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Abstract: We analyze the many-body phases of an ensemble of particles interacting via a
Lifshitz–Petrich–Gaussian pair potential in a harmonic confinement. We focus on specific parameter
regimes where we expect decagonal quasiperiodic cluster arrangements. Performing classical Monte
Carlo as well as path integral quantum Monte Carlo methods, we numerically simulate systems of
a few thousand particles including thermal and quantum fluctuations. Our findings indicate that
the competition between the intrinsic length scale of the harmonic oscillator and the wavelengths
associated to the minima of the pair potential generically lead to a destruction of the quasicrystalline
pattern. Extensions of this work are also discussed.

Keywords: cluster physics; quasicrystals; quantum many-body phases; path-integral quantum
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1. Introduction

Quasicrystals are quasiperiodic systems which break translational symmetry and display
long-range order without being periodic [1]. Crystallographic theorem in both two and three
dimensions allows only a limited number of discrete symmetries in the Bragg spectrum, namely
two- three-, four-, and six-fold symmetries [2]. Other discrete symmetries for periodic systems, such
as the well known five-fold (pentagonal) and ten-fold (decagonal), are prohibited. A microscopic
mechanism to generate a host of different phases including quasicrystals is based on simultaneous
instability at more than one length scale, corresponding to degenerate minima of the Fourier transform
of the potential [3,4].

Typically, the instability at a single length scale for an isotropic potential is an indication of
crystallization toward a regular lattice (Wigner crystal), which in two dimensions leads to a triangular
arrangement of particles. This is indeed the case of generic power-law interactions, such as the van der
Walls potential [5].

It is important to note that power-law interactions are singular at the origin, prohibiting the
approach of two or more particles at very small interparticle distances, as in the case of dipolar
potentials [6,7]. To circumvent this effect, one may engineer different types of interactions which
are finite for small separations. This is the case of soft-core interactions that can be encountered
in a variety of setups, from Rydberg-dressed atoms [8–12] to soft-matter systems [13–16]. At the
many-body level, a finite interaction at small distances allows the formation of cluster (or droplet)
crystalline phases [17–26]. Each cluster generically contains a few particles to several tens of particles.
At the quantum level, such arrangements can lead to genuinely novel effects. A significant instance
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is provided by the supersolid phase, which spontaneously breaks both translational symmetry and
global gauge symmetry. Supersolid phases have recently been realized in dipolar systems [27–29],
atom–light coupled cavity experiments [30] and spin-orbit coupled BECs [31].

In this work we study the many-body phases for an ensemble of distinguishable particles
interacting via a Lifshitz–Petrich–Gaussian pair potential in the presence of an external trapping
potential. Extensive analysis of the phases has been done in the classical regime [32,33], and more
recently also in the quantum limit [34]. Examples of phases for these potentials include various types
of quasicrystalline order and stripe phases.

Here we focus on a restricted parameter regime where we expect a decagonal quasiperiodic
arrangement of clusters in free space, and then study the effect on the many-body phases, adding a
trapping potential. To explore such phases, we employ either classical Monte Carlo simulations
to analyze the effect of thermal fluctuations or path integral quantum Monte Carlo methods
for the investigation of quantum fluctuations. Interestingly, we find that the combination of an
external trapping potential and the thermal and quantum fluctuations destroy the decagonal cluster
quasicrystal.

The rest of the paper is organized as follows: In Section 2 we introduce the microscopic model,
and give some details on the methodologies that were applied. Section 3 outlines findings regarding
the trapped system in a classical regime. In Section 4, we illustrate the results related to the quantum
case. Our conclusions and extensions of this work are addressed in Section 5.

2. Model Hamiltonians and Methodology

In this section we introduce our system for both the classical and the quantum case. Considering
a set of N distinguishable particles of mass m and trapped in a harmonic potential, the Hamiltonian
reads:

H = −λ
N

∑
i=1
∇2

i +
N

∑
i<j

V
(
rij
)
+ γ

N

∑
i=1

r2
i , (1)

where the kinetic contribution to the total energy is scaled by the parameter λ = h̄2

2m , ri ≡ (xi, yi)

being the position of i-th particle on the plane, and rij = |ri − rj|. λ = 0 reflects a pure classical
regime, whereas λ > 0 takes into account quantum fluctuations. The second sum represents the
Lifshitz–Petrich–Gaussian pair potential [32], which can be written as:

V(r) = e−
1
2 σ2r2

(
c0 + c2r2 + c4r4 + c6r6 + c8r8

)
. (2)

The parameters σ and ci have to be chosen such that the equilibrium configuration of the system
without confinement establishes a quasicrystal structure below the transition temperature. The caption
of Figure 1 reports the exact value of σ and ci for such a quasicrystal pattern. The two-body potential
furnishes two equal-depth negative minima in its Fourier transform. Since the present work aims to
consider cluster crystals featuring a 10-fold symmetry, the ratio of the corresponding wave-vectors
yields

(
1 +
√

5
)

/2 ≈ 1.618 [32]. Figure 1a shows the pair potential, and its Fourier transform around
the two equal-depth negative minima region is reported in Figure 1b. The harmonic confinement of
Equation (1) is represented by the third term in Equation (1), where γ is the strength of the trap.

We studied the equilibrium state of Equation (1) by varying the reduced temperature t = kBT/V0,
V0 = V(0), and N. To characterize the limit for λ = 0 we employed standard classical Monte
Carlo simulations. The numerics were initialized by choosing a random arrangement of particles.
Thermodynamic equilibrium was first reached at a high temperature, t0. Then the temperature was
gradually decreased t→ t− δt (δt > 0) starting with the last configuration sampled at the previous
higher temperature. The procedure was completed when the final temperature was reached.
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Figure 1. (a) Pair potential in real space identifying a cluster quasicrystal with a 10-fold symmetry.
(b) Fourier of the pair potential proposed in (a) around the minima that mark the quasicrystal. (c)
Typical configuration of a classical simulation obtained at t = 0.05 using 2048 particles (canonical
ensemble). The parameters of the interparticle potential in Equation (2) used for the simulations were
σ = 0.69, c0 = 1, c2 = −0.79, c4 = 0.25, c6 = −0.02, and c8 = 6.0× 10−4, as reported in Ref. [32]. These
parameters lead to two degenerate minima of the Fourier transform of the potential. Length scales and
parameters were chosen to fix the first minimum at k1

min = 1.

First we neglected the trapped potential (γ = 0) and used periodic boundary conditions along all
directions in order to reproduce a quasicrystal cluster with a decagonal symmetry. Following Ref. [32],
we fixed the reduced density at ρr2

0 = 0.8, where r0 = 2π/kmin is the characteristic length given by
the inverse of the wave vector corresponding to the first minimum, kmin, of the Fourier transform of
Equation (2). As a result of the annealing process, Figure 1c shows a pattern characterized by a 10-fold
symmetry at temperature t = 0.05 and N = 2048.

Regarding the quantum counterpart (λ > 0), we investigated the equilibrium properties of the
system described by the Hamiltonian (1) employing first-principle computer simulations based on
a continuous-space path integral Monte Carlo [35,36]. A thorough illustration of the methodology
can be found in [37]. Since the potential in Figure 1a is well behaved, the density operator can be
approximated using a fourth-order expansion, as proposed by Chin in Ref. [38].

3. Trapped Quasicrystal: Thermal Fluctuations

Now we discuss the properties of the quasicrystal characterized by a 10-fold symmetry in the
presence of a two-dimensional harmonic confinement. As stated above, we started studying the system
by excluding quantum effects, that is, imposing λ = 0. Figure 2a depicts a snapshot configuration
of a classical Monte Carlo simulation run employing N = 2048 and with strength γ = 0.01 (in units
of V0) of the harmonic confinement. In Figure 2a we consider t = 0.05. Each grey circle represents
the position of a particle on the xy-plane. The wave-number, kc, which denotes the harmonic trap, is

introduced defining the characteristic length of the harmonic trap as lc =
√

V0
2γ ≈ 7.07, then it yields

kc =
2π
lc
≈ 0.89.
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Figure 2. Instantaneous configuration for a trapped system made of N = 2048 classical particles at
temperature (a) t = 0.05 and (b) t = 1.0. (c) Grey points: density profiles for panel (a); Orange points:
density profiles for panel (b).

The structure in Figure 2a displays a strong modification of the quasicrystal pattern, and it
appears as the result of the strong frustration imposed by the harmonic confinement. Qualitatively,
we might split the trapped quasicrystal in two regions. The first region within the radius r/r0 . 20 is
an amorphous structure that recalls the ring-shaped symmetry of Figure 1c. In contrast to this inner
shell, clusters rearranged themselves forming two visible circles at the trap’s border 20 . r/r0 . 45.
Indeed, these observations bring us to the conclusion that the system is no longer a quasicrystal. We
also notice that each cluster had about half the number of particles with respect to the ones in Figure 1c.
Furthermore, particles clumped in a tighter arrangement. Figure 2b shows a configuration for the
same system but at higher temperature t = 1. At first glance, the simulation proposed in Figure 1c
simply spots the increase of the thermal fluctuations whose effect is to move the systems towards a
fluid phase. Nevertheless, a detailed inspection shows that the inner shell still displayed rings at t = 1.
More precisely, Figure 2b reflects a thermal state where fluctuations made rings broader and spatially
linked among themselves. In contrast, the outer shell seemed to be completely disordered.

The radial density profile ρ(r) of the configurations in Figure 2a,b is represented in Figure 2c.
The grey circles represent ρ(r) of panel a, whereas the orange circles refer to panel b. The radial
density distribution of the classical system shows pronounced and narrow maxima with every other
well-defined minima located at zero. This indicates that clusters were not thermally linked as described
above. Interestingly, the radial density function at higher temperature (orange points) looks like the
position of the peaks were mainly left intact for r/r0 . 20. In a different way, the oscillations of ρ(r)
have minima that do not touch the x-axis, leading to a structure where particles have a non-zero
probability of percolating from cluster to cluster.

4. Trapped Quasicrystal: Quantum Fluctuations

In the previous section we focussed on the Hamiltonian (1) without quantum fluctuations. In the
present section we analyze the model of Equation (1) through a path integral Monte Carlo approach
that includes quantum fluctuations. In particular, we fix t = 0.05 anew and vary λ of (1). Figure 3
shows results with λ = 0.05 (panel a) and λ = 0.5 (panel b), respectively. Again energy scales are
expressed in units of V0. The strength of the trap was fixed at γ = 0.01 as in the classical case. The

wave-number specifying the strength of the trap now reads kq = 2π
lq

, lq =
(

2λ
γ

)1/4
being the quantum

harmonic oscillator length. We point out that the choice of scaling the parameters in terms of the
strength of the interparticle potential V0, and therefore changing the strength of the kinetic energy term,
is arbitrary and reflects a convenience for numerical simulations without affecting the physical model.
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Figure 3. Snapshot of N = 2048 boltzmannons simulated at temperature t = 0.05 and confined into an
harmonic trap varying the kinetic term of (1): (a) λ = 0.05 and (b) λ = 0.5. Different colors identify
different world lines. (c) Grey points: density profiles for panel (a); Orange points: density profiles for
panel (b)—error bars lie within point size.

Our simulations were performed without introducing bosonic exchanges, taking only classical
statistics into consideration. However, such an approximation still accounts for zero-point motion
effects which are due to quantum fluctuations. Panels a and b show snapshots (instantaneous
configurations) of the projection of world lines onto the xy plane obtained by integrating over
the imaginary time evolution. Different colors refer to different particles (within a quasi-classical
approximation those particles are sometimes named boltzmannons). For a discussion of the properties
of our simulations in this regime, see the review by D. Ceperley [35]. It is important to stress that these
kinds of projections are usually considered as a good representation of the square of the semi-classical
many-body wave function. Figure 3a shows particles whose paths remain confined on a single cluster.
It is clear that, excluding clusters confined on the edge of the trap, the configuration results to form a
perfect triangular cluster crystal. The same information can be drawn by looking at the radial density
profile in Figure 2c. The grey points characterize density ρ(r), which displays oscillations that are
consistent with the arrangement of particles.

We can conclude that moderate small quantum fluctuations drive the systems toward a perfectly
ordered solid consisting of evenly spaced multiple-occupancy clusters. In addition, the strong
localization of paths seems to exclude the presence of a possible supersolid phase. Upon increasing the
kinetic term (as in Figure 3b), boltzmannons start to delocalize throughout the trap with a consequent
quantum melting of the triangular crystal into a superfluid. The orange points in Figure 3c account for
this uniform superfluid state [39].

Finally, we compare the structures obtained for the classical case in Figure 2a and with the
introduction of quantum fluctuations in Figure 3a by looking at their Fourier transforms. Figure 4a
shows the two-dimensional Fourier transform of the classical configuration whereas Figure 4b
corresponds to the quantum case. The quantum case evidently confirms the onset of a hexagonal
cluster crystal symmetry. Figure 4b was calculated by considering position of the centroid coordinates.
In contrast to the quantum case, the Fourier transform of the classical configuration displays a central
peak surrounded by four pairs of closely spaced peaks.
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(a) (b)

Figure 4. Fourier transform (logarithmic scale) of the density for the classical and quantum
configurations. (a) Fourier transform of Figure 2a (thermal fluctuations), (b) Fourier transform of
Figure 3a (quantum fluctuations). Whereas in (b) the peak structure clearly indicates the presence of
a hexagonal lattice, the Fourier transform of the classical configuration in (a) displays a central peak
surrounded by four pairs of closely spaced peaks, compatible with an irregular structure of the clusters.

5. Conclusions

In this work we studied the many-body phases of an ensemble of distinguishable particles in the
presence of a Lifshitz–Petrich–Gaussian pair potential in a harmonic trap. The competition between the
intrinsic length scale of the harmonic oscillator and the wavelengths associated to the minima of the
interaction potential leads to a destruction of the quasicrystalline pattern. We analyzed this effect both
in the presence and absence of quantum fluctuations for particles obeying classical statistics. We found
that thermal fluctuations smeared out the fluctuations of the maxima and the minima of the radial
density. On the other hand, weak quantum fluctuations induced a hexagonal density pattern, also
verified via the study of the Fourier transform of the density. Stronger fluctuations led to a transition to
a fluid phase. The detailed investigation of particle exchanges for the characterization of superfluidity
will be done in a separate study. Superfluid features are relevant to the identification of parameter
regimes where the simultaneous breaking of translational and global gauge symmetry lead to an exotic
supersolid phase [40,41]. Additional work may also include the comprehensive analysis of finite size
effects as a function of particle number and the trap strength, which may lead to different arrangements
and occupations of the clusters, the study of collective excitations for single- and multi-component
systems of bosons or fermions [42].
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