequently, two-dimensional (2-D) interpolation is used
for intermediate values, and P is obtained via integration over ρ from zero. Solutions of
the critical conditions ∂vP = 0 and ∂2

vP = 0 provide the critical point parameters and
Maxwell’s construction the phase diagram. Using thermodynamic relations to obtain other
quantities, like energy and entropy, equation of state tables [32] can be generated in the
expanded volume regions.

There are some important issues underlying the above procedure. It is known that
there are multiple solutions to OZE and closure relations in the two-phase region when
attractive interactions are present. This is illustrated in Baxter’s analytical solution [33]
of the sticky hard sphere model. These include isotherms with negative compressibility,
complex, and even diverging pair distribution function. Numerical methods also show
similar features for general potentials and closure relations (see following section). Solu-
tions that are given by van der Waals equation, first order perturbation theory, and the CPE
show isotherms with negative compressibility in the two-phase region. The nonphysical
pressure P(ρ, T) that is generated by these approaches is replaced with a flat isotherm
while using thermodynamic conditions of equal pressure and chemical potential, or the
equivalent Maxwell’s construction. The use of virial pressure (Equation (33)) or inverse
compressibility (Equation (34)) produces similar results via Maxwell’s construction, al-
though some differences arise due to the inherent thermodynamic inconsistency mentioned
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earlier. Another approach is to compute virial pressure and chemical potential, only in
regions where compressibility is positive, and then derive the phase diagram while using
thermodynamic conditions [27]. The structure factor s̄(k) within the two-phase region is
to be obtained as a weighted average of contributions of the gas and liquid phases that
correspond to any point on the isotherm. Only renormalization group approaches, such as
in the the hierarchical reference theory [34], generate flat isotherms in the two-phase region
without using Maxwell’s construction.

Yet another relevant issue regarding the utility of Taylor’s series expansion of g(r, λ)
(and other correlation functions) needs clarification. Negative compressibility, at any
phase point, implies that s̄(0)−1 is negative and, by continuity requirements, s̄(k0)

−1

would vanish at some k0, as it should approach unity for large k. Therefore, s̄(k) and,
consequently, h̄(k) would diverge at k0. Thus, negative compressibility at any phase
point implies a singularity in the Fourier transform h̄(k) (The author thanks one of the
anonymous reviewers of Condensed Matter (MDPI) journal for this argument). Taylor’s
series expansions that are assumed in CPE do not converge to this singular solution, in fact,
numerical results indicate that they converge to a different solution (see following section).
This is plausible in a scenario, wherein multiple solutions exist in the two-phase region.
Their utility in computing phase diagram (via thermodynamic or Maxwell’s construction)
needs to be evaluated by comparing the results with those from independent methods.

5.5. ’No-Solution-Region ’

Multiple solutions and singularities of the OZE in the liquid-vapor transition region have
been investigated in detail for the Lennard-Jones (LJ) potential: U(r) = 4ε[(σ/r)12− (σ/r)6],
with the HNC closure [13] and other closures [14]. The pseudo-arc-length continuation
algorithm is needed for the direct application of Newton’s method to the full potential for
tracking these singularities [13]. The no-solution-line is defined as the curve in the phase plane,
along which the Jacobian is singular and so Newton’s method is inapplicable. Figure 3A
displays (curve-1) this curve for the LJ-HNC model [13].
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Figure 3. (A) The ’no-solution-line’ (curve-1) for Lennard–Jones potential and hypernetted chain (HNC) obtained with
pseudo-arc-length continuation algorithm [13]. Newton’s method applied to the full potential diverges on this curve.
The spinodal line (curve-2) (defined by χ−1 = 0 ) obtained using the CPE of this paper lies inside the no-solution
region. (B) Comparison of co-existence line (curve-1), obtained with CPE and density-dependent bridge function [28],
with simulation results (symbols) [35]. The spinodal line (curve-2), which is different from that obtained with HNC, is
also shown.
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In fact, there are more characteristic features, like the ’fold-bifurcation’ of solutions
in the liquid-vapor region of the nonlinear OZE. However, the CPE method does not pick
up these singularities, as it is based on series expansion about the repulsive component
of the potential. The situation is similar that of van der Waals equation, although free of
singularities, which predicts a region of negative compressibility. Figure 3A also shows the
spinodal line ( defined by χ−1 = 0) for the LJ-HNC model, which is obtained using 7th
order CPE of this paper (curve-2).

The LJ system is also investigated while using the density-dependent bridge func-
tion [28] for comparison with simulation data [35]. This is important because the bridge
function is the sole ingredient that determines the predictive power of OZE. The results
for phase diagram (co-existence curve) that were obtained with CPE shown (curve-1) in
Figure 3B compare well with simulation data (symbols). There is only slight disagreement
along the liquid branch near the transition point. The critical point parameters obtained:
ρcσ3 = 0.299 [0.312], kBTc/ε = 1.326 [1.316] and Pcσ3/ε = 0.102 [0.127] also compare
well with simulation data given in square brackets. The spinodal line (curve-2), which is
different from that obtained with HNC, is also shown.

As discussed in the previous section, it is necessary to check wheter the CPE generates
any meaningful correlation functions, particularly in the two-phase region. Figure 4A
shows the direct correlation function c(r) (curve-c), the reference function c0(r) (curve-
0), and six successive derivative terms cn(r)/n! (curve-1 to curve-6) for the LJ system
using the density-dependent bridge function [28]. These correspond to the phase point
ρσ3 = 0.25 and kBT/ε = 1.1, which is in the spinodal region. It is evident that the
expansion approaches a well defined function c(r). The reference function c0(r) is mostly
negative, but the positive part in c(r) for r > 1, arising out of attractive interactions,
gives rise to negative compressibility. Similarly, Figure 4B shows the pair distribution
function g(r)(curve-g), the reference function g0(r) (curve-0), and six derivative terms
gn(r)/n! (curve-1 to curve-6), also corresponding to the same phase point. The reference
function g0(r) with a small peak develops to g(r) with two well defined peaks due to
attractive interactions. It will be more accurate to use the series expansions in Equation (17)
(closure relation) for computing g(r). These ’correlation functions’ are nonphysical, as they
generate negative compressibility and van der Waals’s loop in pressure, but they may be
used in order to compute phase diagram via Maxwell’s construction. Afterwards, it will
be necessary to take the weighted averages (as explained earlier for structure factor) of
contributions of gas and liquid phases to obtain physically acceptable correlation functions.
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Figure 4. Convergence of coupling-parameter expansion (CPE) for the direct correlation function c(r) and pair distribution
function g(r) for the LJ system (obtained with density-dependent bridge function [28]) at the phase point ρσ3 = 0.25 and
kBT/ε = 1.1, which is in the spinodal region. (A) Direct correlation function c(r) (curve-c), reference function c0(r) (curve-0)
and successive derivative terms cn(r)/n! (curve-1 to curve-6) are shown. (B) Pair distribution function g(r) (curve-g),
reference function g0(r) (curve-0) and derivative terms gn(r)/n! (curve-1 to curve-6) are shown.

6. Liquid-Vapor Phase Transition in Metals

The CPE method and inter-particle potentials that are derived via lattice inversion
method for metallic fluids are next evaluated as these have softer repulsive components.
The simulation results using Morse potential [36] with parameters corresponding to Au
and Cu are used for comparing phase diagrams. The data that are given in Table 6 and
the cohesive energy formula in Equation (4) provide the parameter-free potentials for use
in CPE.

The results shown (curve-2) in Figure 5A and simulation data [36] (symbols) for Au
agree quite well. Critical point parameters of CPE method, viz., ρc = 5.729 [5.925] g/cm3,
Tc = 7643 [7566] K and Pc = 0.598 [0.525] GPa and simulations (given in square brack-
ets) also agree well. The spinodal curve (defined by χ−1 = 0) is also shown (curve-1).
A similar comparison of phase diagram for Cu is shown (curve-2) in Figure 5B with
simulation data [36] (symbols). The critical point parameters ρc = 2.309 [2.631] g/cm3,
Tc = 8800 [8650] K and Pc = 0.905 [0.954] GPa also compare reasonably with the simulation
results that are given in square brackets.
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Figure 5. Comparison of phase diagram obtained with 7th order CPE and density-dependent bridge function [28] against
simulation data for soft repulsive potentials occurring in metallic fluids: (A) The CPE phase diagram for Au (curve-2) and
simulation results (symbols) using Morse potential [36] (see text). The spinodal curve (defined by χ−1 = 0 ) that shows the
boundary of meta-stable states (curve-1) is also shown. (B) The CPE phase diagram for Cu (curve-2) is compared against
simulation results (symbols) using Morse potential [36] (see text). The spinodal curve (curve-1) is also shown.

Scaling of Critical Parameters and Phase Diagram

Having established the accuracy of methods, the scaling behavior of critical point
parameters and phase diagram is now investigated. As the cohesive energy formula in
Equation (4) only contains two parameters, (η and δ), it is obvious that the effective poten-
tials and, hence, all of the features that are related to co-existence also only depend on these
variables. Of these two, δ is generally a small number (see Table 6). Computations utilizing
CPE are performed to determine the variation of critical point parameters: ρc, Tc, Pc and
Z = Pc/(kBTc ρc), with the scaling variable η, and results for FCC lattices are shown in
Figure 6A. Note that the graph displays dimensionless quantities that are expressed in the
units: V−1

0 , E0/kB and E0/V0, respectively. Similar results for BCC lattices are provided in
Figure 6B. The parameter δ is kept constant at 0.0808 for FCC and 0.0148 for BCC lattices.
Varying this parameter within its range does not produce significant changes in these
curves. For FCC lattices, the variation in ρc and Tc are more pronounced for smaller values
of η. These results are somewhat similar to those that were obtained earlier [5]; however,
their variations and dependence on the lattice type are new.

Phase diagrams for three FCC metals, Al (curve-1), Cu (curve-2), and Au (curve-3)
are displayed in reduced variables T/Tc and ρ/ρc in Figure 7A. Similar results are given
in Figure 7B for two BCC metals Fe(curve-1) and W(curve-2). Panels A (curve-4) and B
(curve-3) also contain van der Waals phase diagram for comparison. These results indicate
that there are similarities in the co-existence region for these metallic fluids, although there
is no perfect universality, as in the case of van der Waals model. This is due to the fact that
the interaction potentials, scaled with V−1

0 and E0, do not assume a universal form. Similar
observations are also found in the simulation data of phase diagrams while using Morse
potential [36].
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Figure 6. Variation of critical point parameters: ρc, Tc, Pc and Z = Pc/(kBTc ρc), with the scaling variable η (see text).
Note that these quantities are expressed in the units: V−1

0 , E0/kB and E0/V0, respectively. (A) The results for FCC lattices.
(B) Results for BCC lattices .
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Figure 7. Phase diagram of metals in reduced variables T/Tc and ρ/ρc . (A) FCC metals Al (curve-1) , Cu (curve-2) and Au
(curve-3). van der Waals phase diagram is also shown (curve-4). (B) Similar results for BCC metals Fe (curve-1) and W
(curve-2). van der Waals phase diagram is shown (curve-3) for comparison.

7. Summary

The main aim in this paper is to discuss the scaling aspects of liquid–vapor phase
transition in metallic fluids. There are two requirements to carry out this investigation: (i)
realistic (effective) inter-particle potentials and (ii) an accurate statistical mechanical model.
The four-parameter formula for cohesive energy expressed in units E0 and L0 consists of
just two dimensionless variables (η and δ). This is quite accurate in the compressed as well
as expanded volume states, although it needs to be corrected for extreme compression while
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using the QSM for electrons. Accordingly, effective potentials derived from the cohesive
energy formula will mainly depend on these variables η and δ. Two complementary ways
to impact lattice inversion are considered: (i) direct iterative method and (ii) Chen-Möbius
inversion formula. New tables for inversion parameters covering up to 20 atomic shells
are generated for FCC and BCC lattices, which are easily extended to other lattice types.
Variations of the potential depth and first neighbor distance versus η are then evaluated
for the two lattices.

The statistical mechanical model using CPE is revisited and explicit recursion formulas
for the derivatives of correlations and bridge function are derived. In fact, very high
order derivatives are easily computed with the present formulation. The Newton–Armijo
nonlinear solver together with Krylov space-based linear solvers are implemented within
the CPE. The same linear solvers are applicable to solve the linear equations for the
derivatives of correlation functions, as the matrices involved are the same. With these
techniques, it is possible to cover the entire fluid region, except in the low temperature
limit, where perturbation theory is inapplicable. The entire procedure is evaluated with
simulation data for LJ system as well as metallic fluids. The ’no-solution-region’ concurring
when OZE is applied to the full potential is also checked with CPE results for the LJ
system. The variations of critical point parameters versus η are then evaluated for FCC
and BCC lattices. Further, it is also shown that the phase diagrams of these systems show
(approximate) universal behavior when expressed in terms of reduced variables. It is hoped
that the CPE elaborated in this paper would be increasingly used to derive thermodynamic
properties of one component fluids. To that end, the Appendix A (Algorithms A1–A5)
provides short outlines of the main algorithmic components.
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and suggestions to improve the presentation of the paper.
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Appendix A. Algorithm for CPE

The main components of the algorithm to implement CPE is provided below. Newton
is the non-liner solver for the reference potential and CGNR is the linear solver. Other linear
solvers, like GMRES, can also be used. Matrix computes matrix-vector products in the
linear solver. Recursive equations for derivatives of correlation functions are in Derivative.
The heart of the algorithm is fast Fourier transforms provided in Fourier. Note that h∗0 and
Ψ are the global variables used in Matrix.

Typical parameters
Nu = 9 Nm = 2Nu τnw = 0.0001 τin = 0.0001
maxN = 15 maxI = 15 maxD = 7 dx = .025
Ci = cos[π(i− 1)/Nm] i : 1, Nm + 1 dk = π/(Nm dx)

Algorithm A1: Newton[y0, c0]

in: y0
out: c0, y0
i = 1, y0 = 0
While [i ≤ maxN] Do
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g0 = exp[−βUR +
√
(1 + 2y0)− 1]

Λ = 1/
√

1 + 2y0 − 1
h∗0 = g0 − 1 + g0Λ
c0 = g0 − 1− y0
ȳ0 = Fourier[1, y0]
c̄0 = Fourier[1, c0]
Ψ = ρ(ȳ0 + 2c̄0)[1− ρc̄0]

−1

b̄ = ρc̄2
0[1− ρc̄0]

−1 − ȳ0
Call CGNR[b̄, Y]
ȳ0 ← ȳ0 + Y
y0 ← y0 + Fourier[2, Y]
i← i + 1
if ‖k ·Y‖ < τnw Exit

Algorithm A2: CGNR[~b,~x]

in:~b
out: ~y
~x0 =~b
~e0 =~b−A~x0
~p0 = A†

~e0~w0 = ~p0
n = 1
While [n ≤ maxI] Do

~qn = A~pn−1
a = (~qn ·~en−1)/(~qn ·~qn)
~xn = ~xn−1 + a~pn−1
~en = ~en−1 − a~qn
~wn = A†~en
α = (~wn · ~wn)/(~wn−1 · ~wn−1)
~pn = ~wn + α~pn−1
n← n + 1
if ‖~en‖ < τin Exit

Algorithm A3: Matrix[p, x, y]
in: x
out: y
(p = 1 : y = Ax, p = 2 : y = A†x)
If (p .eq. 1)

z = h∗0 Fourier[2, x]
y = x−Ψ Fourier[1, z]

If (p .eq. 2)
z = −Ψ xw = h∗0 Fourier[2, z]y = x + Fourier[1, w]
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Algorithm A4: Derivative [maxD]
in: maxD
out: yn, cn
Λ = 1/

√
1 + 2y0 − 1

c̄0 = Fourier[1, c0]
S̄0 = (1− ρc̄0)

−1

Ψ = S̄2
0 − 1

h∗0 = g0 − 1 + g0 Λ
While [1 ≤ n ≤ maxD] Do

B∗n = −ΛβρUAδn 1 − (1 + Λ) ∑n−2
m=0 Cn−1

m Om+1 On−1−m
wn = −g βUAδn 1 + g0 B∗n

+∑n−1
m=1 Cn−1

m [βUAδn−m, 1 + yn−m + Bn−m] [ym + cm]

q̄n = ρS̄0 ∑n−1
m=1 Cn

m c̄n−m [ȳm + c̄m]

b̄ = R Fourier[1, wn] + q̄n
Call CGNR[b̄, ȳn]
yn = Fourier[2, ȳn]
cn = wn + h0 yn
c̄n = Fourier[1, cn]
On = (1 + Λ) yn + B∗n
Bn ← B∗n + Λ yn
n← n + 1

Algorithm A5: Fourier [p, x, y]
in: p
out: y
c1 = 4πdx
c2 = dk/(2π2)
Do [i : 1, Nm − 1]:

p = 1 : xi ← c1 ri xi
p = 2 : xi ← c2 ki xi

l = 1
Do [m : 1, Nu − 1]:

m1 = Nm/l
m2 = m1/2
m5 = 0
m6 = m2
Do [l1 : 1, l]:

ii = 1
sum = 0
Do [i : 1, m1 − 1, 2]:

sum = sum + ii× xm5+i
ii = −ii



Condens. Matter 2021, 6, 6 22 of 23

ym6 = sum
Do [i : 1, m2 − 1]:

i2 = m5 + 2 i
ym5+i = xi2−1 + xi2+1
ym6+i = xi2

Do [i : 1, m2 − 1]:
xm5+i = ym5+i
xm6+i = ym6+i

xm6 = ym6
m5 = m5 + m1
m6 = m6 + m1

l = l
l = 2Nu−2

Do [m : 1, Nu − 1]:
m1 = Nm/l
m2 = m1/2
m5 = 0
m6 = m2
Do [l1 : 1, l]:

m7 = m6 + m2
ic = l
Do [i : 1, m2 − 1]:

[t1 = xm5+i/(2 Cic+1)
t2 = xm6+i
ym5+i = t1 + t2
ym7−i = t1 − t2
ic = ic + l

Do [i : 1, m2 − 1]: xm5+i = ym5+i
xm7−i = ym7−i

m5 = m5 + m1
m6 = m6 + m1

l = l/2
Do [i : 1, Nm − 1]:

p = 1 : yi ← yi/ki
p = 2 : yi ← yi/ri
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