
Article

Superfluid Properties of Superconductors with
Disorder at the Nanoscale: A Random
Impedance Model

Giulia Venditti 1,† , Ilaria Maccari 1,2,† and Marco Grilli 1 and Sergio Caprara 1,*
1 Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy;

g.venditti@uniroma1.it (G.V.); ilaria.maccari@uniroma1.it (I.M.); marco.grilli@roma1.infn.it (M.G.)
2 Department of Theoretical Physics, The Royal Institute of Technology, SE-10691 Stockholm, Sweden
* Correspondence: sergio.caprara@roma1.infn.it; Tel.: +39-06-4991-4294
† These authors contributed equally to this work.

Received: 14 April 2020; Accepted: 12 May 2020; Published: 14 May 2020
����������
�������

Abstract: Some two-dimensional superconductors like, e.g., LaAlO3/SrTiO3 heterostructures or
thin films of transition metal dichalcogenides, display peculiar properties that can be understood
in terms of electron inhomogeneity at the nanoscale. In this framework, unusual features of
the metal-superconductor transition have been interpreted as due to percolative effects within
a network of superconducting regions embedded in a metallic matrix. In this work we use a
mean-field-like effective medium approach to investigate the superconducting phase below the critical
temperature Tc at which the resistivity vanishes. Specifically, we consider the finite frequency
impedance of the system to extract the dissipative part of the conductance and the superfluid
stiffness in the superconducting state. Intriguing effects arise from the metallic character of
the embedding matrix: upon decreasing the temperature below Tc proximity effects may rapidly
increase the superfluid stiffness. Then, a rather fragile superconducting state, living on a filamentary
network just below Tc, can be substantially consolidated by additional superconducting regions
induced by proximity effect in the interstitial metallic regions. This mean-field prediction should
call for further theoretical analyses and trigger experimental investigations of the superconducting
properties of the above systems.

Keywords: inhomogeneous superconductivity; nanoscale inhomogeneity; percolation; optical
response of superconductors; superfluid stiffness

1. Introduction

In recent years, a growing interest in the study of two-dimensional (2D) electron systems has
been registered [1]. The new experimental achievements have indeed paved the way for the study
of new ideal 2D systems ranging from monolayer graphene, to transition metal dichalcogenides
(TMD), or SrTiO3-based oxide interfaces like LaAlO3/SrTiO3. Quite interestingly, the experimental
measurements carried out on these compounds have revealed unexpected physical characteristics.
Among the open and more controversial issues, there is the emergence of a low-temperature
metallic state, called quantum metal: by decreasing the temperature, the resistivity undergoes a
superconductivity-driven drop, but it does not vanish and reaches a plateau saturating at a finite
value down to the lowest accessible temperatures [2–16]. Even when no low-temperature saturation
of the resistance is observed, the resistance curves R(T) show a peculiar behavior as a function of
the temperature T. Under certain conditions, as it can be an applied magnetic field (for graphene)
or an ionic-liquid gating (for TMD), the superconducting transition appears to be very broad, i.e.,
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much broader than one would expected by taking into account only standard superconductive
fluctuations [17,18]. At the same time, R(T) displays a tailish shape with a very slow vanishing in
the low-temperature regime. This behavior also occurs in the absence of magnetic fields and therefore
it can hardly be interpreted in terms of standard vortex dissipation. So far, these anomalous features
have been successfully reproduced considering the presence of an electron inhomogeneity [19–24].
For instance, it has been shown [24] that most of the phenomenology of TMD can be captured by
considering superconducting puddles with random critical temperature Tc, embedded in a metallic
matrrix. Lowering the temperature, one would indeed observe a downturn of the resistance, due to
the progressive nucleation of superconducting puddles, followed by a low-temperature saturation,
if the overall fraction of superconducting puddles is not large enough to give rise to a percolating
superconducting path. In this perspective, the enigmatic quantum metal finds a simpler mundane
explanation as a non-percolating randomly distributed superconducting network embedded in a
metallic matrix. The R(T) tailish behavior in the low-temperature regime seems to be a consequence
of the filamentary character of the superconducting network connecting the puddles, with a weak
long-distance connectivity [20].

Therefore, the above peculiar transport properties of the normal state of several 2D
superconductors have been interpreted in terms of randomly distributed nano-sized superconducting
regions embedded in a normal metallic matrix. This scenario has been successfully described by
means of a 2D random resistor network (RRN) model [19–22,24]. The question then naturally arises
whenever the same inhomogeneous state induces unusual properties in the superconducting state
and whether their interpretation can rest on the same theoretical scenario and modeling. In particular,
properties specifically related to the superconducting phase, like, e.g., the optical conductivity σ(ω)

and the superfluid stiffness Js, should reflect the inhomogeneous character of these 2D superconductors.
Indeed, this seems to be the case in LaAlO3/SrTiO3, where an anomalous behavior of the superfluid
stiffness has been measured at low temperature by gate-induced variations of the electron density [25].

In the present work, we present a first theoretical investigation of the temperature dependence
of σ(ω) and Js at finite frequencies in the range of a few GHz, for an inhomogeneous electron state
mixing metallic and superconducting regions. Specifically, we will study a spatially uncorrelated
inhomogeneous system, investigating the changes in superfluid stiffness and in dissipation due to
the broadening of the superconducting regions induced by proximity effects in the embedding metallic
matrix. To this purpose, we will thus consider a random impedance network (RIN) at finite frequency,
solving the model within the effective medium theory (EMT) [26,27]. Although this approach neglects
the spatial structure of the inhomogeneity, which has been essential to capture the low-temperature
tail of R(T), it still provides very useful insights in the temperature dependence of σ(ω) and Js.
In particular, one should remember that the matrix embedding the superconducting cluster has a
metallic character (this is a major difference with respect to, e.g., granular superconducting systems).
Therefore when the temperature T is lowered, it can partially become superconducting by proximity
effects. Then, upon lowering the temperature, the filamentary structure of the superconducting
network can become thicker because of proximization processes. Therefore, by introducing a second
class of superconducting bonds, which enter into play at lower temperature as a result of proximization
processes, one can find some new qualitative features as the reduction (or, conversely, the increase) of
the zero-temperature value of the dissipative (real) part of the optical conductivity or a two-step trend
of the superfluid stiffness, closely reminiscent of features in the superfluid stiffness recently observed
in LaAlO3/SrTiO3 heterostructures [28].

The paper is organized as follows. In Section 2, we will briefly review the RRN model in the EMT
approximation. In Section 3, we will introduce the RIN model and in Section 4, we will comment
on the results obtained solving the EMT equations. Finally, in Section 5 we will discuss the main
conclusions of this study and some perspectives.
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2. The RRN Model

In previous works (see, e.g., Ref. [24]), the presence of an electron nanoscale inhomogeneity in
2D superconductors was inferred, and the system was described, at a coarse-grained level, as a 2D
random resistor network (RRN). This network is realized as a 2D square lattice, with random resistors
located on all bonds of the lattice. A critical temperature Ti

c is assigned to each resistor Ri according to
a given probability distribution. By lowering the external temperature T, the resistors will then switch
off to their superconducting state (Ri = 0) as soon as the condition T ≤ Ti

c is verified:

Ri =

{
RN , if T > Ti

c,

0, if T ≤ Ti
c,

(1)

where RN is the experimental resistance per square of the 2D material in the high-temperature regime.
In order to model the inhomogeneities, two different kind of resistors are considered: a first kind
of metallic (m) resistors, that will maintain their finite resistance Ri = RN down to T = 0 K, i.e.,
with local critical temperature Ti

c ≤ 0, and a second kind of resistors that will instead become
superconducting (s) at a finite Ti

c, randomly distributed across the sample. Since it was previously
shown that different distributions give rise to qualitatively similar physical properties [20], for the sake
of definiteness and simplicity, the probability density distributions of the local critical temperatures Ti

c
for the superconducting fraction is taken as Gaussian

Ps(Ti
c) =

ws√
2πσs

exp
[
− (Ti

c − µc,s)2

2 σ2
s

]
(2)

where the subscript s indicates that this distribution refers to the superconducting fraction. The total
weight of the distribution corresponds to the maximum fraction ws that can become superconducting.
A fraction wm = 1− ws of the system will always stay metallic, down to T = 0 K.

In the simplest case of the EMT approximation [27], the effective resistance per square of the 2D
system Rem is given by the solution of the following self-consistent equation [26]

∑
j=m.s

w̃j(T)
Rj − Rem

Rj + Rem
= 0 (3)

where w̃s(T) =
∫ +∞

T dTc Ps(Tc), unlike the constant parameter ws, is a function of the temperature,
and represents the fraction of superconducting bonds at a temperature T [evidently, 0 ≤ w̃s(T) ≤ ws],
while w̃m(T) = 1− w̃s(T) is the metallic fraction at the same temperature (see Appendix A for details).
Since Rm = RN and Rs = 0, the solution of Equation (3) can be found analytically [21,27] and takes
the form:

Rem(T)
RN

= θ

[
ws erf

(
T − µc,s√

2 σs

)
+ 1− ws

]
,

where θ (·) is the Heaviside step function and erf (·) is the error function. The Gaussian distribution,
Equation (2), sets the broadening of the transition and the downturn of Rem, and reproduces the tail at
low temperatures. Most importantly, the parameter ws rules the percolation of the superconducting
cluster. Being wp ≡ 0.5 the percolation (hence, the superscript p) threshold for a homogeneous
distribution of superconducting puddles, for each ws < wp the effective resistance will saturate to a
finite value in the limit T → 0 K (orange curve and yellow shaded area in Figure 1).
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Figure 1. Temperature dependence of the effective resistance Rem for µc,s = 0.15 K, σs = 0.02 K
and two values of ws. The red (orange) curve corresponds to the pink (yellow) shaded area. As one
can see, as soon as ws < 0.5, the zero-temperature resistance saturates to a finite value. Observe that
the area underneath each gaussian distribution equals the corresponding value of ws.

In what follows, for the sake of definiteness, we will devote our analysis to the weakly percolating
case and fix ws = 0.5, i.e., the minimum value of the superconducting fraction needed to have a
percolating superconducting cluster in the EMT approximation. For this particular choice (red curve
and pink shaded area in Figure 1), the decrease of Rem will correspond, qualitatively, to the decrease of
the left-side of the Gaussian distribution: once the first resistors are switched off, Rem starts to decrease,
vanishing when half of the resistors become superconducting.

Despite the fact that the EMT neglects all spatial structures, still it can give important insights
about the main ingredients at play, like for instance the appearance of the zero-temperature metallic
state as a result of the lack of percolation.

However, the RRN model as it is presented here is apt to describe the phenomenology of transport
measurements above the critical temperature Tc, defined as the percolating temperature corresponding
to R(Tc) = 0. What remain unsolved are the properties below Tc. To have access to quantities such
as the optical conductivity in the superconducting state or the superfluid stiffness, the model has to
be extended to consider finite frequencies ω. The local resistors must hence be replaced by complex
impedances, so that the resulting model may be dubbed as RIN model.

3. The RIN Model

In the RIN model, the conditions for the local resistors in Equation (1) translate into conditions for
the local impedances zi at finite frequency ω:

zi =

{
RN + iωLi, if T > Ti

c,

iωLi, if T ≤ Ti
c,

the local inductance Li being the new ingredient at play: it rules the purely reactive AC electromagnetic
response of a superconducting puddle below its local critical temperature. In analogy with the RRN
model presented in the previous section, we consider the value of Li as a real constant, possibly
different for the different components of the system. Of course, one can think of improving the model,
using more sophisticated relations for the local inductances, i.e., taking for instance a temperature
and/or frequency dependent (complex) inductance Li(T, ω), to account for finite-frequency dissipation
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processes inside the superconducting puddles. This extension of the model is of course mandatory if
one is to explore, e.g., the regime of frequencies higher than the superconducting gap. For this reason,
here we limit our analysis to low (sub-gap) frequencies.

Having in mind SrTiO3-based oxide interfaces, for the sake of definiteness, the numerical values
of the parameters will be taken as typical of (or plausible for) these systems [21,25]. We recall that in
this work resistances and inductances (and hence, impedances) are measured per square, for any given
2D system.

In analogy with the RRN case, one can proceed by solving the correspondent EMT equation

∑
j=m,s

w̃j(T)
zj − zem

zj + zem
= 0 (4)

where zem is the effective impedance of the network, the index j = m, s labels the different components
of the inhomogeneous system, and w̃j(T) is the weight of the corresponding component at a
temperature T, as defined in the previous section (see also Appendix A). By means of Equation (4),
one has direct access to the effective conductance of the system at T < Tc, gem(T, ω) = z−1

em (T, ω).
As a consequence, also the effective optical conductivity σem(T, ω) = Re[gem(T, ω)] ≡ g′em(T, ω)

and the superfluid stiffness Js(T) ∝ − lim
ω→0

ω g′′em(T, ω), where g′′em(T, ω) ≡ Im[gem(T, ω)],

can be obtained. In practice, if the experiment is carried out at a constant low frequency [25],
one can directly take Js(T) ∝ −g′′em(T, ω ≈ 0), i.e., one can directly read the behavior of the superfluid
stiffness as a function of T from the behavior of the imaginary part of the conductance.

For the sake of comparison, we recall that within a homogeneous Drude model the complex AC
conductance is

g(T, ω) =
σ0

1 + iωτ
≡ 1

R + iωL
,

where σ0 ≡ ne2τ/m is the DC conductivity, n is the carrier density, e is the electron charge,
m is the carrier effective mass, and τ is the scattering time. Then, the resistance is R = 1/σ0

and the inductance is L ≡ τ/σ0 = (e2 Js)−1, where the superfluid stiffness is Js ≡ n/m.
In the superconducting state R = 0 and the AC electromagnetic response is purely reactive.

In the present study, we want to consider the scenario proposed in Ref. [24], where, just below Tc,
the system is characterized by the presence of superconducting filaments connecting superconducting
puddles. If on the one hand, the presence of a superconducting percolating path guarantees
the appearance of a global zero-resistance state, on the other hand the superconducting state remains
very fragile towards an applied current [29], so one can expect a very low value of the superfluid
stiffness. This low superfluid stiffness, however, can rapidly increase when the temperature is
lowered and proximity effects induce superconductivity in the metallic matrix. This can induce
different mechanisms leading to an increase of the superfluid stiffness. First of all, proximity effects
increase the superconducting regions at the expense of the metallic matrix. This effect generically
occurs irrespective of the spatial organization of the superconducting clusters. On the other hand,
proximity effects can open new superconducting paths connecting the few filamentary structure of
the superconducting network rapidly increasing the long-distance connectivity and strongly increasing
the superconducting condensate rigidity. While the first effect does not involve the spatial structure
and it can easily be described within the EMT, the second type of effects involve topological features
that can be conveniently addressed by direct calculations of RIN simulations. Nevertheless, a wealth
of information can still be extracted from the mean-field-like EMT approach, so that in the present
study, we will model the proximity effect at EMT level. Neglecting any spatial structure, we will
just consider a second superconducting component, resulting from proximization, with randomly
distributed critical temperature, setting in at lower temperatures.

The three different impedances, corresponding to the three different components, are thus
distributed across the system according to the corresponding fractions:
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• w1: the superconducting fraction percolating at Tc, with local critical temperatures following a
Gaussian distribution with parameters (µc,1, σ1);

• w2: the superconducting fraction arising after proximization, with local critical temperatures
following a Gaussian distribution with parameters (µc,2 ≤ µc,1, σ2);

• w3 = 1 − w1 − w2: the fraction of the residual metallic matrix, that will never
undergo proximization.

In what follows, we will keep w1 = wp ≡ 0.5, i.e., equal to the minimal fraction of superconducting
bonds needed for the system to percolate , with the assumption of a homogeneous dispersion of
the three components, implicit within the EMT. Again, having in mind SrTiO3-based oxide interfaces,
for the sake of definiteness, the values characterizing the average critical temperature and the width
of the distribution are taken as typical for these systems [21]. Although the EMT is just the first step
towards more sophisticated studies of the RIN, we will show in the next section that it can provide
valuable insights into the effect of the physical mechanisms described by our tuning parameters.

4. EMT Results

Let us discuss the results obtained by solving Equation (4) (see Appendix B for details about
the analytic solution of the EMT equation for a three-component system at finite frequency). We start
with the simple case treated within the RRN model. To this aim, we set w2 = 0 so as to consider
just the two kinds of resistors accounted for in the previous section: those belonging to the metallic
matrix and those belonging to the percolating superconducting cluster. Having set w1 = wp ≡ 0.5,
the global resistance of the system will vanish as soon as all the bonds of the superconducting cluster
have switched to their superconducting state (see Figure 1). On the other hand, the finite-frequency
response of the system appears already above Tc, at T . µc,1: as one can see from the trend of the black
curves in Figure 2a, both the superfluid stiffness Js ∝ −g′′em (at a fixed low frequency) and the optical
conductivity σ = g′em start to increase above the percolating temperature, saturating to a constant
value around Tc.

Let us now introduce the second fraction of superconducting bonds (w2 > 0), which comes
into play at lower temperatures, as a result of a proximity effect. To investigate the impact of this
new superconducting fraction on the AC transport properties, we keep fixed the fraction of the first
(percolating) superconducting bonds (w1 = 0.5) as well as the Gaussian distribution of their critical
temperatures (with parameters: µc,1 = 0.2 K; σ1 = 0.02 K), and we tune individually the parameters
relative to the second, proximity-induced, fraction of superconducting bonds.

Let us start by fixing the Gaussian distribution with µc,2 = 0.1 K and σ2 = 0.02 K, and by tuning
the fraction w2 of proximized bonds. As one can see from Figure 2a, increasing the value of w2 both
g′′em and g′em assume a two-step character, which can be smoother or more pronounced depending
on the other parameters at play, with opposite trends: while g′′em registers a further growth as a
consequence of a reduction of the global inductance, the optical conductivity g′em sees a downturn after
a sort of plateau, which will become more or less peaked depending on (µc,2, σ2) (Figure 2b,c. We also
stress that, by increasing w2, the ratio between the saturation values at T = 0 of g′′em and g′em strongly
increases: a fraction of just w2 = 0.07 proximized bonds make the ratio g′′em(0)/g′em(0) 10 times bigger
with respect to the case when proximization is not taken into account, and w2 = 0.
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(a) (b)

(c) (d)
Figure 2. EMT calculations of −g′′em (upper panels) and g′em (lower panels), as a function of
the temperature T, for different tuning parameters. The pink filled Gaussian corresponds to
the probability distribution of the percolating superconducting component with total fraction w1 = 0.5,
while the other filled gaussians to the distribution of the proximized bonds. The parameters tuned in
each figures are respectively: (a) the total fraction w2 of the proximized component; (b) its variance
σ2; (c) its mean value µc,2; and (d) the value of its inductance L2 keeping in this case fixed L1 = 2 nH.
Where not specified in the labels, L1 = L2 = 1 nH, w2 = 0.03. In all cases, we kept fixed RN = 800 Ω,
L3 = 10 nH and ω = 2 GHz. The areas underneath all Gaussian distributions equal the corresponding
fractions wj.

We now set the fraction of the proximized bonds to w2 = 0.03 and we observe the effects
in changing the variance σ2 and the mean value µc,2 of the Gaussian distribution of its critical
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temperatures. A broader probability distribution, i.e., a larger value of σ2, smoothens out the two-step
character of both response functions: it broadens the downturn of g′em as well as the increase of g′′em
(see Figure 2b). On the other hand, the value of µc,2 rules the temperature range at which both g′em
and g′′em start to increase and, quite interestingly, it corresponds to the inflection point of the two curves
(see Figure 2c). In general, from Figure 2b,c, one can see that the more the two probability distributions
overlap, either because of a larger σ2 or because µc,2 is taken closer to µc,1, the more the growth of g′′em
is continuous and the bump of g′em peaks.

So far, we have assumed that both superconducting fractions have the same inductance value
L1 = L2 = 1 nH, while the metallic residue has L3 = 10 nH. Finally, thus, we look at the effects
of changing the relative values of L1 and L2 on the response of the system. Fixing L1 = 2 nH we
tune the value of L2. As one can see from Figure 2d, the variations of L1,2 correspond to tuning
the magnitude in the zero-temperature limit of g′em and g′′em. In particular, an increase (decrease) of
L2 with respect to L1 corresponds to a decrease (increase) of the saturation values of both the real
and imaginary part of gem. It is worth noting that, while an increase in w2 acts in opposite directions
in g′em and g′′em (Figure 2a), the decrease of L1 corresponds to an increase of both g′em(0) and g′′em(0),
albeit with a different magnitude. From L2 = 2 L1 to L2 = L1, the relative increase of g′′em(0) is ≈1.3
while for g′em this is ≈0.5. Qualitatively, for L2 ≤ L1 = 1 nH we also observe an increase of g′em
in the lower temperature range, while in all other cases we observe a bump and then a decrease,
while lowering T.

5. Conclusions

The possibility to control superconductivity via electric or ionic-liquid gating poses new theoretical
challenges and opens the way to a wealth of applications. For instance, the simultaneous presence
of superconductivity and spin-orbit coupling at LaAlO3/SrTiO3 interfaces may open the way to
the possible occurrence of Majorana Fermions in suitably gate-tailored nano-sized one-dimensional
geometries of the two-dimensional electron gas [30–32]. At the same time, intrinsic [23,24] and extrinsic
effects may render the superconducting state of gate-tuned superconductors inhomogeneous at
the nanoscale, with the peculiarity that the superconducting regions may be surrounded by a metallic
matrix. In view of future applications, like the realization of gate-tunable superconducting devices,
it is then crucial to describe the electrodynamic response of these inhomogeneous systems.

This work was devoted to the description of the AC response of a superconductor with disorder at
the nanoscale. Along the line of previous works [24,27], dealing with DC transport in inhomogeneous
superconductors above the percolative superconducting transition, we studied the RIN model,
in the EMT approximation. The RIN model was obtained as an extension of the RRN model to
the domain of finite frequency. We were thus able to investigate the superconducting properties below
the percolative superconducting critical temperature. In its simplest realization, where the inductance
L of the superconducting regions is assumed to be real and frequency independent, our model is
apt to describe the low (i.e., lower than the superconducting gap) frequency regime. An extension
to higher frequencies is within the reach of our approach, but requires a description of dissipative
processes within the superconducting regions, entailing a properly devised frequency dependence of
the (complex) inductance L. This analysis is left for future studies, when experimental data guiding
and constraining our modeling will be available.

Looking at the real and imaginary parts of the complex conductivity, which corresponds to
the optical conductivity and the superfluid stiffness, respectively, we found very interesting features
once a second fraction of superconducting bonds is included, which can arise at lower temperature
because of a proximation process. A small fraction of superconducting proximized bonds are sufficient
in order to have a non negligible increase in g′′em as compared to the case of a single superconducting
component (i.e., in the absence of proximization within the metallic matrix).

This increase can be more or less abrupt, depending on the shape of the distribution of local Ti
c

assigned to the proximized bonds. More specifically, the increase of g′′em can be qualitatively different
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depending on the relative positions of the two Gaussians governing the superconducting clusters.
Indeed, if the two are overlapping, either because µc,1 and µc,2 are close to one another or σ1 and σ2

are large enough, the increase in g′′em is rather smooth and it takes place via a rather continuous
increase. On the contrary, when the two Tc distributions are sufficiently separated, g′′em displays s a
two-step character.

It is worth noting that the onset of the proximized fraction in the superconducting phase is also
responsible for the decrease of the (dissipative part of the) optical conductivity, which instead saturated
at a constant value (already at T ∼ Tc) in the single-component case (w2 = 0). The distribution P2(Ti

c)

controls the width of this maximum in g′em and its broadening. Finally, the tuning of the inductance
values of the two superconducting fractions L1 and L2 has provided very interesting insights as well.
Indeed, while both the saturation value of g′′em(T = 0) and g′em(T = 0) increases with decreasing
L2 at fixed value of L1, for L2/L1 < 1 the optical conductivity changes qualitatively its behavior:
the decrease generating a bump observed in all other cases turns into an increase towards a higher
g′em(T = 0) value with respect to its value in the case when proximization is neglected.

As already mentioned, despite its simplicity, the EMT approximation is quite rich and it can be
a valuable guidance in the study of the exact solution of the RIN model, where spatial correlations
in the system can be taken into account. Indeed, we found some interesting features coming from
the proximization process and we hope to trigger the experimental interest in the finite-frequency
response in the superconducting phase in 2D inhomogeneous systems. Work in this direction is
underway [28].
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-dimensional
EMT Effective Medium Theory
RIN Random Impedance Network
RRN Random Resistor Network
TMD Transition Metal Dichalcogenides

Appendix A

In this appendix we clarify the connection between the maximum fraction of a given component
wj and the temperature dependent fraction w̃j(T). We define the fraction of the j-th superconducting
component at a temperature T as the fraction of superconducting regions with local critical temperature
larger than T. Assuming Gaussian distributions for the corresponding critical temperatures, we have

w̃j(T) =
wj√
2π σj

∫ +∞

T
dTc exp

[
−
(Tc − µc,j)

2

2 σ2
j

]
=

wj

2

[
1− erf

(
T − µc,j√

2 σj

)]
.
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Thus, the maximum fraction wj is visualized as the total area underneath the corresponding
Gaussian distribution. It is now evident that 0 ≤ w̃j(T) ≤ wj, and that w̃j(T) ≈ 0 for T − µc,j � σj,
while w̃j(T) ≈ wj for µc,j − T � σj.

The metallic fraction at a given temperature, by definition, consists of the sum of the metallic
matrix (corresponding to a fraction wm) and all the superconducting regions for which the local
critical temperature is lower than T [corresponding to a fraction ws − w̃s(T) for each superconducting
component], i.e.,

w̃m(T) = wm + ∑
s
[ws − w̃s(T)] = 1−∑

s
w̃s(T),

where the sum runs over the possible superconducting components (e.g., the percolating cluster
and the proximized component) and we have used the fact that ∑j wj = 1 (the sum running on
all-metallic and superconducting-components). Then, we find that the normalization condition
consistently holds at all temperatures, ∑j w̃j(T) = 1.

Appendix B

In this appendix we provide details about the solution of the EMT equation for a three-component
system at finite frequency. In the following, we indicate with zj (j = 1, 2, 3) the impedance of the j-th
component and with w̃j its fraction (at a given temperature T, we omit this dependence here, to simplify
the notation), with the constraint w̃1 + w̃2 + w̃3 = 1 (see Appendix A). Then, Equation (4) takes the form
of an algebraic equation of third degree with complex coefficients,

z3
em + a1z2

em + a2zem + a3 = 0,

where,

a1 ≡ z1 + z2 + z3 − 2(w̃1z1 + w̃2z2 + w̃3z3),

a2 ≡ 2(w̃1z2z3 + w̃2z3z1 + w̃3z1z2)− (z1z2 + z2z3 + z3z1),

a3 ≡ −z1z2z3.

Then, we let

Q ≡
3a2 − a2

1
9

, R ≡
9a1a2 − 27a3 − 2a3

1
54

,

and

S ≡ 3
√
R+

√
Q3 +R2, T ≡ 3

√
R−

√
Q3 +R2,

where the square and cubic roots in the definition of S have positive imaginary part and among
the three determinations of the cubic root that defines T , the one that satisfies T = −Q/S must be
taken. Given the above definitions, the solution of Equation (4) with the appropriate analytic properties
(positive imaginary part) is

zem = S + T − 1
3

a1.

The complex AC conductance that is discussed in Section 4 is gem = z−1
em .

References

1. Saito, Y.; Nojima, T.; Iwasa, Y. Highly-crystalline two-dimensional superconductors. Nat. Rev. Mater. 2016,
2, 16094. [CrossRef]

2. Reyren, N.; Thiel, S.; Caviglia, A.D.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.;
Rüetschi, A.S.; Jaccard, D.; et al. Superconducting interfaces between insulating oxides. Science 2007, 317, 1196.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/natrevmats.2016.94
http://dx.doi.org/10.1126/science.1146006
http://www.ncbi.nlm.nih.gov/pubmed/17673621


Condens. Matter 2020, 5, 36 11 of 12

3. Caviglia, A.D.; Gariglio, S.; Reyren, N.; Jaccard, D.; Schneider, T.; Gabay, M.; Thiel, S.; Hammerl, G.;
Mannhart, J.; Triscone, J.M. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 2008,
456, 624. [CrossRef] [PubMed]

4. Biscaras, J.; Bergeal, N.; Kushwaha, A.; Wolf, T.; Rastogi, A.; Budhani, R.C.; Lesueur, J. Two-dimensional
superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun. 2010, 1, 89.
[CrossRef]

5. Saito, Y.; Kasahara, Y.; Ye, J.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional
superconductor. Science 2015, 350, 409. [CrossRef]

6. Ye, J.T.; Zhang, Y.J.; Akashi, R.; Bahramy, M.S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned
Band Insulator. Science 2012, 338, 1193. [CrossRef]

7. Li, L.J.; O’Farrell, E.C.T.; Loh, K.P.; Eda, G.; Özyilmaz, B.; Castro Neto, A.H. Controlling many-body states by
the electric-field effect in a two-dimensional material. Nature 2015, 529, 185. [CrossRef]

8. Christiansen, C.; Hernandez, L.M.; Goldman, A.M. Evidence of Collective Charge Behavior in the Insulating
State of Ultrathin Films of Superconducting Metals. Phys. Rev. Lett. 2002, 88, 037004. [CrossRef]

9. Ephron, D.; Yazdani, A.; Kapitulnik, A.; Beasley, M.R. Observation of Quantum Dissipation in the Vortex
State of a Highly Disordered Superconducting Thin Film. Phys. Rev. Lett. 1996, 76, 1529. [CrossRef]

10. Li, L.; Chen, C.; Watanabe, K.; Taniguchi, T.; Zheng, Y.; Xu, Z.; Pereira, V.M.; Loh, K.P.; Castro Neto, A.H.
Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity.
Nano Lett. 2019, 19, 4126. [CrossRef]

11. Qin, Y.; Vicente, C.L.; Yoon, J. Magnetically Induced Metallic Phase in Superconducting Tantalum Films.
Phys. Rev. B 2006, 73, 100505. [CrossRef]

12. Steiner, M.A.; Breznay, N.P.; Kapitulnik, A. Approach to a Superconductor-to-Bose-Insulator Transition in
Disordered Films. Phys. Rev. B 2008, 77, 212501. [CrossRef]

13. Tsen, A.W.; Hunt, B.; Kim, Y.D.; Yuan, Z.J.; Jia, S.; Cava, R.J.; Hone, J.; Kim, P.; Dean, C.R.; Pasupathy, A.N.
Nature of the Quantum Metal in a Two-Dimensional Crystalline Superconductor. Nat. Phys. 2016, 12, 208.
[CrossRef]

14. Yang, C.; Liu, Y.; Wang, Y.; Feng, L.; He, Q.; Sun, J.; Tang, Y.; Wu, C.; Xiong, J.; Zhang, W.; et al. Intermediate
Bosonic Metallic State in the Superconductor-Insulator Transition. Science 2019, 366, 1505. [CrossRef]
[PubMed]

15. Chervenak, J.A.; Valles, J.M. Absence of a Zero-Temperature Vortex Solid Phase in Strongly Disordered
Superconducting Bi Films. Phys. Rev. B 2000, 61, R9245, [CrossRef]

16. Chen, Z.; Swartz, A.G.; Yoon, H.; Inoue, H.; Merz, T.A.; Lu, D.; Xie, Y.; Yuan, H.; Hikita, Y.; Raghu, S.; et al.
Carrier Density and Disorder Tuned Superconductor-Metal Transition in a Two-Dimensional Electron System.
Nat. Commun. 2018, 9, 4008. [CrossRef]

17. Aslamasov L.G.; Larkin, A.I. The influence of fluctuation pairing of electrons on the conductivity of normal
metal. Phys. Lett. A 1968, 26, 238. [CrossRef]

18. Halperin, B.I.; Nelson, D.R. Resistive transition in superconducting films. J. Low Temp. Phys. 1979, 36, 599.
[CrossRef]

19. Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R.C.; Grilli, M.; Caprara, S.;
Lesueur, J. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 2013, 12, 542.
[CrossRef]

20. Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M. Metal-superconductor transition in low-dimensional
superconducting clusters embedded in two-dimensional electron systems. New J. Phys. 2013, 15, 023014.
[CrossRef]

21. Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R.C.;
Lesueur, J.; Grilli, M. Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces. Phys. Rev.
B 2013, 88, 020504. [CrossRef]

22. Bucheli, D.; Caprara, S.; Grilli, M. Pseudo-gap as a signature of inhomogeneous superconductivity in oxide
interfaces. Supercond. Sci. Technol. 2015, 28, 045004. [CrossRef]

23. Caprara, S.; Bucheli, D.; Scopigno, N.; Bergeal, N.; Biscaras, J.; Hurand, S.; Lesueur, J.; Grilli, M.
Inhomogeneous multi carrier superconductivity at LaXO3/SrTiO3 (X = Al or Ti) oxide interfaces. Supercond.
Sci. Technol. 2015, 28, 014002. [CrossRef]

http://dx.doi.org/10.1038/nature07576
http://www.ncbi.nlm.nih.gov/pubmed/19052624
http://dx.doi.org/10.1038/ncomms1084
http://dx.doi.org/10.1126/science.1259440
http://dx.doi.org/10.1126/science.1228006
http://dx.doi.org/10.1038/nature16175
http://dx.doi.org/10.1103/PhysRevLett.88.037004
http://dx.doi.org/10.1103/PhysRevLett.76.1529
http://dx.doi.org/10.1021/acs.nanolett.9b01574
http://dx.doi.org/10.1103/PhysRevB.73.100505
http://dx.doi.org/10.1103/PhysRevB.77.212501
http://dx.doi.org/10.1038/nphys3579
http://dx.doi.org/10.1126/science.aax5798
http://www.ncbi.nlm.nih.gov/pubmed/31727857
http://dx.doi.org/10.1103/PhysRevB.61.R9245
http://dx.doi.org/10.1038/s41467-018-06444-2
http://dx.doi.org/10.1016/0375-9601(68)90623-3
http://dx.doi.org/10.1007/BF00116988
http://dx.doi.org/10.1038/nmat3624
http://dx.doi.org/10.1088/1367-2630/15/2/023014
http://dx.doi.org/10.1103/PhysRevB.88.020504
http://dx.doi.org/10.1088/0953-2048/28/4/045004
http://dx.doi.org/10.1088/0953-2048/28/1/014002


Condens. Matter 2020, 5, 36 12 of 12

24. Dezi, G.; Scopigno, N.; Caprara, S.; Grilli, M. Negative electronic compressibility and nanoscale inhomogeneity
in ionic-liquid gated two-dimensional superconductors. Phys. Rev. B 2018, 98, 214507. [CrossRef]

25. Singh, G.; Jouan, A.; Herranz, G.; Scigaj, M.; Sánchez, F.; Benfatto, L.; Caprara, S.; Grilli, M.; Saiz, G.;
Couëdo, F.; et al. Competition between electron pairing and phase coherence in superconducting interfaces.
Nat. Commun. 2018, 18, 948. [CrossRef]

26. Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574. [CrossRef]
27. Caprara, S.; Grilli, M.; Benfatto, L.; Castellani, C. Effective medium theory for superconducting layers:

A systematic analysis including space correlation effects. Phys. Rev. B 2011, 84, 014514. [CrossRef]
28. Bergeal, N. (Laboratoire de Physique et d’Etude des Matériaux, ESPCI Paris, PSL Research University,

CNRS, Paris, France and Université Pierre and Marie Curie, Sorbonne-Université, Paris, France). Personal
communication, 2020.

29. Venditti, G.; Biscaras, J.; Hurand, S.; Bergeal, N.; Lesueur, J.; Dogra, A.; Budhani, R.C.; Mondal, M.;
Jesudasan, J.; Raychaudhuri, P.; et al. Nonlinear I–V characteristics of two-dimensional superconductors:
Berezinskii-Kosterlitz-Thouless physics versus inhomogeneity. Phys. Rev. B 2019, 100, 064506. [CrossRef]

30. Lutchyn, R.M., Sau, J.D.; Das Sarma, S. Majorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett. 2010, 105, 077001. [CrossRef]

31. Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires. Phys. Rev.
Lett. 2010, 105, 177002. [CrossRef]

32. Mazziotti, M.V.; Scopigno, N.; Grilli, M.; Caprara, S. Majorana Fermions in One-Dimensional Structures at
LaAlO3/SrTiO3 Oxide Interfaces. Condens. Matter 2018, 3, 37. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevB.98.214507
http://dx.doi.org/10.1038/s41467-018-02907-8
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1103/PhysRevB.84.014514
http://dx.doi.org/10.1103/PhysRevB.100.064506
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.3390/condmat3040037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The RRN Model
	The RIN Model
	EMT Results
	Conclusions
	
	
	References

